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Abstract

We provide a list of basis functions to be used in conjunction with Princi-

pal Fitted Components Models. This document gives the correction of some

erratum in my PhD dissertation and add few more details. An R code for

the basis functions presented in this document is available.

We assume that the reader of this document knows about Principal Fitted

Components models (Cook, 2007). Assuming that (Y,X) has a joint distribution,

the randomness of X is used and, denoting Xy to be the conditional X|Y = y, a

PFC model is written as

Xy = µ+ Γβfy + ε (1)

The term fy, centered such that f̄y = 0, is a vector-valued function of the response

y. It is constructed under specific basis functions. There is an infinite list of basis

functions. We provide a list of some that are useful to be used with PFC models.
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The Basis Functions

Given a function ν = ν(y), we want to find the transformations fy = (f1(y), ..., fr(y))
T

such that

ν(y) =
r∑

i=1

βifi(y).

The known function fy constitutes the basis functions to be used. In the thesis

(and in this document), polynomial, piecewise continuous and discontinuous poly-

nomial and Fourier basis functions are considered. In all cases, we assume that

the response variable is univariate, although there is nothing in the theory that

requires this restriction.

The polynomial approach derives from the Taylor theorem: A function ν at

the point y can be approximated in a neighborhood of y by a linear combination

of polynomials. In general, one can approximate a nonlinear function by a poly-

nomial. A polynomial basis consists of the powers of y, that is, 1, y, y2, ... , yr.

For this work, we consider rth-degree polynomial bases. The linear basis fy = y,

fy ∈ R, the quadratic basis fy = (y, y2)T , fy ∈ R2 and cubic basis fy = (y, y2, y3)T ,

fy ∈ R3 are mentioned in Cook (2007) and are particular cases of polynomial bases.

To determine piecewise basis functions, the range of y is sliced into h slices

H1, ...,Hh. Within each slice, a constant, linear, quadratic or cubic polynomial basis

is used. Except for the constant intra slice basis, we consider two cases: in the first,

the curves from adjacent slices are discontinuous. We refer to this as the piecewise

discontinuous basis. In the second case, the curves are continuous without being

necessarily differentiable at the joints. This is the piecewise continuous basis. We

consider the following notations: for the kth slice, nk is the number of observations

it contains and n =
∑

nk. We denote by Jk(y) the indicator function such that

Jk(y) = 1 if y ∈ Hk and Jk(y) = 0 otherwise. We also denote by τ0, τ1, ...τh, the
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end-points of the slices. For example, (τ0, τ1) are the end-points of the first slice;

(τ1, τ2) are the end-points of the second slice, and so on.

For piecewise discontinuous bases, a constant, a linear, a quadratic or a cubic

polynomial is fitted within each slice. For a polynomial of degree m, there are

(m + 1)h parameters to determine. The general form of the components fyi of fy

where fy ∈ R(m+1)h−1 is obtained. This yields the relationship between the number

of slices and the dimension of fy. Here r = (m+ 1)h− 1 when h slices are used.

A linear, a quadratic and a cubic polynomial basis within the slices are also

considered for the piecewise continuous case. Unlike the discontinuous case, curves

from adjacent slices are continuous at each of the (h − 1) inner knots. For a

piecewise linear polynomial, 2h parameters are needed but there is one constraint

at each knot. The number of parameters to determine is 2h− (h− 1) = h+ 1.

In the piecewise continuous quadratic case, we can set one or two constraints

at each of the inner knots. Continuity alone implies one constraint at the knots.

Differentiability at the knot gives two constraints. We chose the case with conti-

nuity without differentiability at the inner knots. With one constraints at each of

the (h− 1) knots and 3 parameters for each slice, there are 3h− (h− 1) = 2h+ 1

parameters to determine.

In the piecewise continuous cubic case, continuity and differentiability con-

straints at the knots yield quadratic and cubic splines. We relax these con-

straints to allow a continuity without differentiability at the inner knot. A total

of 4h− (h− 1) = 3h+ 1 parameters need to be estimated.

In all cases, the end-points τ0, ..., τh of the slices are obtained such that the

slices contain approximately the same number of observations. Following are the

expressions of the basis functions considered.
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Figure 1: Fourier Basis
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Figure 2: Piecewise Constant Basis
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Figure 3: Piecewise Linear Continuous Basis
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Figure 4: Piecewise Cubic Discontinuous Basis
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1. Fourier bases are suggested by Cook (2007). They consist of a series of

pairs of sines and cosines of increasing frequency. A Fourier basis is given by

fy = (cos(2πy), sin(2πy), ..., cos(2πky), sin(2πky))T . (2)

and r = 2k. Fourier bases can also be used within slices but this case is not explored

here. Fourier bases are very popular in signal processing. They are mostly used for

periodic functions. Figure 1 show how Fourier basis can be used to approximate a

function.

2. Piecewise Constant Basis. This basis is suitable for a categorical response

y taking values 1, 2, ..., h where h is the number of sub-populations or sub-groups.

The kth component fyk of fy ∈ Rh−1 takes a constant value in the slice Hk with

fyk = Jk(y ∈ Hk), k = 1, ..., h − 1. Figure 2 shows an example where a piecewise

constant basis is used to approximate a continuous function.

3. Piecewise Discontinuous Linear Basis. It is more elaborate than the

piecewise constant basis. Within each slice, we approximate the true function by

a linear function. We have fy ∈ R2h−1 and its components are obtained as

fy(2i−1)
= J(y ∈ Hi), i = 1, 2, ..., h− 1

fy2i = J(y ∈ Hi)(y − τi−1), i = 1, 2, ..., h− 1 (3)

fy(2h−1)
= J(y ∈ Hh)(y − τh−1),

4. Piecewise Discontinuous Quadratic Basis. In the pursuit of better

approximation of the true trend in the data, this basis may help better than the
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piecewise discontinuous linear basis. The components of the fy ∈ R3h−1 are

fy(3i−2)
= J(y ∈ Hi), i = 1, 2, ..., (h− 1)

fy(3i−1)
= J(y ∈ Hi)(y − τi−1), i = 1, 2, ..., (h− 1)

fy(3i) = J(y ∈ Hi)(y − τi−1)
2, i = 1, 2, ..., (h− 1)

fy(3h−2)
= J(y ∈ Hh)(y − τh−1) (4)

fy(3h−1)
= J(y ∈ Hh)(y − τh−1)

2.

5. Piecewise Discontinuous Cubic Basis. Here we have fy ∈ R4h−1. Figure

4 shows the use of a piecewise cubic basis function to approximate a continuous

function.

fy(4i−3)
= J(y ∈ Hi), i = 1, 2, ..., (h− 1)

fy(4i−2)
= J(y ∈ Hi)(y − τi−1), i = 1, 2, ..., (h− 1)

fy(4i−1)
= J(y ∈ Hi)(y − τi−1)

2, i = 1, 2, ..., (h− 1)

fy4i = J(y ∈ Hi)(y − τi−1)
3, i = 1, 2, ..., (h− 1)

fy(4h−3)
= J(y ∈ Hh)(y − τh−1) (5)

fy(4h−2)
= J(y ∈ Hh)(y − τh−1)

2

fy(4h−1)
= J(y ∈ Hh)(y − τh−1)

3.

6. Piecewise Continuous Linear Basis. This is also called a linear spline.

An example of the use of this basis function to approximate a function is shown
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on Figure 3. The general form of the components fyi of fy ∈ Rh+1 is

fy1 = J(y ∈ H1)

fyi+1
= J(y ∈ Hi)(y − τi−1) i = 1, ..., h. (6)

7. Piecewise Continuous Quadratic Basis. Adjacent curves are continuous

without being differentiable at the inner knots. The components of fy ∈ R2h+1 are

fy1 = J(y ∈ H1)

fy2i = J(y ∈ Hi)(y − τi−1), i = 1, ..., h. (7)

fy2i+1
= J(y ∈ Hi)(y − τi)

2, i = 1, ..., h.

8. Piecewise Continuous Cubic Basis In this case also, adjacent curves are

continuous at the inner knots but are not differentiable. A piecewise cubic basis

can be a good approximation to many functions. The components of fy ∈ R3h+1

are

fy1 = J(y ∈ H1)

fy3i−1
= J(y ∈ Hi)(y − τi−1),

fy3i = J(y ∈ Hi)(y − τi−1)
2,

fy3i+1
= J(y ∈ Hi)(y − τi−1)

3, i = 1, ..., h.

The choice of the basis can be aided by graphical exploration. The inverse re-

sponse plots (Cook, 1998) of Xyj versus y, j = 1, . . . , p, can give a hint about suit-

able choices for the basis. For example, when the plots show a linear relationship

between the predictors and the outcome, then fy = y can be used. When quadratic
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curvature is observed, then fy = (y, y2)T can be considered. More elaborate basis

functions could be useful when it is impractical to apply graphical methods to all

of the predictors. It is also possible to develop an automatic mechanism to choose

the basis. This can be done by numerically exploring a set of possible bases and

choosing the best based on some criterion. For example, prediction performance

might be used to select the basis.
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