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Elastic rod models of DNA have offered an alternative method for studying
the macroscopic properties of the molecule. An essential component of the mod-
elling effort is to identify the biologically accessible, or stable, solutions. The un-
derlying variational structure of the elastic rod model can be exploited to derive
methods that identify stable equilibrium configurations. We present two methods
for determining the stability of the equilibria of elastic rod models: the conjugate
point method and the distinguished diagram method. Additionally, we apply these
methods to two intrinsically curved DNA molecules: a DNA filament with an A-
tract bend and a DNA minicircle with a CAP binding site. The stable solutions
of these models provide visual insight into the three-dimensional structure of the
DNA molecules.
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1. Introduction

Since the discovery of the double helical structure of DNA’s two sugar-phosphate
chains (Watson & Crick 1953), the molecule has been the focus of study by nu-
merous scientists. Mechanical models of DNA have offered a new perspective for
studying the macroscopic properties of the molecule. In particular, elastic rod mod-
els have been widely used as an approximation to DNA (Olson 1996; Schlick 1995,
and references therein) and have led to new experiments. The elastic rod model
consists of a framed curve where the curve, or centerline of the rod, runs through
the middle of the double helix and one of the normal components of the frame
points to one of the sugar-phosphate chains of the DNA molecule.

One important aspect of modelling is to determine which equilibria of the elas-
tic rod model correspond to biologically realistic solutions and which ones do not,
that is, which equilibrium points are actually minima of the energy functional.
Critical points, the set of all possible minima, are solutions to the Euler-Lagrange
equations. In order to identify which critical points are actually minima, we define
an index corresponding to the number of linearly independent directions in which
the functional decreases at the critical point. Thus, minima correspond to critical
points with index zero. Determining the index, or stability of equilibria, is a central
element of the classic theory of calculus of variations. However, for inextensible-
unshearable elastic rods, the model has integral (isoperimetric) constraints and the
classic theory cannot be applied directly. We discuss two particular methods for
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2 K.A. Hoffman

determining the indices of these constrained critical points: the conjugate point
method and the distinguished diagram method. The distinguished diagram method
relies on the shape of the curve of solutions in a particular projection of the bi-
furcation diagram to track changes in the index. The conjugate point method for
constrained calculus of variations problems is an extension of the ideas pioneered by
Jacobi for unconstrained calculus of variations problems. While the conjugate point
method focuses on determining the index of a particular solution, the distinguished
diagram method tracks changes in the index of families of solutions.

There are, of course, many other techniques for determining stability of elastic
rods and choosing the appropriate technique depends on the particular properties
of the model. Some models describe the dynamic stability of the molecule over
time (see, for example, Goriely & Tabor 1997a,b, c), while others focus on static
equilibrium of the energy. This paper focuses on stability results available for static
equilibria of inextensible, unshearable elastic rod models of DNA. Classical meth-
ods, such as perturbation theory, have been used to determine the onset of insta-
bility of the planar, isotropic, uniform elastic loop with straight unstressed state
as imposed twist is increased. The circular solution is stable for imposed twist less
than 2w+/3/7, where 7 represents the ratio of twisting stiffness to bending stiffness
(see for example, Benham 1989; Guitter and Leibler 1992; Le Bret 1979; Mitchell
1889; Zajac 1962). Le Bret (1984) proposed a more general necessary condition
d(Lk)/d(Wr) > 0, where Lk and Wr are two independent quantities connected via
the formula Lk = Tw + Wr, and Tw is the twist. Tobias et al. (2000) extended
Le Bret’s result to include impenetrable elastic rods (Coleman et al. 2000; Jiilicher
1994; LeBret 1984; Tobias et al. 2000; van der Heijden et al. 2003), as well as
proposed several other necessary conditions, which in combination comprise a suffi-
cient condition for stability. The condition d(Lk)/d(Wr) > 0 can be obtained using
similar techniques to those used to derive the distinguished diagram method with
the additional assumption that the elastic rod is naturally straight with uniform
twist. In van der Heijden et al. (2003), stability is determined from load-deflection
diagrams for clamped rods both with and without self-contact effects and Neukirch
et al. (2002) uses the same diagrams to study an instability jump for infinite to
finite length rods. These diagrams are equivalent to the distinguished diagrams
presented here. The conjugate point method has been applied to anisotropic elas-
tic rods with inherent curvature, as demonstrated in Manning & Hoffman (2001),
where the stability of an elastic loop was determined as a function of increasing
curvature. Examples of a DNA filament and a DNA minicircle modelled as an
isotropic uniform elastic rod with inherent curvature and twist will be presented in
§5 to illustrate the distinguished diagram method and the conjugate point method.

2. Variational Formulation of the Elastic Rod Model
(a) The Energy Functional

In this section, we develop a variational formulation of the elastic rod model of
DNA, that is, we derive an elastic energy functional, whose minima we define to be
stable configurations of the model. Specifically, we adopt the special Cosserat theory
of elastic rods (Antman 1995). The configuration of an elastic rod is described
by a centerline r(s) (written as a function of arclength s € [0,1]) and directors
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{d;(s),dz(s),ds(s)} that form an orthonormal frame describing the orientation of
the cross-section of the rod. Although this formulation assumes an elastic rod of
unit length, this assumption in no way restricts the length of the DNA molecule
represented by this model since the formulation and results remain valid (with
proper rescaling) for an elastic rod with arbitrary length. Figures 1l¢,d and 2b,c
display two configurations of twisted elastic rods. The centerline of the rod r is
illustrated as a curve and the path of one of the directors d; is shown using the
ribbon along the curve. This is sufficient to determine the entire frame of directors
since we restrict our attention to the particular case of inextensible and unshearable
rods, for which d3(s), the director perpendicular to the cross-section, coincides with
the tangent vector to the centerline:

r'(s) = s = ds(s). (2.1)

Elastic rod models with this assumption have been shown to be a good approxima-
tion for DNA where the forces are below a certain threshold for significant DNA
extension (Smith et al. 1996). Although the unshearability-inextensibility assump-
tion would seem to simplify the problem by restricting the class of elastic rods
that we consider, it introduces integral constraints. These constraints are derived
by integrating the inextensibility-unshearability condition (2.1) to get

/01 ds ds =r(1) — r(0). (2.2)

The stresses acting across a cross-section of the rod can be averaged to yield a
net force n(s) and moment m(s) of the material in s+ acting on the material in
s—. The components

mz(s) = m(s) ) di(s)a 1=1,2,3,

of the moment m in the director frame play a role in the distinguished diagram
method for rods described in §4; m; and ms are bending moments, and mg is the
twisting moment.

Orthonormality of the directors {d;(s)} implies the existence of a (Darboux)
vector u(s) defined by the kinematic relations

d;(s) = u(s) x di(s), i=1,2,3.

We denote the components of u in the rod frame by u;(s) = u(s) - d;(s). The u; are
the strainsin the model and determine the shape of the elastic rod up to translations
and rotations of the configurations. Analogous functions 41 (s), 42(s), and 4s(s) can
be used to describe inherent bending and twisting of the rod that may be present
even without external loading, as is the case with many DNA models. For instance,
it is well-known that the double-helical structure of B-form DNA experiences a full
twist approximately every 10.5 base-pairs and elastic rod models of DNA reflect
this through the function 43. Similarly, the natural curvature of a DNA molecule
would be represented in the elastic rod model through the functions @; and s.
The local energy cost in deforming from the unstressed shape is given by a strain
energy density function W, whose integral over the length of the rod gives the total
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strain energy:
1
E z/ W (u; — iy, ) ds. (2.3)
0

One could assume a quite general dependence of W on the strains, but we have cho-
sen to specialise to a quadratic energy, W (u;—;,s) = {Z?=1 %Kj (8)[u; — 12]-(3)]2 },
which has proven accurate for many DNA configurations. The stability methods dis-
cussed in §3 and §4 are valid for more general forms of the elastic energy, however,
for certain specific examples, the calculation of the index may simplify for quadratic
energy.

The positive stiffness functions K;(s) and the unstressed strains 4;(s) are re-
quired input parameters to the model. One of the challenges of modelling DNA is
to extract values for these parameters from experimental DNA data. For this infor-
mation, we summarize results from Manning et al. (1996). According to the best
available measurements, the stiffnesses are independent of s, that is, K;(s) = K;.
The examples presented in §5 assume an isotropic rod, that is, equal bending stiff-
nesses: K1 = K. This assumption seemingly contradicts the commonly held in-
tuition of a prefered local bending direction of DNA. However, it has been shown
that an anisotropic rod (K; # K») with a rapid twist averages to yield an effective
isotropic (K1 = K>) rod on sufficiently large length scales (Kehrbaum & Maddocks
2000; Rey & Maddocks 2000). The appropriate value of K; = K can be estimated
based on sedimentation, light scattering, and cyclisation experiments (Hagerman
1988). The value of K3 is more difficult to pinpoint and a range of values for the
ratio v = K3/K; appears in the literature (typically 0.5 < v < 2.4) (Schlick 1995;
Moroz & Nelson 1998; Bouchiat & Mezard 2000). It is interesting to note that the
stability of the elastic rod equilibria depend on the value of ~.

It is well known that, depending on the base-pair sequencing, certain molecules
have significantly curved unstressed shapes. The unstressed strains 4;(s) can be de-
termined from DNA sequencing information by appropriate filtering and smoothing
techniques (Manning et al. 1996). In §5, two DNA molecules with inherent bends
are constructed using sequencing information for A-tracts and CAP binding sites.
This technique of filtering and smoothing is used to arrive at a continuum elastic
rod model of those particular molecules.

Thus far, the variational formulation has been presented in a coordinate-free
formulation, but in order to specify the boundary conditions on the rod, and calcu-
late the first and second derivatives of the functional, the coordinate system of the
moving frame of directors must be related to the fixed frame in space using a rota-
tion matrix. In many problems in mechanics, this rotation matrix is parametrized
by Euler angles. This is impractical for certain models of DNA involving nonplanar
configurations because Euler angles necessarily have a singular direction. Instead,
we parametrize the rotation matrix by four Euler parameters, that do not have
a singular direction. The penalty for avoiding this singular direction is enforcing
the unit length requirement on the Euler parameters. This restriction will manifest
itself in the second variation of the functional in that it must be projected to allow
only those variations that respect this constraint. We note that the strains u; and
the directors d; can be represented as polynomial functions of the Euler parameters
(see Dichmann 1994, for these explicit representations). Thus, in terms of the Euler
parameters, the general variational problem that describes the twisted elastic rod
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model of DNA is
14 3 . X 2
p= [ 313 Ko [mad) ~a)] | a

subject to /1 g(q) ds =0,
0
a(0) = (0,0,0,1), (1) = (0,0, sin(a/2), cos(a/2)) = £(a),

where « is the imposed twist, and g(q) € R" depends on the specific DNA config-
uration.

For example, twisted elastic loops represent cyclized DNA. Cyclisation of DNA
occurs when both the centerline and directors close: r(0) = r(1), d;(0) = d;(1),
however, we have found it more convenient to compute a family of configurations
using numerical continuation (Dichmann et al. 1996). Using this method, we con-
sider the more general problem in which the centerline r and tangent director ds
close, but the normal directors are twisted by an angle a relative to their position
at s = 0. Because of the closure of the centerline, the isoperimetric (integral) con-
straint is: fol ds(q) ds =r(1) — r(0) = 0. Thus, in terms of Euler parameters, the
specific variational problem that models twisted DNA minicircles is of the form
(2.4) with g(q) = d3(q). The boundary conditions on q at s = 0 orient the frame
of directors d;,ds,ds along the standard axes. At s = 1, the frame is rotated about
d3(0) by an angle a.

Another example is the elastic rod model of twisted DNA filaments, that are
described by (2.4) with

g(q) = (ds(q) - e1,ds(q) - €2)”,

where e; represents the standard unit vectors. This model describes an elastic rod
with the s = 0 end fixed at the origin, tangent to the z-axis. The s = 1 end of the
rod lies on and tangent to the z-axis and twisted by an angle a with respect to the
s =0 end.

(b) The Second Variation

According to the standard multiplier rule for constrained variational problems,
an associated functional

1 3 1
T = [ |43 3K @) ~a)F  +&"A| ds= [ Lad.9ds

is constructed. Constrained critical points are solutions of the standard Euler-
Lagrange equations associated with the functional J

d
—ELqI + Lq = 0, (25)

with the multiplier Ag determined by solving (2.5) along with the constraints equa-
tions. There is an extensive literature on obtaining solutions to these equations for
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the elastic rod model of DNA (see, for example, Dichmann et al. 1996, Manning et
al. 1998, Hoffman et al. 2002) which we do not attempt to review. Instead, for the
purposes of demonstrating methods that determine the stability of these equilibria,
we assume that a family of solutions has already been computed.

Classification of these critical points involves an analysis of the second variation
of J, namely

1
§2J[oq] = % / [(5q')TP5q' + (6q)7CT5q + 67 Coq' + 5qTQ5q] ds, (2.6)
0

where P = Wqq's C = Waq'> and Q= g2 Ao + Weq are all s-dependent 4 x 4
matrices evaluated at qo(s), a solution of the Euler-Lagrange equations (2.5). Here,
we note that the second variation 62.J identically vanishes for variations of the form
dq = cqq(s), for some ¢ € R. These flat directions are artefacts of the parametriza-
tion of the rotation matrices using Euler parameters and are of no interest in deter-
mining stability of extremals. Therefore, we project the four-dimensional variations
dq onto a space of three-dimensional variations { = II(dq), that are pointwise
orthogonal to qo(s) (see Manning et al. 1998 for more details), and satisfy the
linearized boundary conditions

¢(0) =0 =¢(1). (2.7)
The second variation takes the same form:
1t
316 = 5 [ [©)TP¢ +¢Tee + ()T +¢TRe s, (29
0
but with
P = Wy o7,
Q=TI'Wqq ()" + TMWeqIT" + I (g1, Ao) TI” + 2ITW,q (IT')7, (2.9)
C = HIquq/ HT + Hqul HT.
We also remark that Legendre’s strengthened condition holds, that is, the matrix
P is positive definite.

With the boundary conditions on ¢, an alternate form of the second variation
is achieved after an integration by parts:

1 1
#IC = 5 [ ¢Tscas

where S is the self-adjoint, second-order differential operator:

S¢ = _% [P¢ +CT¢) + C¢' + Q¢ (2.10)

Admissible variations ¢ must also satisfy the linearized constraints

1 .
/ ¢"T;ds=0, i=1,...,n, where T;= H%(qo). (2.11)
0 q
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Stability in Continuum FElastic Rod Models of DNA 7

We assume that the T;(s) are linearly independent (as functions of s) on every
interval (0,0) for 0 < o < 1, as is the case for both examples of elastic rod models
of DNA minicircles and DNA filaments.
A necessary condition for qg to realise a constrained local minimum is (cf.
Hestenes 1966)
52J[¢] > 0, (2.12)

for all variations that satisfy the boundary conditions (2.7) and the linearized con-
straints (2.11). Two practical methods for determining if this necessary condition
holds for isoperimetrically constrained problems, such as the elastic rod model of
DNA, are the focus of the next two sections. For this effort, we define an indez of
each extremal to be a nonnegative integer that corresponds to the maximal dimen-
sion of a space on which the second variation can be made negative. We can use the
index of each extremal to readily identify the solutions which satisfy the necessary
condition (2.12). Those extremals that have index zero will be called stable.

3. The Conjugate Point Method

In this section, we summarize the theory of conjugate points for isoperimetrically
constrained problems, as described in Manning et al. (1998). Bolza (1973), citing
work of Weierstrass and Kneser, shows that condition (2.12) is equivalent to an
equilibrium having no conjugate point, where o < 1 is called a conjugate point for
an isoperimetric problem if the following system has a nontrivial solution:

n
S¢+ Z cT; =0 0<s<o, forsome constants ¢;,
=1 (3.1)

¢(0) = ¢(o) = 0, /OUCTT,-ds:O, i=1...m

We embed the conjugate point definition into the family of eigenvalue problems

n
S¢C+ z ¢Ti =pC, 0<s <o, forsome constants ¢;,
i=1 (3.2)

¢(0)=¢(o) =0, /OGCTTids:O, i=1,...,n.

where conjugate points are values of ¢ < 1 such that the eigenvalue problem (3.2)
has a zero eigenvalue. For unconstrained problems, Morse (1951) showed that the
Morse index exactly corresponds to the number of conjugate points. Using different
methods, Manning et al. (1998) showed that the index associated with the solutions
to an isoperimetrically constrained problem exactly corresponds to the number
of conjugate points as defined by (3.1). They also propose an efficient numerical
algorithm for solving (3.1) in terms of a matrix of initial value problems, thus
providing a practical method for determining the index.

In certain cases, the equation (3.1) has special features that allow for a simpli-
fication of the conjugate point problem. In particular, for circular solutions to the
elastic loop problem, (3.1) is constant coefficient and can be solved analytically,
thereby giving an analytical determination of the conjugate points. Alternatively, if
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8 K.A. Hoffman

the bifurcation parameter appears linearly in the functional (instead of appearing
in the boundary conditions as in (2.4)), then parameter values for which (3.1) has
a nontrivial solution at ¢ = 1 determine where the index changes. The value of the
index for parameter values in between these distinct parameter values can be deter-
mined based on the sign of a particular inner product. Such a situation arises, for
instance, in the elastic rod model of a twisted DNA filament subject to endloading
(see Hoffman et al. 2002).

4. The Distinguished Diagram Method

Consider a family of solutions to (2.5). Folds are points in the family of solu-
tions at which the bifurcation parameter passes through a local extreme value.
Standard bifurcation theory asserts that (generically) stability exchanges occur at
folds. In particular, if one branch of a simple fold is known to represent stable
solutions, then the other branch represents unstable solutions. Exploiting the un-
derlying variational structure of elastic rod theory, for example, this classic stability
exchange result can be strengthened to predict the direction of stability exchange
from the shape of certain particular projections of the solution set (Maddocks 1987;
Thompson 1979). Previous work assumed that the bifurcation parameter was in the
functional and in the case of the isoperimetrically constrained calculus of variations
problem was the Lagrange multiplier. For the elastic rod model of DNA minicircles,
the bifurcation parameter o appears in the boundary conditions of the constrained
problem. In this section, we derive the ordinate of the distinguished bifurcation
diagram for calculus of variations problems of the type (2.4). For further details
and generalizations of the theory, see Rogers (1997).

We begin by demonstrating that the eigenvalue problem (3.2) has a zero eigen-
value p = 0 at a fold in the bifurcation parameter. Differentiating the Fuler-
Lagrange equations (2.5), the integral constraints and the nonlinear boundary con-
ditions (2.4) with respect to pseudo-arclength 7 along the branch and subsequently
projecting using II yields the constrained boundary value problem

Sn+ Z )\zT, =0,
it (4.1)

1
(@)d, /i)TTids:O, i=1,...,n,
0

3
—~
(=]
=
Il
P
3
—
—
~
Il
=

where f = H% and 7) = II4. The constrained boundary value problems (3.1) and
(4.1) are identical (with ¢; = Aj, 7 = {,0 = 1) provided & = 0. If we let ¢ denote
the eigenvector and p denote the eigenvalue of (3.2) along a curve of solutions, then
at fold points in the parameter, p = 0 and { = 7 for o = 1.

If we further assume that p = 0 is a simple eigenvalue at the fold, then we can
derive an expression for p by taking the inner product of equation (4.1) with ¢

(€87 + ) Xl¢,Ti) =0

i=1
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and integrating the first term (¢, S7) by parts:

(S¢,m) +¢'(1) - Pfa+ > Mi(¢, Ti) = 0. (4.2)

i=1

Rewriting S¢ = p¢ — Y1, ¢;'T; from (3.2) allows (4.2) to be expressed as
n R n .
(¢, 1) = Y _ci(Ti,m) +¢'(1) - PRa + > Ai(¢, Ti) = 0.
=1 =1

The terms involving (7, T;) and (¢, T;) vanish since by definition, each eigenvector
along the curve of solutions is orthogonal to T; (for o = 1) and the eigenvalue p
has the following representation:

p(¢, 1) +¢'(1) - Pfa =0.

Differentiating this equation with respect to pseudo-arclength 7

B ) + o) = —ac (1) - PE— 6 [¢(1) - ]

and evaluating at a fold (p =0, ¢ =7, & = 0) yields the expression

p(n,m) = —a 7' (1) - PE. (4.3)
The definition of pseudo-arclength implies that (,7) = 1 at a fold. It can be shown
that 7' (1) - Pf is the perfect derivative with respect to pseudo-arclength of I1Ey -f

evaluated at s = 1. Remarkably, this expression simplifies to r3(1) for general
models of twisted elastic rods such as (2.4). Therefore, we conclude that

p = —dams(1). (4.4)

Consider a plot of a curve of solutions to (2.5) with a fold. At the fold point we
have shown that the eigenvalue of (3.2) is zero. Equation (4.4) determines whether
the eigenvalue is increasing or decreasing. The sign of @& is determined by whether
the fold opens to the right (& > 0) or the left (& < 0). The term rh3(1) assigns a
direction to the pseudo-arclength of the curve, that is, the arclength increases as
the curve is traversed from the lower branch to the upper branch. As a result, for
a fold opening to the right, the eigenvalue is decreasing at the fold, and the upper
branch has at least one negative eigenvalue and therefore those solutions cannot
correspond to minima. A similar arguement holds for folds opening to the left. See
figure 2a for examples of stability exchanges at folds opening to both the right and
the left.

The ordinate of the distinguished diagram involves mg which is not a quan-
tity that can be measured experimentally. The distinguished diagram can be re-
interpreted in terms of more biologically reasonable quantities. For instance, instead
of plotting ms as a function of the parameter a, one could plot the energy E as
a function of link Lk, which are more biologically intuitive quantities (Hoffman et
al. 2003).7 Folds in the bifurcation parameter « correspond to cusps in the E — Lk

t Applied to cyclized DNA minicircles, the quantity Lk is known to be an integer. However,

the definition can be extended to “nicked” DNA where the frame of the elastic rod model does
not close (Fuller 1978, Hoffman et al. 2003).
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diagram. Stability information can be derived by a careful analysis of the stability
information in the ms — a diagram and the relationship between these variables
and E — Lk. For the E — Lk diagram, the higher energy branch has the higher index
and therefore cannot correspond to a minimum. In the next section, two examples
are presented that demonstrate the distinguished diagram method. For the exam-
ple of a DNA minicircle, the distinguished diagram involving E and Lk is plotted,
whereas a and mg3 are plotted for the example of the DNA filament.

5. Examples

In this section we present two examples: a DNA minicircle with a catabolite gene
activator protein (CAP) binding site and a DNA filament with an A-tract. In each
example, the DNA molecules were built using sequence information about A-tracts
and CAP binding sites derived from the literature. Once the sequence structure of
the molecule was known, the unstressed shapes of the discretized molecule were com-
puted using a modified version of the classical Trifonov angles (Kahn & Crothers
1998). From this information about the discrete molecule, appropriate averaging
and filtering yields the functions 44 (s), 42(s), 43(s), which are inputs into the con-
tinuous model (Manning et al. 1996). Once the input functions i1 (s), 42(s), 43(s)
were known, a family of equilibria of the elastic rod model of the molecule was
computed using the boundary-value problem solver AUTO (Doedel (1991a,b)). The
index of each equilibrium along the branch of solutions was determined using the
conjugate point method and the distinguished diagram was plotted. The results are
shown in figures 1 and 2.

(a) DNA Minicircle with CAP binding site

In this example, we construct a 162bp DNA molecule with a Escherichia coli
CAP binding site beginning at the 81°¢ basepair. The CAP binding sequence con-
sists of 22 bp with two-fold symmetry: 5'-AAA TGT GAT CTAG ATC ACA TTT-3
(Gunasekera et al. (1992)). The remainder of the molecule consists of seven copies
of the sequence: 5-CCG GAT CCGT ACAG GAA TTC-3’, which was used as an
adaptor sequence by Kahn & Crothers (1992). This sequence leads to input func-
tions 41, Uy that describe an essentially straight elastic rod, whereas the CAP site
sequence creates a slight bend in the unstressed molecule. In this example, the pro-
tein is not actually bound to the molecule—such a binding would induce a dramatic
bend in the unstressed molecule.

Once the functions 4; were determined, the equilibrium solutions of the elastic
rod model were computed with v = K3/K; = 1.6 for varying amounts of imposed
twist. The index of each solution was then computed using the conjugate point
method. In this case, the resulting bifurcation diagram displayed in figures 1 a,b
is presented in terms the biological quantities of energy and linking number. These
diagrams demonstrates that stability changes occur at cusps in the £ — Lk diagram
and that the branch with the higher energy has the higher index. Figures 1b,c
displays two different projections of a stable nonplanar circular loop. This particular
configuration could represent a DNA minicircle since the frame, as well as the
centerline, of the elastic rod model is closed.
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Figure 1. Figure (a) displays the E — Lk bifurcation diagram of a DNA minicircle with
an Escherichia coli CAP binding site. Figure (b) depicts the cusp in the upper right of
figure 1 (a). The line style indicates the index of the solutions: the solid line corresponds to
index zero solutions and the dashed line corresponds to index one solutions. The index was
computed using the conjugate point method and demonstrates that the stability changes
at cusps in the E — Lk bifurcation diagram. Figure 1 (c) and (d) illustrate two projections
of the stable solution that corresponds to the point marked with a solid circle in figure 1

(a).
(b) DNA Filament with an A-tract

A DNA filament is constructed with an A-tract bend at the centre of the fil-
ament. The molecule consists of 179bp with six A-tracts. The remainder of the
molecule was constructed with six copies of the sequence 5-CCG GAT CCGT
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ACAG GAA TTC-3’, which was used in the previous example. Thus, the molecule
is described by an essentially straight elastic rod with a bend at the centre induced
by the A-tract. The equilibrium solutions were computed for varying twist, with
constant tension at the s = 1 end of the elastic rod and v = 1.6. The results are
shown in figure 2a, where the distinguished bifurcation diagram ms — a has been
plotted, showing the stability exchange for folds in both directions. Figure 2b,c
displays two projections of a stable nonplanar configuration.

6. Discussion

We have presented two methods for determining the stability of equilibria of elastic
rod models of DNA. The methods can be used on a wide class of problems that
encompass many biological properties of the molecule. In this article, two exam-
ples were presented that illustrate the techniques on inherently curved molecules,
although many other features may be incorporated. A model of DNA that would
better reflect the biology would incorporate an electrostatic repulsion on the elastic
rod (Westcott et al. 1997, Yang et al. 1995), thus producing an infinite energy bar-
rier as non-adjacent points on the rod come in close proximity. Bulman & Manning
(unpublished work) have developed and implemented a conjugate point method to
determine the stability of an elastic rod as it approaches a wall with a repulsive
potential. We believe that similar techniques can be used to determine stability for
an elastic rod model of DNA with an electrostatic self-repulsive force.

The conjugate point method determines the index of a particular solution whereas
the distinguished diagram determines instability of a family of solutions by identify-
ing branches of solutions whose index are at least one. In order to determine stability
using the distinguished diagram method, the index of at least one solution on the
branch must be determined by other methods, such as the conjugate point method.
Thus, for computationally intensive problems, the methods are complementary in
that the conjugate point test can be used to determine the stability of one solution,
then the distinguished diagram can be used to draw stability conclusions for the
remaining solutions along the branch.

Although the nature of the two stability methods is quite different, the same
principle underlies both methods. Both methods are tracking eigenvalues of a pro-
jected eigenvalue problem

QSA¢C=p¢, 0<s<oa,

7 ) (6.1)
(O =¢)=0. [ "Tds=0 i=1m
where Q is a projection operator onto the L?-orthogonal complement of span(T41, ..., T;)
(Manning et al. 1998). The conjugate point method tracks the eigenvalues of (6.1),
which is equivalent to (3.2), for a range of o values, whereas, the distinguished
diagram method predicts sign changes in the eigenvalue for ¢ = 1 along families
of solutions. For the two examples presented here, the index was computed using
the conjugate point method for a family of solutions and the number of negative
eigenvalues changed at folds in the bifurcation parameter, as predicted by the distin-
guished diagram theory. Moreover, the additional conjugate point associated with
negative eigenvalue that is gained as a fold is traversed, arises from the zero eigen-
value at a fold for o = 1. This implies that changes in the index occur at parameter
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Figure 2. Figure 2 (a) displays the ms — a bifurcation diagram of a DNA filament with an
A-tract bend at the centre. The line style indicates the index of the solutions as stated in
the caption of figure 1, with the dotted line corresponding to configurations with index two.
The apparent crossing of the solid line with the dotted line is an artefact of this projection
of the bifurcation diagram and does not represent an actual crossing. The stability changes
at folds exactly as predicted by the distinguished diagram theory. The figures 2 (b) and
(c) illustrates two projections of a stable, hence biologically accessible, solution indicated
in (a) by the solid circle.

values that have a conjugate point at ¢ = 1. The index can be determined by
knowing the index at one parameter value, as in the distinguished diagram theory.
This was proved for a specific example of the elastic strut (Hoffman et al. 2002),
but is not true for elastic rods with more general boundary conditions (Bulman &
Manning, unpublished work).
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