MATH221

quiz #2, 10/13/15Total 100 Solutions

Show all work legibly.

Name:_____

1. (20) Let
$$\mathbf{v}_1 = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 4\\ 5\\ 6 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$. True or False? The vectors are linearly independent.

Mark one and explain.

□ True □ False

2. (20) Let $T : \mathbf{R}^3 \to \mathbf{R}^1$ be a linear transformation such that $T\left(\begin{bmatrix} 1\\2\\3 \end{bmatrix} \right) = 1, T\left(\begin{bmatrix} 4\\5\\6 \end{bmatrix} \right) = 2,$ and $T\left(\begin{bmatrix} 7\\8\\9 \end{bmatrix} \right) = 3$. Find $T\left(\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \right)$.

$$T\left(\left[\begin{array}{c}1\\1\\1\end{array}\right]\right) =$$

- 3. (40) Let T be a linear transformation that leaves \mathbf{e}_1 unchanged and maps \mathbf{e}_2 to $\mathbf{e}_2 \mathbf{e}_1$.
 - (10) Find the standard matrix A of the linear transformation T.

• (10) True or False? T is a one to one transformation.

Mark one and explain.

□ True □ False

• (10) True or False? T is an onto transformation.

Mark one and explain.

□ True □ False

• (10) If possible define the linear transformation S so that $S(T(\mathbf{x})) = \mathbf{x}$ for each $\mathbf{x} \in \mathbf{R}^2$ and find the standard matrix B of S.

$$S(\mathbf{x}) = B =$$

4. (20) Suppose A is invertible and E_1 , E_2 , and E_3 are elementary matrices that reduce A to the identity matrix, i.e. $E_3E_2E_1A = I$. Use E_i and E_i^{-1} to produce elementary matrices that reduce A^{-1} to I.

the elementary matrices that reduce A^{-1} to I are:

5. (20) Suppose A and B are $n \times n$ matrices. True or False? If AB is invertible, then B is also invertible.

Mark one and explain.

 \Box True \Box False