MATH221

quiz \#1, 09/17/15

Total 100
Solutions
\qquad

1. (20) Solve the system

$$
\begin{aligned}
& 2 x_{1} \quad \begin{array}{r}
-4 x_{3}=0 \\
x_{2}+3 x_{3}=2
\end{array} \\
& x_{1}+5 x_{2}+3 x_{3}=0
\end{aligned}
$$

Solution.

$$
\begin{gathered}
{\left[\begin{array}{rrrr}
2 & 0 & -4 & 0 \\
0 & 1 & 3 & 2 \\
1 & 5 & 3 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & -2 & 0 \\
0 & 1 & 3 & 2 \\
1 & 5 & 3 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & -2 & 0 \\
0 & 1 & 3 & 2 \\
0 & 5 & 5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & -2 & 0 \\
0 & 1 & 3 & 2 \\
0 & 0 & -10 & -10
\end{array}\right] \rightarrow} \\
{\left[\begin{array}{rrrr}
1 & 0 & -2 & 0 \\
0 & 1 & 3 & 2 \\
0 & 0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & -2 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{array}\right]} \\
x_{1}=2, x_{2}=-1, x_{3}=1
\end{gathered}
$$

2. (20) Determine values of h for which the system

$$
2 x_{1}-6 x_{2}=4,-4 x_{1}+h x_{2}=2
$$

is consistent.

Solution.

$$
\left[\begin{array}{rrr}
2 & -6 & 4 \\
-4 & h & 2
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
2 & -6 & h \\
0 & h-12 & 10
\end{array}\right]
$$

$h \neq 12$
3. (20) Let

$$
A=\left[\begin{array}{rrr}
2 & 0 & 6 \\
-1 & 8 & 5 \\
1 & -2 & 1
\end{array}\right] .
$$

True or False? The system $A \mathbf{x}=0$ has a non trivial solution.

Solution.

$$
\begin{gathered}
{\left[\begin{array}{rrr}
2 & 0 & 6 \\
-1 & 8 & 5 \\
1 & -2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -2 & 1 \\
2 & 0 & 6 \\
-1 & 8 & 5
\end{array}\right] \rightarrow\left[\begin{array}{lrr}
1 & -2 & 1 \\
0 & 4 & 4 \\
0 & 6 & 6
\end{array}\right] \rightarrow\left[\begin{array}{lrl}
1 & -2 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]} \\
\\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{r}
-3 \\
-1 \\
1
\end{array}\right]}
\end{gathered}
$$

Mark one and explain.

- True
- False

4. (20) True or False? If A is 5×3 matrix, $\mathbf{y}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \mathbf{b}=\left[\begin{array}{l}0 \\ 5 \\ 6 \\ 0 \\ 1\end{array}\right]$, and $A \mathbf{y}=\mathbf{b}$, then the equation $A \mathbf{x}=5 \mathbf{b}$ is consistent.

Solution. If $\mathbf{x}=5 \mathbf{y}$, then $A \mathbf{x}=A(5 \mathbf{y})=5 A \mathbf{y}=5 \mathbf{b}$.
Mark one and explain.
$\square \quad$ True, $\mathbf{x}=\quad \square \quad$ False
5. (20) Consider the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
2 \\
-5 \\
-3 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}
3 \\
1 \\
-1 \\
0
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

True or False? The vector \mathbf{v}_{3} can be written as a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}.
Solution. $0 \cdot \mathbf{v}_{1}+0 \cdot \mathbf{v}_{2}=\mathbf{v}_{3}$.
Mark one and explain.

- True
- False

6. (20) Consider the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \text { and the matrix } A=\left[\begin{array}{rrr}
1 & -2 & 1 \\
-2 & 1 & 1
\end{array}\right]=\left[\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\mathbf{v}_{2}^{T}
\end{array}\right]
$$

(a) (10) True or False? $\mathbf{v}_{1}^{T} \mathbf{v}_{3}=\mathbf{v}_{2}^{T} \mathbf{v}_{3}=0$.

Mark one and explain.

- True \quad False
(b) (10) True or False? $A \mathbf{x}=0$ has a nontrivial solution.

Mark one and explain.

- True, $\mathbf{x}=\mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \quad \square \quad$ False

