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Abstract. This paper is meant to serve as a case study of mathematical modeling in industry. The
problem, which arises in the automotive industry, is to predict the variation in the final
assembly given the variation in the parts and tooling. In this paper, we present a simple
model of welding and clamping of beams which demonstrates that the order in which the
clamps and welds are applied influences the final shape of the assembly.

The modeling of the process is done by simple mechanics. To solve the mathematical
problem, we use standard ideas from constrained optimization and scientific computation.
Additionally, using a statistical simulation we show that clamping and welding from the
inside out leads to a smaller standard deviation in the result (as measured by the dis-
placement of the right end of the beams) in response to normal distributions of variations
in parts and welding. The findings help explain why certain welding sequences may be
preferred.
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I. Introduction. Many problems arising in industrial settings are amenable to
mathematical formulation and solution using techniques available to upper level un-
dergraduates. In this paper, we present an example of such a problem that arose in
the automobile manufacturing industry.

Assembling sheets of metal using clamps and spot welds is an important part
of the manufacturing process in the automotive industry. For instance, a door of a
car consists of several pieces of stamped sheet metals which are welded together to
produce a strong structure. After thousands of clamps and welds, the final assembled
product, the door, must be within certain specified tolerances in order to fit properly.
The variation in the final product is influenced by the variations in parts and the
assembly procedure. Our goal is to use modeling and simulation to predict the effect
of variations of the parts and welding on the variation of the final product.

In particular, observations on the assembly-line floor led to the conclusion that
the order in which the sequence of clamps and spot welds are applied affects the
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Fig.1 In (a) two sheets of slightly different shape are to be joined. A clamp is applied at location
l1 in (b), and the two pieces are welded there. In (c) the clamp has been released. Another
clamp is applied at location la, and another weld is made at that location as shown in (d).
The final joined product is displayed in (e).

final shape of the product. Specifically, for illustrative purposes consider two sheets
of metal that must first be clamped and then welded at two specific locations [y
and o, as shown in Figure la. First, the sheets of metal are clamped at {; (Figure
1b), welded together at the clamped location, and the clamps removed (Figure 1c).
Now the sheets of metal are fixed relative to each other at the welding location. A
second clamp is now applied at the second location Iy (Figure 1d) and then the sheets
are welded together a second time (Figure le). Suppose now we reverse the welding
sequence; i.e., with the same two sheets, first clamp the two sheets at location I, weld
the sheets together, and release the clamp. Then, clamp the two sheets at location
l1, weld the sheets together, and release the clamp. The final shape of the sheets of
metal that were first clamped and welded at [; followed by I5 is not the same as the
final shape of the sheets of metal that were first clamped at 5 followed by [;. That
is, the order in which the clamps and spot welds are applied affects the shape of the
final product.

Although this sequence dependence has been demonstrated by direct simulation
using commercial finite element simulation software [1, 2, 3, 4], it was felt that they
do not provide sufficient insight into the causes contributing to the observed sequence
dependence. Our goal is to develop a simple model of a clamping and spot welding
procedure that demonstrates and explains this sequence dependence. Our first simpli-
fying assumption is to try to reproduce this sequence dependence in the clamping and
welding procedure with a model of two one-dimensional beams rather than two two-
dimensional sheets of metal. This assumption simplifies the necessary computations
and facilitates understanding of the actual sequence dependence without unnecessary
complications of a two-dimensional model. What we discover in studying the one-
dimensional beam model is that nonlinearity in the model is the main cause, and the
way in which it affects sequence dependence can be identified. Additionally, we use
statistical simulation to determine the order of clamping and welding that leads to
the least amount of variation in the final product.

This problem is ideally suited for an upper level undergraduate class in modeling.
It is of contemporary interest to the manufacturing community and uses a variety of
standard techniques to provide an intuitive explanation of a known phenomenon. The
beam model is formulated as a series of rigid links allowing both theoretical and nu-
merical linear programming techniques to be used in its solution. The solution of this
problem requires theoretical ideas from mechanics, constrained optimization, and lin-
earity to be combined with numerical techniques ranging from computing constrained
optima to random variable generation and statistical simulations.
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Fig.2 A diagram depicting a simplified beam model. Each link is rigid, and a torsional spring
is attached at each connection. The beam can have an initial shape as described by the
angles ¢1,¢p2,... ,¢0n. The beam configuration after deformation is completely described by
the angles 601,02,... ,0n.

Modeling arises in developing the model of the beam as well as the clamping and
spot welding conditions. A simplified model of rigid links connected by springs is
presented as the variational formulation of Hooke’s law with added complexity due
to the nonzero initial bending angles of the links. The model that does not exhibit
sequence dependence can be solved analytically, but the nonlinearity added to the
model that leads to the sequence dependence is solved numerically using a MATLAB
routine for constrained optimization. Finally, a Monte Carlo simulation that brings
in the statistical ideas of normal distribution, mean, and standard deviation is used
to demonstrate which sequence of clamps and spot welds is best.

The problem is presented in section 2. The linear model that does not exhibit
the sequence dependence is presented in section 3. The nonlinear model that does
demonstrate the sequence dependence is described in section 4. Section 5 contains
the results of the simulations that statistically demonstrate the order of clamping
and welding that produces the least amount of total variation in the final product.
Conclusions are discussed in section 6. Possible exercises or discussion points are
suggested.

2. Problem Formulation. The process that we wish to model involves first clamp-
ing two beams at a specified location with a specified slope, then applying a spot weld
that maintains the relative position of the two beams through all future manipulations
of the beams. In order to elicit information regarding sequence dependence, we will
first clamp, then spot weld the two beams in two different locations, I; = (x1,y;) and
lo = (x2,y2) with 1 < z3. The clamp and spot weld will first be applied to location
l1, then l5, and, in a different simulation, the clamp and spot weld will first be applied
to location Iy followed by l;. The final shape of the two simulations will determine if
the model demonstrates the sequence dependence observed on the assembly-line floor.

Each beam is modeled as a series of n rigid links, each with unit length. The
links are connected with torsional springs with constant /. The left end of the beam
is attached to the wall also with a spring of constant K (see Figure 2). The beam
resists bending by the torques that occur at the connections. The initial shape of the
beam is prescribed by the angles ¢1, ¢o, ... ,¢,. If the angles after deformation are
01,04, ... ,0,, then the energy stored in the beam (assuming linear springs and small
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angular changes) is

(2.1) E= %K(% —¢1)2+Z%K(9j — 5 —0j—1 +¢j-1)%

=2

This form assumes that the right end of the beam is free. Equilibrium solutions of
the force balance laws correspond to critical points of the energy function. In order
to determine the stable configurations, we seek an equilibrium deformation that will
minimize this energy.

This simplified model is necessary because of the computational complexity of the
problem. If we simply discretize a nonlinear beam, the computations become unwieldy
due to the nonlinear constraints that model the clamping and welding conditions.
The simplified model was sufficient to achieve our goal of explaining the sequence
dependence that arises in the clamping and welding procedure.

3. Model without Sequence Dependence. If we take the point of view that
displacement of the beam is small in the sense to be described, we arrive at a model
of welding which does not depend on the order in which the welds are applied. While
the model takes into consideration the initial shape of the beams, the displacements
are supposed to be small, resulting in no z-displacements of the beam. Therefore a
beam’s displacement is completely described by the y-displacement of the nodes.

To arrive at this model, suppose that the current beam position is described by
the angles 601,604,0s3,...,0,. Let the positions of the nodes (joints) in the links be
given by (z;,y;), i =1,...,n+ 1; then

i—1

(3.1a) r1 =0, ;Ei:ZCOSQj, 1=2,...,n+1,
j=1
i—1

(3.1b) y1 =0, inZSinﬁj, 1=2,...,n+ 1.
j=1

Let Af; = 0; — ¢;, and assume

(A) that the initial shape of the beam is described by the small angles Af; =
O(g?), where ¢ < 1.

Under this assumption,
cos 0; = cos(p; + Ab;)

= cos ¢; cos Af; — sin ¢; sin AY;
~ cos ¢; + O(e?).

Similarly,

sin 0; = sin(¢; + Ab;)
~ sin ¢; + Af; + 0(63).
This simplification reminds us of the model for a beam of small initial angles ¢; found

in Washizu [6], where the small angle assumption for the initial shape of the beam
is appropriately replaced with a small curvature assumption. These results, when
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Fig.3 In the seven-link beam, we assume that the clamp is applied on the fourth link. The clamp
has the effect of forcing a point on that link to be at (zgx,yux). Moreover, the angle of the
fourth link is prescribed by the clamp to be at Ogy.

substituted in the expression for node location in (3.1), imply that

i—1
(3.2a) xichosdy, 1=2,...,n+1,
=1
i—1
(3.2b) yim~ Y (sing; +A6;), i=2,...,n+1.
j=1

We see in (3.2) that the z-location of the nodes are fized, whereas their y-locations
are linear in the angular change Af;.

3.1. Clamping. We model a clamp by requiring a link to go through a point
(zfx, Yax) at a specified angle ... Consider a beam consisting of seven links. Suppose
that a clamp is applied to link 4 as shown in Figure 3. The conditions that must be
met are

(3.3a) Ty = Ty +1cosly,
(3.3b) Ya = Ypx + tsinby,
(33(:') 94 = 9ﬁx7

where ¢ essentially defines the signed distance along the link 4, the link in which the
clamp is applied. Since x4 is basically “static” and cos, = cos ¢4, we use (3.3a) to
solve for t:

_ COS @1 + COS P2 + COS 3 — Tfy

(3.4) "
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It is worth noting that the determination of ¢ is done entirely from the initial geometry
under assumption (A). In particular, it is independent of the angular displacements.
The constraint (3.3b), under assumption (A), becomes

Y4 = Ypx T tsin ¢4 + tAG,.
Using (3.2b) to determine the expression for y4, we can write this constraint as

3
(3.5a) ZAQZ- — tAly = ygyx + tsings — sing; — singy — sings = F.
i=1

Condition (3.3c) simply states that
(3.5b) Aby = Oy — ba.

Viewing the angles as a vector

AG = (A0, AB, NGy NGy Af5 Abg Ad)T

and letting

to reflect (3.5a), and

=0 00 1 0 0 0
to reflect (3.5b), we can rewrite (3.5a) and (3.5b) as
(3.6a) cF'Ag—F=o,
(3.6b) 3 AO — (Bgy — ¢4) = 0.

Note that both constraints are linear. The displacement of the beam under the
clamping condition must minimize the energy E while satisfying the constraints above.
We rewrite E (2.1) in terms of A#;:

7
1 1
(3.7) E= 5KA@% +) S K (A0 — AG;_1)%
j=2

To minimize E subject to (3.6a) and (3.6b), we use the Lagrange multiplier method.
Define the Lagrangian
(3.8) L=FE+XMclIA0+ Xl N0

so that the first-order necessary condition is

2K —K 7T ;
-K 2K -K
. €1 €2
(3.9) ~K 2K -K A0 | _ 0
-K K
o 0 0 A F
i o 0 0[] A | [ On—di]
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Using standard techniques from optimization, the first-order conditions (3.9) deter-
mine the critical points of the Lagrangian. To further determine which critical points
correspond to actual constrained minima, second-order information from the Hessian
or, in the constrained setting, the bordered Hessian, is usually required. Since the
matrix in the upper left part of (3.9) is positive definite and the matrix [c1]cz] is
rank 2, we apply a theorem from Luenberger [5, p. 424] to guarantee that the unique
minimizer is given by the solution to the first-order conditions.

Solving this linear system allows us to find the desired displacement after clamp-
ing. Note that since z; does not change, we only need to keep track of y;, given by
(3.2b), once Ab; are found.

The main lesson that we draw from this calculation is that because the z-geometry
is fixed, it does not enter the problem except to determine ¢ in the clamping. Once
t is determined, only the angle and y constraints enter into the energy minimization.
This simple behavior is precisely the reason for the model’s lack of dependence on the
order in which the welds are applied.

3.2. First Weld. Let us investigate welding under this model. To do so, we iden-
tify two beams with seven links by superscripts (1) and (2). The key is to track how
link 4 of each beam maintains its relative position after welding. We note that all
clamping has done is to put link 4 in each beam into position to be joined. The weld-
ing process that joins the beams is completely independent of the clamping process in
that no parameters entering into the welding stage are determined by the clamping.

The relative position is maintained after joining if

(3.10a) gcf) = mfll) + scos 94(11),
(3.10b) y? =8V + ssinolY,
(3.10¢) 0% =0,

where s represents the signed distance along link 4 of beam 1. In section 4, for
the sequence-dependent case, we will substitute the angles and coordinates of node
4 obtained from clamping into the above to solve for s. However, recall that in
this model, the z-coordinate of the nodes are fixed by the initial angles of the links.
Therefore, s must be determined from (3.10a) only. This gives a formula for s:

) o2 g T (eosof? —cosol?)
: RS — .
cos qbfll) cos ¢4(11)

The constraints (3.10b) and (3.10c) are now applied. They simplify to

3 3
(3120) Y (Agg) _ A0§1)) — 5000 = ssing) + 3 (Sin o — sin ¢§2)) 7
j=1

j=1

(3.12D) A0 — A0 = gl — ¢

Now, to find the positions of the beams after welding, we need to minimize E in (3.7)
subject to constraints (3.12a) and (3.12b). In the same manner described in section
3.1, we write the constraints as vector equations

(3.13a) d'Ae'? -G =0,
(3.13b) dy A8 — (¢ — ¢5) =0,
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dl = (_1a _17 _1a _Sa070707 1a la 1707070a0)5

dy =(0,0,0,-1,0,0,0,0,0,0,1,0,0,0),

3
G = ssingf + 37 (singf? —sing?).
=1

and A@'? = (A9, AG?)). The Lagrangian is
L=FE'+ E*4+ X\dFA0Y? + \pdl AG"2,

where E' and E? refer to expression (3.7) with AO™ and AB?| respectively. The
corresponding first-order condition can be written in terms of a matrix equation for

the vectors A@") and AGP:

[ 2K —-K 1. B} B}
K 2K -K
. . 0 1
-K 2K -K .
-K K
2K —K a2 — | o
K 2K -K =
2
0 - - AO
K 2K -K
-K K
T 0 0 A a
cy 1 2
Cg 0 0 L Ao | L¢3 — 971 |

3.3. Second Weld. Suppose we take the joined beams and apply a second clamp
along link 7 of each beam. The equations representing this weld are

(3.14a)
(3.14b)
(3.14¢)

$(72) _ mgm

2 1
=4l
652) _ 951)’

+ r cos 9%1),

+ 7 sin 99),

where now the parameter r represents the signed distance along link 7. We note that
these equations have the same form as (3.10a)—(3.10c) for the weld along link 4, and
the parameter r is analogous to the parameter s. As with the case with the weld along
link 4, the initial geometry of the beams under this model determines r by means of
(3.14a). Equations (3.14b)—(3.14c) maintain the proper relative positions of link 7
and again translate to two linear constraints on the vectors AWM and AP

6
(315) Y (a6 - a0l)

j=1

(3.16)

6
— TAQ;I) = rsin (;5(71) + Z (Sin d)gl) — sin ¢§2)) ,
j=1

A0 — ALY = M) — o).

The positions of the joined beams with these two welds are now found by minimizing
E subject to linear constraints (3.12a)—(3.12b) and (3.15)—(3.16).
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3.4. Sequence Independence. That the welded product is independent of which-
ever weld is applied first can be seen by the fact that both parameters s and r in
the constraints are determined solely from the initial geometry of the two beams.
Therefore, the resulting displacement is totally insensitive to the order in which the
clamping and welding is done. We can conclude that this simple model is inadequate
to explain the observed phenomenon of sequence dependence.

4. Model with Sequence Dependence. To make the previous model truly non-
linear, and hence provide the desired attribute of sequence dependence, we remove
assumption (A). This means that the coordinates of the nodes are given by (3.1). By
removing this assumption, the constraints involving the positions of the nodes will
become nonlinear. Moreover, the parameters s and r, which determine the relative
positions of the joined links, are found by solving first for the clamped configura-
tions. Clearly, this nonlinear dependence on the clamping configuration, which in
turn depends nonlinearly on the first weld, suggests why this model will be sequence
dependent. We also remark that unlike the model that did not demonstrate any se-
quence dependence, we cannot solve this model subject to either the clamping or the
welding conditions analytically. As a consequence, the results that we present here
are the numerical results obtained by the constr function in MATLAB. This rou-
tine solves optimization problems with equality and inequality constraints (see also
fmincon).

4.1. Clamping. Consider again the beam consisting of seven links as shown in
Figure 3. Recall that once the clamp is applied, a point on the workpiece will be held at
(Tgxs Ysix)- Here, we remark that the key observation that led to the model of sequence
dependence came from in-depth discussions about the exact clamping mechanism that
is used. To envision the clamping procedure, consider a wire representing a beam
between two “alligator jaws” representing the clamp. As the “jaws” or the clamp
closes, the wire will slide laterally to accommodate the movement in the clamp. In
the previous section, the x-coordinate of the nodes was fixed, which eliminated any
possibility that the beam would slide during the clamping process. Here, as illustrated
in Figure 4, the model allows the link that is being clamped, and hence the beam,
to slide laterally during the clamping procedure. Once the clamp is closed the beam
is held at (zgy,Ygx) at an angle of fg,. Although these conditions amount to three
constraints,

(4.1a) Ty = Ty +1Cosly,
(4.1b) Y4 = Yfix + tsinby,
(4.1c) 04 = gy,

similar to (3.3a)—(3.3c), we will not make any approximations to simplify them. Un-
like the previous model, where the small angle and small displacement assumptions
allowed us to use the linear equations (3.2) to determine the positions of the beams,
here we must use (3.1), which is nonlinear, and hence we cannot determine ¢ from
the initial displacement. Rather, ¢ becomes another variable to be determined by the
minimization. Thus, in order to determine the clamped displacement for each beam,
we need to minimize the energy in the beam (2.1) subject to the nonlinear constraints
(4.1a)—(4.1c). In contrast to the previous model in which we minimized the energy
(3.7) over A@, in this model we minimize the energy (2.1) over 6 and t.

To demonstrate that this model with nonlinear constraints exhibits the desired
sequence dependence in the welding process, it is sufficient to consider two beams
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initial configuration after 1st clamp
2 2
1 1
b—e—8 S 8—a WM
-1 1
-2 -2
0 2 4 6 8 0 2 4 6 8

(a) (b)

Fig.4 (a) The original positions of the beams. (b) The beams after the fourth links are clamped at
(3.5,—0.4) at an angle of —5°.

with randomly generated initial shape. We denote the initial angles for the first beam

by Gél) and the initial angles for the second beam by 952), j =1:7. Similarly, the

positions of the links for beam 1 are (l‘(l), ;1))7 and those for beam 2 are (xf), yj(z)),

j = 1:8. The constraints in (4.1a)—(4.1c) will be applied to both beams. The
configuration that corresponds to the minimum of the energy is computed numerically
using the MATLAB function constr. Note that the energy is minimized over both
0 and t. The result of the calculation with K = 50, zg, = 3.5, ygx = —0.4, and
0 = —5° is given in Figure 4. The initial shapes of the beams are shown in Figure
4(a) and the resulting clamped configuration is shown in Figure 4(b). Notice that we
have allowed the beams to pass through each other in their deformations, although
a model that does not allow this to happen can be devised by adding inequality
constraints. We do not consider this added complexity in the present work. Our goal
is to demonstrate that sequence dependence is caused directly by the nonlinearity in
the model.

4.2, First Weld. As in section 3.2, we assume now that link 4 in each beam
is going to be welded together. The clamped configuration implies a fixed relative
position for link 4 of both beams. We model the weld as maintaining this relative
position. This implies that the welding constraints depend on the configuration that
resulted from clamping each beam. Therefore, if the position of node 4 in beam 1 and
in beam 2 are

1 1 2 2
@M,y and (@, 41?)

after clamping, then upon welding, the configuration must satisfy

(4.2a) xf) = xfll) + scos 04(11),
(4.2b) yf) = 4(11) + ssin 94(12),
(4.2¢) 0% =6,

The value s is determined by substituting the clamping results (xil), yfll)) and (xf), yf))

in (4.2a)—(4.2b) and solving for s. The variable s represents the signed distance be-
tween the fourth nodes in both beams upon clamping.
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after 1st clamp after 1st weld
2 2
1 1
-1 -1
-2 -2
0 2 4 6 8 0 2 4 6 8

Fig.5 (a) The beams after the fourth links are clamped at (3.5, —0.4) at an angle of —5°. (b) The
beams after the first weld.

To determine the displacements in both beams after welding and releasing the
clamp, we numerically minimize (2.1) over the angles 0§1) and 95-2) subject to the
constraints (4.2a)—(4.2c) with the determined s. Figure 5 shows what happens to the
clamped parts in Figure 4 after the fourth links are welded together and the clamp
released. The key concept here is that clamping determines the relative position of
the links before welding, and that welding maintains this relative position.

Note that when we solve for the clamped configurations, the constraints are un-
coupled, and the displacement of the beams can be solved separately. When the
beams are welded, the welding conditions (4.2a)—(4.2¢) couple the two beams and the
configurations of the beams cannot be solved for independently.

4.3. Second Weld. Now we complete the joining process by applying clamps to
the seventh links in both beams and then welding them together. Again, the clamping
process will determine the relative position of the seventh links, while the final weld
will retain this relative position.

As the beams are clamped, the constraints (4.2) implied by the weld in the link
4s still apply. Additional constraints are implied by the clamp, namely, a point in link
7 in each beam must end up in a specified position, and it must have a prescribed
angle at that position. Without the risk of confusion, let that position be (zgy, Yax)
and the angle be 0g,. Then the new constraints, which apply to both beams, are

(4.3a) T7 = Ty + L cos by,
(4.3b) Y7 = Yfix + tsinfy,
(43C) 07 = 9ﬁx7

where again t is unknown. Thus the second clamping problem is to find the angles

o) and 9§2), j =1:7, and the value ¢ that minimizes the energy in (2.1) subject to
constraints (4.2) and (4.3).

Having determined the new configuration of the beams after the second clamping,
we have the positions of node 7 in both beams. Let us denote them by

1 1 2 2
@Mty and (247, 4).
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after 2nd clamp after 2nd weld

0 2 4 6 8 0 2 4 6 8
(@) (b)

Fig.6 (a) The beams after the seventh links are clamped at (6.5, —0.4) at an angle of —=5°. (b) The
beams after the second weld.

Then upon welding, the configuration must satisfy

(4.4a) x(72) = xgl) + rcos 051),
(4.4Db) y?) = ygl) + rsin 9§2),
(4.4c) 0 = oM.

To determine r, we substitute the values of (:r(71), ygl)) and (mg), y§2)) obtained from
the clamped configuration in the first two equations of (4.4) and solve for r. With r
found, we can find the final positions of the welded beams by minimizing energy in
(2.1) subject to constraints (4.2) and (4.4). Figure 6 shows the result of first clamping
at (6.5, —0.4) at angle —5°, and then welding link 7.

Remark. Modeling more than two spot welds on a pair of beams can proceed in
much the same way as we have described for the case of two welds. The important
features of the model are that

1. clamping determines the relative positions of the links that are joined,
2. welding maintains the relative positions through subsequent deformations,
3. all previous welding constraints must be satisfied, particularly when new
clamps and new welds are applied.
By following these simple rules, we can now reverse or alter any clamping/welding
sequence and examine its effects.

4.4. Sequence Dependence. Since the welding constraints depend on the con-
figuration of the clamped beams, this model demonstrates the desired sequence de-
pendence. In contrast to the model in section 3, where the z-coordinate of the beam
was fixed by the linearity of the clamping constraints, the nonlinear model presented
in this section allows the beam to slide during the clamping procedure, thus giving
rise to different configurations depending upon the order in which the clamps and
welds are applied.

To be more explicit, consider the resulting joined beams under two distinct clamp-
ing/welding sequences:

I: clamping first at (3.5,—0.4) at —5°, welding link 4, and then clamping at
(6.5, —0.4) at —5°, followed by welding link 7;
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after 2nd weld after 2nd weld

(a) (b)

Fig.7 (a) The resulting joined beams under sequence 1. (b) The resulting joined beams under se-
quence II.

II: clamping first at (6.5,—0.4) at —5° , welding link 7, and then clamping at
(3.5,—0.4) at —5°, followed by welding link 4.
In Figure 7 we show the results of sequence I in (a) and the results of sequence II in
(b). The two welding sequences are shown side by side in Figure 8.

5. Statistical Simulations. We next perform a Monte Carlo simulation to deter-
mine the overall statistical properties of the joined products. The study attempts to
find out if a certain weld sequence is better than another in the presence of variations
in parts and clamping conditions.

To simulate the variation in parts, we assume that each of the angles qS;l) and ¢§2)’
j =1:7, are random with a normal distribution with a mean of 0° and a standard
deviation of 2°. That is, both beams are nominally flat. To model the variation in the
clamp, we assume that while zg, and 05, are constants, yg is a random variable with
normal distribution with a mean of 0 and standard deviation of 0.2. The standard
deviation is to be compared with the size of the beam which stretches out to length
7. The quality of the product is measured by the end displacement of beam 2, the
idea being that if this displacement is small, the joined product is more or less flat.

Based on a thousand simulations we plot the variation of the final assembly as
measured by the vertical position of the right end of beam 2. The results for the
tooling sequence [; followed by Iy can be seen in Figure 9, and the results of the
simulation for the tooling sequence [l followed by I; can be seen in Figure 10. Figure
9 has a mean of 0.0044 with standard deviation 0.0892, whereas Figure 10 has a mean
of 0.0043 and a standard deviation of 0.1305. The means are comparable but the
smaller standard deviation of the assembly with [y followed by [l distinguishes that
method as the preferable one.

6. Conclusions. In this paper, we have presented a simple beam model that
describes and explains how the final configuration of the beams is affected by the
order in which a series of clamps and welds are applied. We first examined a model
that assumes small initial angles and small displacements results in a beam whose -
displacement is zero. This led to linear constraints on the y-displacements and angle
changes when modeling the clamping and welding. Such a model fails to exhibit the
observed weld sequence dependence. A second model, where the z-displacements are
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Fig.8 Side-by-side comparison of the two joining sequences.
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Fig.9 Variation of the final assembly as measured by the vertical position of the second beam for
the tooling sequence 11 = (z1,y1) followed by lo = (z2,y2) with 1 < 2.
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Fig. 10 Variation of the final assembly as measured by the vertical position of the second beam for
the tooling sequence lo = (x2,y2) followed by I1 = (x1,y1) with 1 < x2.
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allowed, showed how clamping determines the relative positions of the links to be
joined. The relative position is maintained after welding. This simple fact makes
the subsequent clamp/weld operation “remember” its past, and the model therefore
exhibited the desired sequence dependence.

A Monte Carlo simulation was performed to evaluate the behavior of the welding
process under variation in initial shapes and clamping conditions. It was found that
the distribution with the smallest standard deviation (in measured right-end displace-
ment) preferable corresponds to clamping and welding the beams from the inside out.
Thus, in order to adhere to the mandated tolerances on the final assembled product,
it would be best to perform all clamping and welding from the inside out. Perhaps
this result is not surprising if we recall that when we hang wallpaper, we must glue it
to the wall from one end of the paper to the other.

Exercises and Class Discussion.

1. Explain how linearity is important in the solution of this problem. Give
examples of other situations in which linearity plays an important role.

2. Explain the difficulties in formulating this problem with a continuous beam
model rather than a series of rigid links.

3. Outline the necessary changes and complications that arise if this study is
done for sheets of metal instead of one-dimensional beams.

4. In section 3.3, write down the matrix equation for A0 and AGP). Explain
why this system has a solution and why that solution is the unique minimizer.

5. How do the results of the simulations depend on the chosen standard devia-
tions? What restrictions or assumptions are there on the standard deviation
and mean?

6. Discuss the validity of saying that one simulation is “better” than another
based on the distance between the ends of the beams. Can you provide a
different way of measuring “better”? What are the advantages and disadvan-
tages of using both methods?
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