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along families of cyclized equilibria of both intrinsically straight, and intrinsically curved, DNA
fragments.
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1 Introduction

DNA cyclization has proven to be a convenient experimental setting for probing the physical
behavior of segments of DNA under biologically realistic conditions, see, e.g., [13, 28, 16,
14, 4]. If experiments are performed on sufficiently short DNA (around 200 basepairs (bp),
for example) then the experimentally pertinent configurations appear to have approximately
circular centerlines, and thus do not involve self-contact, i.e., close interaction of remote parts of
the sequence. In this case, the experiments provide a sensitive probe of purely local, sequence-
dependent, mechanical properties of the DNA, such as intrinsic shape and bending and twisting
flexibilities.

An efficient computational model of cyclization is necessary to relate DNA shape and flexi-
bility parameters to the available experimental cyclization data. Short DNA fragments of only a
few hundred bp in length are still beyond the capabilities of today’s molecular dynamics simula-
tions, so that some sort of coarse-grained approximation must be used in any cyclization model.
There are a variety of coarse-grained models available (see, e.g., [27, 25] for reviews), involving,
for example, rigid basepair approximations (e.g., [20, 26]), piecewise linear approximations to
the DNA centerline (e.g., [5, 15]), or continuum elastic rod models (e.g., [2, 29]). In particular,
and reflecting the increasing level of sophistication and detailed information available from ex-
periment, there have been a number of works that consider continuum elastic rod models for
DNA with an increasing level of refinement. Within continuum theories, which can all be de-
scribed as rod models, there is a hierarchy of descriptions evolving from basic and fundamental
models with intrinsically straight rods of uniform rigidities and circular cross-section, where an-
alytic solutions can provide useful insights, to models capturing sequence-dependence through
natural curvature, non-uniform rigidities, and anisotropic cross-sections, where solutions can
only be found numerically.

In prior work we have used the computational approach of parameter continuation within
a continuum rod model [23, 7] of DNA minicircles. The primary objective of this article is to
describe certain attractive aspects of this computational approach from a specifically biological
point of view. Two such features, whose biological pertinence is at first sight perhaps non-
intuitive, are a) the computations characterize all equilibrium configurations i.e., not only local
minima, but rather any critical (or stationary) point of the DNA mechanical strain energy F,
minimal or not, and b) the computations include DNA equilibria in which the strands of the
DNA double helix are not torsionally aligned at one basepair step. These two special features
offer several advantages.

Knowledge of all equilibrium configurations within the model provides a complete skeleton of
the potential energy landscape. Of course, it is those equilibria realizing local minima that often
make the most significant contributions to experimental observations, and to the Boltzmann
distribution of configurations sampled during the thermally driven motion of the DNA, but
other types of equilibria are important too. For example the value of the potential energy E at a
saddle point plays an important role in fixing the energy barrier between different local minima.
Similarly, as a problem parameter is varied, a saddle can split into two saddles and a new local
minimum. We remark that only local minima are accessible to computational techniques such
as direct numerical minimization or simulated annealing of the energy, whereas parameter



continuation applied to the equilibrium equations naturally tracks all types of equilibria.

Once an equilibrium has been computed using parameter continuation, it must still be
classified as being either a local minimum or a saddle point. We will refer to this as the
stability of the critical point or equilibrium: local minima will be called stable and other critical
points unstable. More generally, we can assign an indez to an equilibrium corresponding to the
number of independent directions in configuration space that can decrease the potential energy
E: local minima have index 0, saddles with one downward direction have index 1, etc. With
the appropriate mathematical machinery, it is rather straightforward to determine the index of
each equilibrium once it has been embedded in a family of equilibria that have been computed
using parameter continuation [24, 8].

The inclusion of torsionally-misaligned configurations within our model is a convenient com-
putational strategy for embedding the true cyclized configurations, which are of primary biolog-
ical interest, in a family of equilibria. If one attempts to determine only cyclized configurations,
then one must know in advance how many there are, and have good initial approximations for
each. On the other hand, in our extended model, cyclized equilibria lie on curves of torsionally-
misaligned critical points as the angle « of misalignment is varied, and usually several cyclized
equilibria lie on each curve. Thus, one modifies the problem of finding many isolated cyclized
critical points to the problem of first finding a small number of curves of critical points within
the extended torsionally-misaligned problem, and then identifying which points on the curve
are actually cyclized. To start the computation one need only know a good approximation to
one point on the curve, and such points can readily be computed starting from analytic solu-
tions of simplified models. In practice, only one or two such curves must be computed in order
to find all pertinent cyclized local minima, and the entire computation is not costly (generally
requiring at most a few minutes on a current workstation).

In mathematical language, within the extended, torsionally-misaligned model, the basic
object to be computed is a one-parameter bifurcation diagram, i.e., a set of curves of DNA
equilibria as the angle a of misalignment at the nick site is varied. In this article we shall
explain how the mathematical theory of stability exchange can be used to read off the change
in index of each equilibrium from the shape of certain distinguished plots (along the curve of
equilibria) of energy E, linking number (or just link) Lk , and a twist moment m.

Our discussion of Lk requires the extension of the definition of link to the torsionally-
misaligned case. In the literature of modeling DNA much use has been made of the remarkable
formula Lk = Tw + Wr , which, in the cyclized case, is a theorem relating the three indepen-
dently defined quantities link Lk , a topologically defined integer, and the real numbers twist
Tw and writhe Wr . In the torsionally-misaligned case the topological definition of Lk is no
longer valid, so, following [15], we are free to use the formula Lk = Tw + Wr as the definition
of Lk (and in general this Lk is not an integer). In fact, Lk defined in this fashion and the
misalignment angle « are intimately related. This relationship is perhaps rather intuitive, and
is mentioned without comment in [15], for example. Nevertheless we are unaware of a prior
complete argument demonstrating its validity, and, given its importance in our work, we pro-
vide in an Appendix a complete proof in terms of a new notion that we call the writhe frame,
which is itself perhaps a notion of some independent interest.

While our motivation for introducing torsionally misaligned minicircles is primarily compu-



tational, it is also true that experiments can be carried out on circular DNA with one nicked
strand. We remark that the torsionally misaligned configurations we compute may or may not
be good models for such real nicked DNA. In particular, the potential difficulty lies in assigning
physical parameters to accurately mimic the properties of the DNA double helix at the nick
site. However if models of the nick of this type are accepted, as is done in [15], for example,
then, as discussed in [7], our parameter continuation techniques have a final attractive feature:
computation of the bifurcation diagram for a family of prescribed angles a can rather accurately
predict the equilibrium distribution P(Lk) for short nicked minicircles.

2 Elastic Rod Model

The Cosserat elastic rod is a standard model in continuum mechanics [1]. We think of a rod as
a long slender object, and consider slicing it into a continuous family of cross-sections. With
DNA, the basepairs provide a natural choice for these cross-sections (though, of course, some
smoothing strategy must be applied in order to convert to a continuum setting [23]). We denote
the position of the center of mass of each cross-section by r and parametrize by arclength to get
a center curve r(s). We describe each cross-section using a frame of three orthonormal vectors
(dy(s),d2(s),ds(s)), with dg normal to the plane of the cross-section and dy,ds in its plane
(for example, for DNA, one may choose d; to point to the center of the major groove). We refer
to (dq,d2,ds) as a framing of the curve r, and thus the rod as a whole is modeled as a framed
curve (r,dy, ds,ds). Following prior work in the area, the computations in this paper assume
an additional (and independent) inextensibility-unshearability constraint. This constraint can
be written as:

I'/ :dg, (].)

where, here and throughout, a prime indicates differentiation with respect to s. In the context of
DNA, the constraint (1) can be interpreted as the assumption that the values of rise, slide, and
shift do not change appreciably as the DNA deforms. The accuracy of this assumption can be
verified a posteriori. For the minicircles modeled in [23], it is certainly a good approximation.
In other circumstances, for example single-molecule experiments with a high applied force
loadings, the approximation is less good, in which case there are more intricate extensible and
shearable rod models which could be considered.

The rod potential energy is naturally expressed in terms of strains u; (u; and ug are strains
for bending about dj, ds, and uz the strain for twisting about dg):

U1(d1, ds, d3) =ds- d/2 = —d; - dé’,?
uz(dy, dg,ds) =d; -dy = —ds - dj, (2)
Ug(dl,dg,dg) = d2 . dll = —d1 . d/2

In the context of DNA, these strains are the continuum analogue of tilt, roll, and twist angles.
The energy is then given as an integral over the arclength of the rod:

L
E = / W(u1 - ?11,’&2 — ﬁg,Ug — ﬁ3;5> dS, (3)
0
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where the typical form chosen for W is

W = % (Kl(ul — ﬁl)z + KQ(UQ — ’&2)2 + Kg(Ug — ﬁ3)2) . (4)
The function W gives the local elastic strain energy density of the configuration due to bending
and twisting, and integration over the length L gives the total potential energy of the DNA. The
form of the function W contains sequence-dependent parameters modeling the DNA minimum-
energy shape and flexibility that are assumed within the model. For example, in the particular
form (4), K;(s) are bending (i = 1,2) and twisting (¢ = 3) stiffnesses and 4;(s) determine
the intrinsic shape of the DNA (e.g., 43 = o = 0 implies an intrinsically straight rod). The
accuracy of the model certainly depends upon the accuracy to which the parameters appearing
in the energy are known, or indeed whether a more general functional form, e.g., one containing
non-diagonal cross-terms in (4) or an extensible-shearable model, is more appropriate. However,
the general observations that we shall make are independent of the precise form of the energy
(3).
One final quantity will be important in our theory, namely the torque or twist moment which
we denote mg. It is defined by
oW

8u3 ’

or in the particular case of quadratic energy (4),

()

ms

mg = Ks(ug — u3). (6)

(There are two additional bending moments defined analogously, but they will not play a
prominent role here).

To model cyclization, we seek equilibrium points of the energy E among configurations
(r,dq,dsy, d3) satisfying the inextensibility-unshearability constraint (1), the orthonormality of
the d;, and in addition the cyclization boundary conditions (see Fig. 1):

(7)

Here « is the imposed twist angle at s = L relative to s = 0. Of course, this angle is only
defined modulo 27w. As we shall discuss later, configurations with « differing by 27n can be
interpreted as configurations with different prescribed link Lk . For convenience, we denote by
ap the value for this angle that lies in [0, 27), such that

a = ag+2mm (8)

for some integer m. For cyclized DNA, o = 0.



4 L)

d,(0)

4 L)

Figure 1: Cyclization constraints on an elastic rod



3 The connection between o« and Lk

The twist angle « is a central parameter in our model, which we vary in computing DNA
equilibria. On the other hand, in modeling DNA cyclization, attention is often focused on the
link Lk of the two sugar-phosphate chains. The two quantities v and Lk are intimately related.

In our rod model for cyclized DNA, the curve r(s) is defined to run through the center
of the DNA, and the vector d;(s) tracks the twist of the sugar-phosphate chains. Because
of these definitions, we can continuously deform one of the sugar-phosphate chains, without
intersecting itself or the other chain, to lie along r(s), and then deform the other chain, again
without intersecting itself or the first chain, to lie along r(s) + hd;(s), for some small radius h.
Since the link is a topological invariant, it remains constant during these deformations, so that
Lk equals the link of the curve r(s) with the curve r(s) + hd;(s). In this special setting, we
can compute Lk via the Calugareanu-White-Fuller formula Lk = Tw + Wr [3, 31, 6], in terms
of the twist and writhe

1 L
Tw = %/0 ug(s)ds,

L[ ) o) () xY(e),
W= 47r/0 / 2(s) dords

— (o)

When the DNA is torsionally-misaligned, the topological definition of Lk no longer holds,
as the sugar-phosphate chains are not closed curves. On the other hand, the integrals for
Tw and Wr still exist, so one may define Lk to be Tw + Wr . This choice of definition for
Lk is particularly efficacious, in that it yields a strong connection to the angle «, as noted
without proof in [15]:

Lk = 22 (mod 1).

T
In Appendix A, we offer a proof of a slightly stronger result:

Lk=m+ 22 (9)
2m
where m is the link of the nearest undertwisted cyclized DNA and «y is defined by (8). The
central idea of the proof is to associate to r a new writhe frame (dy,dY,ds).
The link Lk has the advantage that it is uniquely defined for a given configuration, whereas
a is only defined modulo 27 (although in a given parameter continuation computation, the
choice of o is unambiguous; the computation will simply choose the value closest to the value
of a in the previous step). On the other hand, Lk has the property that whenever the rod
centerline passes through itself, the value of Lk jumps by 2. Jumps in Lk arise exactly when
the model neglecting self-contact is not appropriate.

4 Families of Equilibria and Bifurcation Diagrams

In general, the equilibria of cyclized DNA cannot be found analytically. However, there is
one simple case in which equilibria are known in closed form: when 4;(s) = us(s) = 0 and
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Ki(s) = Ks(s) = A, uniformly twisted circles are equilibria. These twisted circles can be
used as a starting point for the numerical computation of equilibria for intrinsically curved
DNA (aq,19 # 0). Given one such equilibrium for an intrinsically curved DNA, one can find
many other (mainly torsionally-misaligned, i.e., ay # 0) equilibria by performing a numerical
continuation in the angle . The multivaluedness of « expressed in (8) is crucial here, as we
can choose the integer m in such a way that « is continuous throughout a calculation. These
computations are not entirely straightforward, but they are discussed at length in [7, 22, 23].

In this article, our main interest lies in understanding the information that can be extracted
from computations of a family of equilibria as the angle parameter « is varied. Plots of such a
family are called, in the language of mathematics, bifurcation diagrams. In this article, we will
focus on the biologically familiar quantities £ and Lk , and the additional quantity ms (at the
point of ring closure s = 0, L). As « varies, each quantity can be evaluated, and they can be
plotted in pairs, such as (ms(a), E(a)).

We begin with the diagrams for an intrinsically straight and untwisted rod with constant
and equal bending stiffnesses K;(s) = Ks(s) = A, and constant twisting stiffness K3(s) = C;
this case is sometimes called the perfect rod. The only remaining free parameter is the ratio of
stiffnesses C'/A. In Fig. 2 we show the (mg3, Lk), (E, Lk), and (E,m3) diagrams for the perfect
rod, for several values of C'/A. The Figure shows only the lowest-energy piece of the entire
diagram, which extends to arbitrarily high energies.

The diagram contains a central “trivial” branch, which is a diagonal line in the (ms, Lk)
diagram and a parabola in the (F, Lk) and (E, m3) diagrams. Each equilibrium on this branch
is circular with a constant twist. The simplest such equilibrium is the untwisted circle, which
occurs at Lk = m3 = 0 and E = 27%A/L, and is stable. As twist is introduced, i.e., |Lk]| is
increased on this branch, equilibria remain stable until the well-known “first buckling transi-
tion”, which occurs at the dots in the Figure, with ms = +27v/3A/L, Lk = £Av/3/C, and
E =27?A/L+67%A?/(CL) [18]. Thereafter, equilibria on the trivial branch are unstable, with
index two initially, and increasing by two at each successive buckling transition (later buckling
transitions not pictured in the Figure). At the buckling transition, a second branch of “non-
trivial” equilibria emerges, and in fact connects the two first-buckling-transitions. Solutions on
this branch are nonplanar, buckling through a figure-eight (at ms; = 0). Note that the cur-
rent model includes no self-contact force, so the branch continues through the figure-eight to
equilibria with Lk and mg of the opposite sign, and with Lk jumping by two. The stability of
equilibria on the nontrivial branch depends on C'/A, as indicated in the Figure. For sufficiently
low C'/A, the entire branch is unstable (of index 1). Hoffman has shown that the transition is
at C/A = 1.375 [9]; for C'/A above this value, equilibria near the buckling transition are stable,
as in the case C'/A = 1.8 shown in the Figure. For C'/A > 2.0, the entire nontrivial branch is
stable [9, 12].

Next, in Fig. 3, we show diagrams for the cyclization of a 155-bp DNA consisting of an A-
tract and a CAP binding site connected by several nearly straight DNA segments (the molecule
used is 08T15 from [23], and the procedure for deriving continuous DNA shape parameters 4;(s)
from sequence-dependent bend and twist “wedge angles” is described therein). The intrinsic
curvature of the A-tracts and, to a lesser extent, the CAP binding site causes the diagrams to
perturb from Fig. 2; for example, the energies drop since intrinsic curvature reduces the strain



energy required to cyclize.

5 Stability Exchange and Distinguished Bifurcation Di-
agrams

Two features of a bifurcation diagram—folds and bifurcation points—play a central role in
predicting the change of stability of equilibria along the diagram. A fold is a point on a branch
where one (or more) of the plotted coordinates passes through a local maximum or minimum,
such as the points labeled I and IV in column a of Figs. 2 and 3. If both coordinates pass
through local extrema at a point, we call the point a cusped fold, such as the point labeled II
in column b of Fig. 3.

A bifurcation point is a point on the diagram where two branches cross, such as the dots in
Fig. 2. Bifurcation points are rather exceptional; in the absence of a symmetry forcing their
appearance, they typically do not arise. Alternatively one can say that the case of folds is
generic; if a particular system has a bifurcation point, a nearby system with suitably perturbed
coefficients in the energy will have only fold points.

It is a standard result in bifurcation theory that stability properties of a branch of solutions
can only change at a fold in the continuation parameter «, or exceptionally at a bifurcation
point [11, 30]. Maddocks and Hoffman have strengthened this result to predict the exact way
the stability index changes at a fold in problems involving equilibria of an energy (such as the
DNA minicircle example) [9, 21]. Our objective here is to summarize this general stability
exchange theory and then use it to create bifurcation diagrams involving biologically familiar
coordinates from which stability changes can be predicted. In a similar way, one could translate
the somewhat more intricate stability exchange theory at bifurcation points into biological
terms, but we shall not present that extension here.

5.1 The (ms3, Lk) distinguished diagram

The key to predicting stability changes is choosing the appropriate quantities to plot in the
bifurcation diagram. We call a diagram in which stability information can be determined by
the shape of the branches a distinguished bifurcation diagram. For DNA loops, Maddocks and
Hoffman show that one distinguished diagram involves a and dFE/da—the derivative of E(a)
with respect to a—which we abbreviate as F, following standard practice. In this distinguished
(E,, o) diagram, the change in index as a fold is traversed is shown in Fig. 4: the index decreases
by one as a leftward-opening fold is traversed upward, and increases by one as a rightward-
opening fold is traversed upward.

One can find a compact expression for E, by differentiating the integral form (3) for F(«) via
the chain rule, and then integrating by parts and simplifying using the equilibrium equations.
The final result is that F, equals the value of the twist moment mgs at the point of ring closure
s =0, L. Consequently, a distinguished diagram involves o and the value of this twist moment
ms.

Further, due to the simple relationship (9) between o and Lk , folds in the (ms,«) and



(ms, Lk) diagrams exactly correspond and have the same shape. Thus, the (ms, Lk) diagram is
also a distinguished diagram, with the same stability exchange rules as shown in Fig. 4. Indeed,
referring back to the example bifurcation diagrams in columns a of Figs. 2 and 3, we can see
that stability changes at folds in exactly this way, at the points labeled I, II, or IV. Recall that
the stability changes at the bifurcation points in Fig. 2 are not covered by the theory in this
article, merely the smooth folds in the top figure marked I and IV. Note in addition that jumps
in Lk play no special role in terms of stability exchange, as is shown in Figs. 2 and 3, where
stability remains the same on either side of the horizontal segments in column a.

In the absence of bifurcation points, folds in the (ms, Lk) diagram will generally appear
smooth as in Fig. 4. However, in exceptional cases, such as at a bifurcation point, folds can
occur at cusps. Although there is a theory of distinguished diagrams for such nongeneric cusped
folds [10, 21], it will not be discussed in detail here.

Given the stability predictions from the distinguished (E,,«) diagram, we now describe
two additional distinguished diagrams involving E, namely (F,«) and (F, E,). In the DNA
example, these diagrams will be (E, Lk) and (E,mg3). As the energy E is a central quantity
in the problem, such diagrams may be more physically intuitive. These new distinguished
diagrams are shown in columns b and c of Fig. 5. They are derived logically from analysis of
the (E,, ) diagram, shown in column a of Fig. 5, with stability exchange information exactly
as shown earlier in Fig. 4. The analysis and results differ based on the sign of E, at the fold,
so the figure has been divided into a total of 6 cases.

5.2 The (F, Lk) distinguished diagram

We first consider the (F, «) diagram shown in column b of Fig. 5. In this diagram, the slope
of the curve at any point is £,. We will use this fact to demonstrate that:

(a) the (F, «) diagram is cusped at the fold in «, with the concavity changing at the fold,

(b) the higher-energy branch is more unstable, i.e., has index one greater than the lower-
energy branch.

We will derive these results for Case I of Fiig. 5. The other five cases can be handled analogously.

Let E* be the value of the energy at the point (a*, E) in column a, so that the corresponding
point in column b is (o, E*). A dotted line through the point (o*, E*) with slope EX has been
drawn in column b. Since the solid branch in column a has a < o* and E, > E (at least
locally), its image in column b must have slope greater than E’, and therefore lies below the
dotted line (and is tangent to it at (a*, E*)). Similarly, the dashed branch in column a has
a < o and E, < E, so its image in column b lies above the dotted line (and is tangent to it
at (a*, E*)). Note that as a approaches a*, the slope of the upper branch must increase to E*
(and hence the upper branch is concave up), while the slope of the lower branch must decrease
to £ (and hence the lower branch is concave down).

We note that a cusp in the (E, «) diagram where both branches have the same concavity
corresponds to the case of a nongeneric cusp fold in the (E,, a) diagram. Fig. 5 does not include
stability exchange information for this case.

As before, because of the close connection between o and Lk , stability exchange in the
(E, Lk) diagram is identical to that in the (E,a) diagram derived here. This is confirmed by
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the fact that the predictions of column b of Fig. 5 match the stability changes in the (E, Lk)
diagrams in Figs. 2 and 3, where cases I, II, and IV occur. Note that the cusps in this diagram
are often difficult to see, requiring the zoom views shown in several of the diagrams. Recall that
the stability changes at the bifurcation points in Fig. 2, though they look like cusped folds, are
not covered by the theory we present in this article, merely the cusped folds in the top figure
marked I and IV.

5.3 The (E,m3) distinguished diagram

Given the distinguished diagrams (F,a) and (E,, «), we may immediately obtain a third di-
agram (FE, E,), which we show also contains stability exchange information, as depicted in
column c. Consider, for example, Case I. We know from column a that the solid branch has a
larger value of E,, than the dashed branch, and from column b that E is at a local max, so the
diagram must be as shown in column c. Similar analysis can be used to derive the figures in
Cases IILIV, and VL.

The treatment of cases II and V, where E, = 0, requires more care. Since the fold in « is
open in the (o, E,) diagram and cusped in the (E, «) diagram, an asymptotic analysis shows
that the (E, E,) diagram is horizontal at E, = EX. Since E does have a local extremum in
Cases II and V, the (F, E,,) diagram must therefore have a point of inflection as shown.

In summary, in the (£, E,) diagram, stability exchanges occur at local extrema of £ where
E, # 0, or at points of inflection on the line £, = 0. This may be readily seen in column c
of Figs. 2 and 3 (recall that for DNA, E, = mg), where instances of cases I, II, and IV, occur.
Local extrema of E at E, = 0 do not correspond to changes of stability (cf. the upper right of
Fig. 3).

We note that cusps in the (£, E,) diagram correspond to cusps in the (F,,a) diagram,
where again Fig. 5 does not give stability information.

5.4 Summary of distinguished diagrams

We conclude by summarizing the central result of this article: the stability exchange information
available in three bifurcation diagrams involving ms, Lk , or E:

Diagram | Stability Exchange Information
Stability index changes at smooth folds in Lk
(ms, Lk) | If the fold opens to the right, the bottom branch has lower index
If the fold opens to the left, the bottom branch has higher index
(E, Lk) | Stability changes at cusped folds
The branch with lower energy has lower index
Stability changes at local extrema in £ where m3 # 0
or at inflection points in £ where mz = 0
(E,m3) | Stability exchange is as shown in column c¢ of Fig. 5,
depending on the sign of mg,
and whether F is a local maximum, minimum, or inflection point
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6 Discussion

In this article, we have extended previous theory involving (ms, ) distinguished diagrams to
include the more biologically intuitive quantities Lk and E. In diagrams involving any two of
mg, E, and Lk , stability changes can be read off the diagram following the rules in Fig. 5,
where « corresponds to Lk and F, corresponds to ms.

In previous analysis of the perfect rod, the writhe Wr has also been identified as a useful
indicator in determining stability. For example, Le Bret [19] argues that d(Lk)/d(Wr) > 0is a
necessary condition for stability of equilibria of the perfect rod when self-contact is disregarded;
Tobias et al [29] have recently extended this result to include a model of self-contact. Le Bret’s
result can be derived by the analytic techniques used in the distinguished diagram theory that
underpin this paper, combined with the fact that the twist strain us(s) is constant at equilibria
of the perfect rod. However, in the case of an intrinsically curved rod, we are unaware of stability
results involving Wr (for instance, numerical experiments indicate that d(Lk)/d(Wr) > 0 is
no longer a necessary condition for stability in intrinsically curved rods). In contrast, the
distinguished diagrams (ms, Lk), (F, Lk), and (E,m3) derived here can be applied to both
perfect and intrinsically curved DNA.

The (E, Lk) diagram is notable because of its relation to continuous link distributions P(Lk).
One model for a nicked DNA minicircle is an equilibrium for which the twist moment E,, is
zero. And, the equilibrium is stable among all nearby nicked configurations if it is embedded in
a local minimum of a stable branch of the (E, Lk) diagram. These stable nicked configurations
can in turn yield peaks in P(Lk). The correlation between (E, Lk) diagrams and Monte Carlo
simulations of P(Lk) in [15] has been quantitatively explored in [7]. Along these lines, we
show a final bifurcation diagram in Fig. 6 for a randomly-generated 900-bp DNA from [7].
In this case, there are two points on stable branches where E is at a local minimum, one at
Lk ~ 85.4 and one at Lk ~ 86.4 (see column b). Thus, this molecule is a candidate for a multi-
peaked link distribution P( Lk ). This molecule is also, therefore, a candidate for a nontrivial
experimental topoisomer distribution. Although these experiments typically only detect integer
Lk, the (F, Lk) diagram should still be the pertinent bifurcation diagram for understanding
them. Further investigation is needed to fully understand the connection between the discrete
distribution of the integer Lk of cyclized molecules and continuous distributions P(Lk) of
nicked molecules.

There are several other points of interest in the example of Fig. 6. For example, it exhibits
a point with Case-III stability exchange, and the behavior in each column agrees with the
theoretical predictions in Fig. 5. In addition, the stable solutions in Fig. 6 now lie on two
separated branches, so that the stability data in the diagram could not have been readily
guessed without the availability of stability tests such as those presented in this paper.

A The writhe frame and a proof of the connection be-
tween Lk and «

We will use the following several times:

12



Lemma 1. Let (d3,d3,d3) and (d¥,dY,ds) be two framings of v, and let Q(s) denote the
(clockwise) angle of rotation from the first to the second, i.e.

di(s) = cosQ(s)d}(s) + sin Q(s)d3(s),
ds(s) = —sinQ(s)d%(s) 4 cos Q(s)d5(s).

Then u§(s) — ul(s) = Q(s).
Proof: We note first the following relationships:

de.de = 1
de-d2 = 1
(dy)'-di = 0,
(d3)'-d5 = 0
de.ds = 0
(A7) -d3 = ug,
(d3)-di = —us.

(The third and fourth follow from the first and second by differentiating). Using these facts,
we directly compute:

b _ (db)/ . db
U3 1 2
= (—sin(Q)Q'd] + cos(Q)(d]) + cos(Q)Q'd3 + sin(2)(d3)’) - (—sin()d] + cos(2)dg)
sin?(Q)Q' + cos?(Q)ug + cos?(Q)Y — sin?(Q)(—ug) = Q' + ul.

0

We first construct the natural frame (Dq,Ds,d3) [23, 17]. We determine Dy by solving
the IVP D1(0) = dq(0), D} = — {ds[d}]"} D;. With D, determined by orthonormality
(D2 = ds x Dy), this construction ensures that the twist strain Us(s) of the natural frame
equals zero for all s (i.e., the frame is “untwisted”) [23]

Next define ¢(s) using the integrand from Wr:

_ 1 () —x(0) - (' (1) x1'(0)) odr
P(s) = 2/0 /O () —r(0)F dodr.

Now define the writhe frame (d}(s),d¥(s)) to be a clockwise rotation by ¢(s) of the natural
frame (D1(s), D2(s)) about dg(s). By Lemma 1, the twist strain u} of the writhe frame is

w_w e — L [ E(s) = x(0)) - (K'(s) xx'(0))
Uz = Us U3 ¢< ) 2/0 |I' S)—I'(O')|3 do. (10>

(
Lemma 2. The writhe frame is closed, i.e., dY (0) = dy(L).

13



Proof: Let (dj,dj,ds) be any closed framing of r with dj(0) = d}(0); denote its strains by
uf and its twist by Tw*. Let 0(s) denote the (clockwise) angle between dj(s) and d} (s); note
that #(0) = 0. By Lemma 1, ¢'(s) = ui(s) — u¥(s). Integrating from s = 0 to s = L, and
applying (10), we find:

o) — /0 C 0 (s)ds = /O it — u)ds
_ 27T(Tw*)+% / ’ / gus _|r<(">>) () X 7109) g

— (o)
= 2n(Tw*) 4+ 20aWr = 2n(Tw* + Wr).

Since (dj, d3,d3) is a closed framing, the link Lk* of r with r 4+ hdj is an integer. Further, we
know by the Calugareanu-White-Fuller formula for closed frames that Lk* = Tw* 4+ Wr. Thus,
Tw* 4+ Wr is an integer, so 6(L) is a multiple of 27. Therefore, dj (L) = dY (L), which implies
that dY (L) = d3(L) = d;(0) = dy(0).0

Lemma 3. The link LK™ of r with r + hdY is zero.

Proof: Applying the definition of Tw™ and (10),

1 L
Tw" = —/ uy (s)ds
2 Jo

[P P —xe) () x e
ST B B o TR

Thus, LEY = Tw" + Wr = 0.0

Proposition 1. Lk = m + &

52, where m € N is the link of v with r + hcos(ags)di(s) —
hsin(agps)da(s).

Proof: Define a floor framing (df,dJ, d3) of r by

apS apS

d/(s) = cos (T) d,(s) — sin <T> da(s),

di(s) = sin (%) d;(s) + cos (%) da(s).

By definition of «g, the floor framing is closed, i.e., df (L) = df(0). Since by design the

clockwise angle of rotation from the floor framing to the real framing is €2(s) = <%, we have
us(s) — uf(s) = % by Lemma 1. Therefore,
Tw+Wr = (Tw—Tuw')+ (Tw! +Wr)
1 L f 1 L Qp (%))
= — —~ ds+ Lkl = — [ —ds+ Lk = — + LK.
o (ug(s) —uz(s))ds + 27r/0 T ds+ 5

14
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Figure 2: Bifurcation diagrams for an intrinsically straight and untwisted rod with constant
and equal bending stiffnesses K;(s) = Ks(s) = A and constant twisting stiffness K3(s) = C.
The link Lk is unitless; the quantities £ and mg have units of energy (graphed here in units of
A/L). Diagrams are shown at three values of C'/A. Bifurcation points (buckling transitions) are
marked by dots. Horizontal line segments in the diagrams in columns a and b occur because
Lk jumps by 2 at configurations with self-intersection. Stability is indicated by line style—
solid for local minima, dashed for saddles of index one, and dotted for saddles of index two. As
discussed in Sec. 5, stability transitions, labeled by I or IV, can be predicted from the shape
of the diagram.
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Figure 3: Bifurcation diagrams for an intrinsically curved 155-bp DNA at various values of C'/A.
Because of the symmetry-breaking due to intrinsic curvature, no bifurcation points remain, but
stability transitions, labeled I, 11, and IV, still occur. Linestyle indicates stability as in Fig. 2.
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Figure 4: Stability changes at folds in the distinguished bifurcation diagram that plots F, (the
derivative of the energy with respect to the angle «) against a. Linestyle denotes the change
in index along the branch: the index on the dashed branch is one higher than the index on the
solid branch. For example, if the solid branch contains (stable) local minima (index 0), then
the dashed branch contains (unstable) saddles with one downward-turning direction (index 1).
For the DNA example, F, = m3 (at the point of ring closure), and o may be replaced by Lk ,
due to (9).
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Figure 5: Stability changes at folds in several bifurcation diagrams. For the DNA example, F
is the energy, « the twist angle, and E, the twist moment ms. Linestyle denotes the change in
index along the branch: the index on the dashed branch is one higher than the index on the
solid branch. For example, if the solid branch contains (stable) local minima (index 0), then
the dashed branch contains (unstable) saddles with one downward-turning direction (index 1).
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Figure 6: Bifurcation diagrams for a 900-bp DNA (sequence generated at random, C'/A = 0.8).
Linestyle and labels are as in Fig. 2.
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