MATH221

quiz #2, 10/13/15Total 100 Solutions

Show all work legibly.

Name:_____

1. (20) Let $\mathbf{v}_1 = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 4\\ 5\\ 6 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$. True or False? The vectors are linearly independent.

Solution. $-v_1 + v_2 - 3v_3 = 0$.

Mark one and explain.

2. (40) Let $T : \mathbf{R}^3 \to \mathbf{R}^1$ be a linear transformation such that $T\left(\begin{bmatrix} 1\\2\\3 \end{bmatrix}\right) = 1, T\left(\begin{bmatrix} 4\\5\\6 \end{bmatrix}\right) = 2,$

and
$$T\left(\begin{bmatrix} 7\\8\\9 \end{bmatrix}\right) = 3$$
. Find $T\left(\begin{bmatrix} 1\\1\\1 \end{bmatrix}\right)$

Solution. Note that

$$\begin{bmatrix} 1\\1\\1 \end{bmatrix} = -\frac{1}{3} \begin{bmatrix} 1\\2\\3 \end{bmatrix} + \frac{1}{3} \begin{bmatrix} 4\\5\\6 \end{bmatrix}$$

hence $T\left(\begin{bmatrix} 1\\1\\1 \end{bmatrix} \right) = -\frac{1}{3} \times 1 + \frac{1}{3} \times 2 = \frac{1}{3}.$

3. (20) Let T be a linear transformation that leaves \mathbf{e}_1 unchanged and maps \mathbf{e}_2 to $\mathbf{e}_2 - \mathbf{e}_1$.

- (10) Find the standard matrix A of the linear transformation T. Solution. $A = [T(\mathbf{e}_1) T(\mathbf{e}_2)] = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$.
- (10) True or False? T is a one to one transformation.

Solution. If $T(\mathbf{x}) = A\mathbf{x} = 0$, then $x_2 = 0$ and $x_1 = 0$.

Mark one and explain.

 • (10) True or False? T is an onto transformation.

Solution. If $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$, then \mathbf{x} that solves $A\mathbf{x} = \mathbf{b}$ is $\mathbf{x} = \begin{bmatrix} b_1 + b_2 \\ b_2 \end{bmatrix}$. Mark one and explain.

- \Box True \Box False
- (10) If possible define the linear transformation S so that $S(T(\mathbf{x})) = \mathbf{x}$ for each $\mathbf{x} \in \mathbf{R}^2$ and find the standard matrix B of S.

Solution. Since T is one to one and onto the inverse exists, and $B = A^{-1}$, i.e.

$$\left[\begin{array}{rrrr} 1 & -1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array}\right] \rightarrow \left[\begin{array}{rrrr} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{array}\right].$$

Hence $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, and $S(\mathbf{x}) = B\mathbf{x}$.

4. (20) Suppose A is invertible and E_1 , E_2 , and E_3 are elementary matrices that reduce A to the identity matrix, i.e. $E_3E_2E_1A = I$. Use E_i and E_i^{-1} to produce elementary matrices that reduce A^{-1} to I.

Solution. Since $E_3E_2E_1A = I$ one has $I = (E_3E_2E_1A)^{-1} = A^{-1}(E_3E_2E_1)^{-1}$ and

$$A = (E_3 E_2 E_1)^{-1} = E_1^{-1} E_2^{-1} E_3^{-1}, \text{ finally } I = A A^{-1} = E_1^{-1} E_2^{-1} E_3^{-1} A^{-1}.$$

5. (20) Suppose A and B are $n \times n$ matrices. True or False? If AB is invertible, then B is also invertible.

Solution. Note that $I = (AB)^{-1} AB = [(AB)^{-1} A] B$, and $(AB)^{-1} A = B^{-1}$.

Mark one and explain.

 \Box True \Box False