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Abstract. The theory of conjugate points in the classic calculus of variations allows, for a
certain class of functionals, the characterization of a critical point as stable (i.e., a local minimum)
or not. In this work, we generalize this theory to more general functionals, assuming certain generic
properties of the second variation operator. The extended conjugate point theory is then applied to
a two-dimensional elastic rod subject to pointwise self-repulsion. The critical points are computed
by numerically solving first-order integro-differential equations using a finite difference scheme. The
stability of each critical point is then computed by determining conjugate points of the second
variation operator. In addition, the generalized theory requires the numerical evaluation of the
crossing velocity of the zero eigenvalue of the second variation operator at each conjugate point,
a feature not present in the classic case (where the crossing velocity can be shown to always be
negative). Results demonstrate that the repulsive potential has a stabilizing influence on some
branches of critical points.
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1. Introduction. The past several decades have seen a surge of interest in con-
tinuum elastic rods within the DNA modeling community. Some useful results have
been obtained with models that allow the rod to pass through itself, but for DNA
longer than a few hundred base-pairs, a model of self-contact is necessary to cap-
ture the most important configurations. This self-contact has been modeled via a
non-interpenetration constraint (“hard contact”), or, as we do here, via a repulsive
self-potential (“soft contact”). The addition of self-contact (in either form), however,
significantly increases the complexity of the problem. For instance, with soft contact,
the first-order Euler-Lagrange equations become integro-differential equations, rather
than the standard second-order differential equations. And, most pertinent to this ar-
ticle, classic techniques regarding the second variation and stability analysis no longer
apply.

Here we assume the existence of local minimizers of the elastic-plus-contact en-
ergy. Existence of minima for the hard contact model has been addressed by Gonzalez
et al [6], Strzelecki [23], and Schuricht et al [22]. Existence of minima for the soft
contact model was addressed by Hoffman and Seidman [13].

This article focuses on developing a theory and associated computations to de-
termine which critical points (equilibria) of the energy are local minima (stable), by
exploiting the variational structure of the formulation. In unconstrained calculus of
variations theory, there are necessary and sufficient conditions for a critical point to
be a local minimum that involve the condition that the second variation evaluated at
that critical point does not have any conjugate points. This idea of a conjugate point
was first developed by Jacobi (see, e.g., the texts [4, 5, 11, 20]), and was subsequently
generalized to the idea of an “index” of a critical point by Morse and others [18, 9].
In the presence of isoperimetric constraints, Bolza [2], citing work of Weierstrass, de-
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veloped a necessary condition for a critical point to be a constrained minimum, which
exactly corresponds to an analogous definition of conjugate point in the constrained
setting. This idea was further pursued by Manning, Rogers and Maddocks [17] and
linked to the value of a constrained index. In this paper, we follow the formulation
of [17] to develop an index theory for more general functionals, including calculus
of variations problems with a non-local potential term, focusing in particular on the
example of a self-repulsive energy for a planar rod.

Among the considerable literature on rods with self-contact, a small minority of
studies focus on the question of stability that we address here. Van der Heijden et al
[28] look at jump phenomena in bifurcation diagrams as evidence of loss of stability,
but without proposing specific stability tests per se. Tobias, Swigon, and Coleman
[27, 3] develop stability tests for a homogeneous intrinsically straight 3D rod with a
quite general contact energy. Their tests involve conditions on branches of solutions,
focusing in particular on the link-writhe bifurcation diagram. Our approach here will
be quite different in several ways. We focus on a test that is applied to a single critical
point, rather than a condition that compares a critical point to nearby critical points.
We also propose a specific algorithm for determining stability (akin to solving the
Jacobi equations in the calculus of variations), applicable to a quite general elastic
energy, including, for example, intrinsic shape.

Our numerical computations for the planar rod involve straightforward finite dif-
ferences combined with parameter continuation. This example provides a simple illus-
tration of the stability theory that is the focus of this article. More intricate numerical
approaches have been applied to the 3D version of this problem [30, 27, 3, 24, 26] (or
the 3D dynamical problem [15, 8, 7]), and our stability test should extend easily to
the 3D setting, though of course requiring similarly more intense numerics.

2. General Formulation. Here we sketch the general outline of an extended
conjugate point theory. The presentation is purposefully vague (we do not write a
specific form for the functional of interest, and omit complete definitions of terms
like “admissible variation”, “first variation”, or “second variation”), so as to quickly
convey the basic approach. In the rest of the paper, we apply this approach to specific
problems, first to the classic calculus of variations problem in Sec. 3 and then to a
planar rod model with self-repulsive energy in Sec. 4.

Consider the problem of minimizing a real-valued functional J defined on a set
D([a, b]) of L2 functions on an interval [a, b]. Given D([a, b]), there is a corresponding
vector space A([a, b]) of “admissible variations”, which consists of those functions h
such that if y is in D([a, b]), so is y+h, at least to first order in h. This space A([a, b])
is equipped with the L2-norm ‖ ‖.

We further assume that for each y ∈ D([a, b]), J is twice differentiable at y, i.e.,
for each admissible variation h ∈ A([a, b]), we have J [y+ h]− J [y] = δJ [h] + δ2J [h] +
ε[h]‖h‖2 where δJ is a linear functional from A([a, b]) to R (called the first variation),
δ2J is a quadratic functional from A([a, b]) to R (called the second variation), and ε
is a functional from A([a, b]) to R such that ε → 0 as h → 0 (cf. [5, pp. 97–99] for
more on this setup within the standard calculus of variations setting). A necessary
condition for y to be a local minimizer of J is that δJ [h] = 0 for all h ∈ A([a, b]).
Functions that satisfy this condition will be called critical points.

Further assume that on a subspace Ã([a, b]) of A([a, b]), the second variation can
be written as a quadratic form δ2J [h] = 〈h,Sh〉, where S : Ã([a, b]) → L2([a, b]) is
called the second-variation operator, and 〈·, ·〉 denotes the standard L2 inner product.
(As will be illustrated in the next section, the invocation of a new subspace Ã at
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this point usually arises because the definition of A does not require h to have two
derivatives, whereas S is a second-order differential operator.)

Finally, assume that Ã([a, b]) and A([a, b]) are dense in a space W([a, b]) that con-
tains the range of S. In that case, we can study the spectrum of S : W([a, b]) →
W([a, b]) (densely defined on Ã([a, b])), and the properties of this spectrum will deter-
mine the behavior of the second variation on A([a, b]).

Specifically, for each critical point, we would like to assign an index, a non-negative
integer that measures the dimension of the space on which the second variation is
negative, i.e., the number of negative eigenvalues of S on Ã([a, b]). To this end, we
embed the space Ã([a, b]) in a family of spaces Ã([a, σ]) as σ varies from a to b, and
similarly embed the operator S within a family of operators Sσ (where Ã([a, σ]) is
dense in a space that contains the range of Sσ), and consider the following family of
eigenvalue problems:

Sσh =ρ(σ)h, h ∈ Ã([a, σ]). (2.1)

Now assume that for our chosen family of spaces Ã([a, σ]) and operators Sσ, we have
the following properties about the family of spectra ρ(σ):

A1: The spectrum of each Sσ consists of isolated simple eigenvalues

−∞ < ρ1(σ) < ρ2(σ) < · · ·

A2: The eigenvalues ρn(σ) are continuously dependent on σ.
A3: The functions ρn(σ) never have a turning point at ρ = 0, i.e., if ρn(σ∗) = 0,

then ρn(σ) has one sign just to the left of σ∗ and the other sign just to the
right. One might informally call this a “transverse crossing condition”.

A4: For σ sufficiently close to a, the number of negative eigenvalues of Sσ is
known.

Within this structure, we define conjugate points to be values of σ such that the
equation

Sσh =0, h ∈ Ã([a, σ]) (2.2)

has a nontrivial solution h. The values of σ that are conjugate points exactly corre-
spond to the values of σ for which Sσ has a zero eigenvalue, i.e. ρ(σ) = 0. Further, by
assumption A3, either ρ goes from negative to positive as σ increases (a case we will
call “positive velocity”) or ρ goes from positive to negative as σ increases (“negative
velocity”). The index measures the size of the space on which the second variation is
negative and this exactly corresponds to the number of negative eigenvalues of Sσ at
σ = b. The combination of properties A1−A3 means that we can relate the index
to the number of conjugate points through the following principle:
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Index Principle: The index of a critical point can be computed according to:

Index =
(

the number of negative eigenvalues of Sσ
for σ sufficiently close to a

)
+
(

number of conjugate points in the interval
a < σ < b with negative velocity

)
−
(

number of conjugate points in the interval
a < σ < b with positive velocity

)
.

(2.3)

Thus, if one can determine the number of negative eigenvalues that Sσ starts with
(for σ sufficiently close to a), as assumed in A4, then the index can be computed by
tracking conjugate points and their crossing velocities.

Before proceeding to our two examples, we preview what we will show about
A1−A4 in each case. For the classic problem in the calculus of variations (Sec.
3), all of A1−A4 can be proven. Specifically, the fact that Sσ is a Sturm-Liouville
operator obeying Legendre’s strengthened condition leads to A1, A2, and A4, and
an argument based on a variational characterization of the eigenvalues shows that
they are decreasing functions of σ, thus trivially verifying A3.

In extending the theory to a wider class of problems, such as we do in the planar
rod example in Sec. 4, we may need to settle for some parts of A1−A4 to remain
as assumptions rather than provable properties. Specifically, A3, and the part of
A1 that says that the eigenvalues are simple, are two properties that may fail when
the classic second variation operator is perturbed, because the perturbation could
merge two previously distinct eigenvalues, and could (and does in our example) create
turning points in ρ(σ), which could in principle occur at a zero eigenvalue. It seems
clear that a generic perturbation will not cause either of these failures (an exact
coalescence of eigenvalues, or a turning point exactly at zero). This allows one to
apply the generalized theory with some confidence, even if these particular properties
are difficult to prove. In our planar rod example, we prove A2, A4, and A1 without
the “simple” condition, and also argue that our numerical implementation should
show signs of a (non-generic) violation of A3 or non-simple eigenvalues.

3. Example: The classic problem in the calculus of variations. Consider
the functional

J [q] =
∫ 1

0

L(q(s), q′(s), s) ds, (3.1)

which we would like to minimize over all q ∈ C1([0, 1]) that obey the boundary
conditions

q(0) = qL, q(1) = qR (3.2)

for some given qL, qR. The corresponding set of admissible variations is

A([0, 1]) ≡
{
h ∈ C1([0, 1]) : h(0) = 0, h(1) = 0

}
.

If we assume that L is C3 in its arguments, then we can Taylor-expand to second-
order inside the integral to show that J is a twice-differentiable functional. As de-
scribed in Sec. 2, critical points are defined by the condition that the first varia-
tion vanishes. In this setting they are solutions of the Euler-Lagrange equations
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− d
ds (Lq′) + Lq = 0 (subscripting by q or q′ denotes partial differentiation) that also

satisfy the boundary conditions in (3.2). Classification of a given critical point q in-
volves an analysis of the second variation of (3.1) (at q), which, by integration by
parts, can be rewritten on the subspace

Ã([0, 1]) ≡
{
h ∈ C2([0, 1]) : h(0) = 0, h(1) = 0

}
as

δ2J [h] =
1
2

∫ 1

0

h(s)(Sh)(s) ds,

where S is the second-order differential operator:

Sh ≡ − d

ds
[Ph′] + (Q− C ′)h, (3.3)

and P (s) ≡ Lq′q′(q(s)), C(s) ≡ Lqq′(q(s)), and Q(s) ≡ Lqq(q(s)). We assume Legen-
dre’s strengthened condition: P (s) > 0 for all s ∈ [0, 1].

We define W([0, 1]) = L2([0, 1]) (which clearly contains the range of S), and note
that Ã([0, 1]) and A([0, 1]) are dense in W([0, 1]), as required by our presentation of
the general theory.

We make the following natural choice for embedding Ã([0, 1]) in a family of spaces:

Ã([0, σ]) ≡
{
h ∈ C2([0, σ]) : h(0) = 0, h(σ) = 0

}
,

and let Sσ = S for each σ. With W([0, σ]) = L2([0, σ]), we apply the general theory
from Sec. 2, and find that in this setting, a conjugate point is a value σ < 1 for which
there is a nontrivial solution to:

(Sh)(s) = 0 for 0 < s < σ, h(0) = 0, h(σ) = 0. (3.4)

This definition of conjugate point is equivalent to Jacobi’s classical definition of con-
jugate point (see, for example, [11, p.124]).

In order to justify the conjugate point theory, we establish assumptions A1− 4
for the family of eigenvalue problems

(Sh)(s) = ρ(σ)h(s) for 0 < s < σ, h(0) = 0, h(σ) = 0. (3.5)

Since S is a Sturm-Liouville operator satisfying Legendre’s strengthened condition,
and since the boundary conditions imposed are separated and self-adjoint, A1 is
known to hold (see, e.g., [31, p. 5]). In addition, A2 has been proven by Kong and
Zettl [31, p. 7]1. In an earlier paper, we verified A3 using Rayleigh quotients and
other techniques [17]; more specifically, ρn(σ) is a decreasing function (so that all
conjugate points are of “negative velocity” type, in the sense described in Sec. 2).

Finally, we verify A4, showing specifically that all eigenvalues are positive for
σ > 0 small. First we reformulate the eigenvalue problems so that they involve a

1As discussed in Remark 3.1 of [31], Kong and Zettl prove that each eigenvalue ρi lies on a
continuous branch, but point out that this does not in general imply that for a fixed n, ρn is
always continuous, since a new eigenvalue can appear from −∞. However, this cannot happen for
our example since there exists a uniform lower bound for the eigenvalues, as can be seen via our
verification of A4. Alternatively, our proof of A2 for the planar rod example in Sec. 4, which
exploits a variational formula for ρn, could be adapted to prove A2 in this setting as well.



6 K.A. Hoffman and R.S.Manning

fixed function space, via the change of variables t = s/σ, which yields the following
equivalent formulation of (3.5):

(Sσh)(t) = ρ(σ)h(t) for 0 < t < 1, h(0) = 0, h(1) = 0

where

Sσh(t) ≡ − 1
σ2

d

dt
[P (σt)h′(t)]− (Q(σt)− C ′(σt))h(t). (3.6)

We first analyze the spectrum of the first half of this operator:

T ≡ − 1
σ2

d

dt

[
P (σt)

d

dt

]
.

We take the eigenvalue problem

− d

dt
[P (σt)h′(t)] = ρh(t)

and multiply both sides by h(t), integrate from 0 to 1, and integrate the left side by
parts to see that

ρ‖h‖2 = 〈h′, P (σt)h′〉.

By Legendre’s strengthened condition, the right-hand side is positive, and thus so
must be the eigenvalues of the operator −d/dt[P (σt)d/dt], call them λ1 < λ2 < · · · .
Therefore, the eigenvalues of T are λ1/σ

2 < λ2/σ
2 < · · · . The operator Sσ is T plus

a “perturbation” (multiplication by (Q(σt)− C ′(σt))), which is bounded with

‖Q(σt)− C ′(σt)‖ ≤ ||Q||∞ + ||C ′||∞. (3.7)

Kato [14, Thm 4.10, p. 291] shows that every eigenvalue in the spectrum of Sσ is
within ‖Q(σt)− C ′(σt)‖ of an eigenvalue in the spectrum of T . Since our bound on
the perturbation in (3.7) is independent of σ, and the lowest eigenvalue of T is λ1/σ

2

with λ1 > 0, the eigenvalues of Sσ will be positive for σ sufficiently close to zero.
Since the eigenvalues are all positive for σ ≈ 0 and all conjugate points are of

“negative velocity”, the general index principle takes on the following simpler form:

Index =
(

number of conjugate points in the interval
0 < σ < 1 (which all have negative velocity)

)
.

(3.8)

This is exactly Morse’s classic result [18], and includes as a special case the classic
“Jacobi’s necessary condition”, that in order for a critical point to be a local minimum
(i.e., the index is zero), there must be no conjugate points.

This paper presents a generalization of the classical Jacobi conjugate point theory
embodied in this example. We assume merely that the second variation operator
S satisfies assumptions A1–A4, rather than require it to take the usual second-
order differential form (3.3), and we use the general index principle (2.3), rather than
the specific Morse principle (3.8), which holds only in the special situation that the
eigenvalues are monotonically decreasing functions of σ and that all the eigenvalues
are positive for σ sufficiently close to a. These generalizations significantly expand
the type of problems for which the conjugate point technique can be used.
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Fig. 4.1. A planar elastic rod. One end of the rod is at the origin, and the other end is required
to be somewhere on the positive z-axis. The direction of the tangent vector to the rod at each point
is measured by the angle θ, which is required to be zero at both ends. A load of size λ is imposed on
the top of the rod. In addition to elastic forces, each point on the rod experiences a repulsive force
f from every other point on the rod (mollified so as to cause f → 0 as s2 → s1).

4. Example: planar elastic rod subject to self-repulsion.

4.1. Variational Formulation. Consider the following model for the elastic en-
ergy of a planar elastic rod subject to a vertical endload λ and self-repulsion described
by a potential function f (see Fig. 4.1):

J =
∫ 1

0

{
K

2
(θ′(s)− θ̂′(s))2 + λ cos θ(s) +

∫ 1

0

f(|s− t|, |r(s)− r(t)|)dt
}
ds, (4.1)

Here, the position r = (x, z) of the rod in the xz-plane is described as a function of an
arclength parameter s, with units chosen so the total arclength is one. The function
θ(s) is the tilt angle of the tangent vector to the rod, i.e.,

dr
ds

= d3(θ) ≡ (sin θ, cos θ), (4.2)
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(we use the notation d3 to be consistent with a standard formulation of a three-
dimensional elastic rod, where (4.2) is an inextensibility-unshearability constraint
relating the tangent vector of the centerline to the normal vector of the rod cross-
section). This relationship implies that r can be determined from θ, via

r(s) =
∫ s

0

d3(θ(w))dw, (4.3)

so that J is in fact a functional of only θ(s).
The first term in (4.1) describes bending energy, with a “stiffness” parameter K

and a known function θ̂(s) that describes the intrinsic shape of the rod. Thus, we are
assuming linear elasticity, or a quadratic energy dependence on θ′ − θ̂′, but the index
theory and numerical computations could easily be adapted for more general elasticity
assumptions. In our examples, we will assume the rod is intrinsically straight, so that
θ̂ ≡ 0, although in fact our intermediate computations will use nonzero θ̂ as a mech-
anism for breaking symmetry in order to access branches of buckled configurations.

The second term represents the gravitational potential energy of the endload,
because we have cos θ(s) = z′(s) by (4.2), so that the integral of λ cos(θ(s)) equals
λ[z(1)− z(0)], the endload (in weight units) times its height.

The third term in (4.1) represents repulsion between each pair of points on the
rod, with potential energy density f . Although the specific form of f is not partic-
ularly important to the theory, or the computation, the examples in this paper were
computed with

f(χ, η) =

(
χe7χ

2

1 + χe7χ2

)4
a

η
,

i.e., a repulsive energy potential inversely proportional to separation distance (recall
that η denotes |r(s) − r(t)| within the functional J), with proportionality constant
a, and a “mollifier” (the first term) designed to make the repulsive energy between
points at arclength s and t be close to zero for s ≈ t. The term in parentheses is
approximately χ for χ ≈ 0 (i.e., s ≈ t, since χ = |s − t| will be plugged into f), and
is approximately 1 for larger χ (i.e., for points s and t separated along the rod); see
Fig. 4.2. This is raised to the fourth power, in order to dominate the power on η in
the denominator as η → 0 even when two η derivatives are taken within the second
variation of J .

We impose the boundary conditions that the rod has one end clamped at the
origin and the other end allowed to slide along the z-axis:

θ(0) = θ(1) = 0, r(0) = (0, 0), r(1) = (0, ∗). (4.4)

Translating into constraints on θ only, the constraints on r can be reduced to the
single integral constraint

∫ 1

0
sin(θ(s))ds = 0, since sin(θ(s)) = x′(s), and we need

x(1)− x(0) = 0.
Thus, we would like to minimize the functional (4.1) (with r(s) replaced by∫ s

0
d3(θ(w))dw), over all functions θ(s) satisfying the boundary conditions θ(0) =

θ(1) = 0 and the integral constraint
∫ 1

0
sin(θ(s)) ds = 0. In the next section we will

derive the equilibrium equations for a critical point and describe an algorithm for
computing their solution. Sec. 4.4 will describe how the theory in Sec. 2 can be used
to compute the index for each critical point.
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Fig. 4.2. A graph of the mollifier function

„
χe7χ2

1+χe7χ2

«4

; this multiplies the one-over-distance

term in the repulsive energy potential f that appears in (4.1). The expression |s− t| is plugged in for
χ within the potential; hence, a value of χ ≈ 0 represents a pair of points on the rod that are very
close in arclength, while a larger value of χ represents a pair of points that are distant in arclength.

4.2. The First Variation and Equilibrium Equations.

4.2.1. Derivation. In this section, we derive the first variation of J and set
δJ = 0 to obtain the equilibrium equations. We substitute θ(s) + h(s) into (4.1),
recalling that r(s) is related to θ(s) via (4.3), and collect the first-order terms in h:

δJ [h] =
∫ 1

0

[
K[θ′(s)− θ̂′(s)]h′(s)− λ sin(θ(s))h(s)

]
ds (4.5)

+
∫ 1

0

∫ 1

0

fη(|s− t|, |r(s)− r(t)|)
|r(s)− r(t)|

(r(s)− r(t))T
∫ s

t

h(w)(d3)θ(θ(w))dw dt ds,

where the θ and η subscripts indicate differentiation. Similarly, we substitute into the
boundary conditions (4.4) and the integral constraint in order to find the “linearized”
boundary conditions and constraints to be applied to h:

h(0) = h(1) = 0,
∫ 1

0

cos(θ(s))h(s)ds = 0. (4.6)

Next, we write δJ [h] as an L2 inner product δJ [h] = 〈h,X〉 for some function X,
using the following lemma.

Lemma 4.1. If G(s, t), H(s) are vector functions and G(t, s) = −G(s, t) for all
s, t, then∫ 1

0

∫ 1

0

∫ s

t

G(s, t)TH(w)dwdtds = 2
∫ 1

0

∫ 1

s

∫ 1

0

G(w, t)TH(s)dtdwds

Proof. Let I be the left-hand side and swap the inner two integrals:

I =
∫ 1

0

∫ s

0

∫ w

0

G(s, t)TH(w)dtdwds−
∫ 1

0

∫ 1

s

∫ 1

w

G(s, t)TH(w)dtdwds.
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Next we swap the outer two integrals and then switch the dummy variable names s
and w:

I =
∫ 1

0

∫ 1

s

∫ s

0

G(w, t)TH(s)dtdwds−
∫ 1

0

∫ s

0

∫ 1

s

G(w, t)TH(s)dtdwds.

Next, we note that the (w, t) integration regions of these two integrals are mirror
images with respect to the 45-degree line, and thus, since G is antisymmetric, the two
integrals are in fact opposites, so that

I = 2
∫ 1

0

∫ 1

s

∫ s

0

G(w, t)TH(s)dtdwds.

Finally, since the integrand is antisymmetric with respect to swapping t and w, its
integral over the region

∫ 1

0

∫ 1

s

∫ 1

s
dt dw ds is zero, since that region is symmetric with

respect to swapping t and w. We add this zero integral to I to arrive at the desired
final form.

Now, we integrate the first term of (4.5) by parts and apply Lemma 4.1 to the second
term, with G(s, t) = fη(|s−t|,|r(s)−r(t)|)

|r(s)−r(t)| (r(s)− r(t)) and H(w) = h(w)(d3)θ(θ(w)):

δJ [h] =
∫ 1

0

[
−K[θ′′(s)− θ̂′′(s)]h(s)− λ sin θ(s)h(s)

]
ds

+2
∫ 1

0

∫ 1

s

∫ 1

0

h(s)
fη(|w − t|, |r(w)− r(t)|)

|r(w)− r(t)|
(r(w)− r(t))T (d3)θ(θ(s))dt dw ds

Then, δJ [h] = 〈h,X〉, where

X(s) ≡ −K[θ′′(s)− θ̂′′(s)]− λ sin θ(s)

+ 2
∫ 1

s

∫ 1

0

fη(|w − t|, |r(w)− r(t)|)
|r(w)− r(t)|

(r(w)− r(t))T (d3)θ(θ(s))dt dw.

A critical point is defined by the condition that δJ [h] = 0 for all h satisfying (4.6), so
that 〈h,X〉 = 0 for all h with 〈h, cos θ〉 = 0. Thus, X is a multiple of cos θ, so that

0 = −K[θ′′(s)− θ̂′′(s)]− λ sin θ(s)− µ cos θ(s)

+ 2
∫ 1

s

∫ 1

0

fη(|w − t|, |r(w)− r(t)|)
|r(w)− r(t)|

(r(w)− r(t))T (d3)θ(θ(s))dt dw.
(4.7)

If we define

n(s) ≡ 2
∫ 1

s

∫ 1

0

fη(|w − t|, |r(w)− r(t)|)
|r(w)− r(t)|

(r(w)− r(t))dt dw +
[
−µ
λ

]
,

then our equilibrium equations are:

n(s)T (d3)θ(θ(s)) = K[θ′′ − θ̂′′],

n′(s) = −2
∫ 1

0

fη(|s− t|, |r(s)− r(t)|) r(s)− r(t)
|r(s)− r(t)|

dt, (4.8)

r′(s) = d3(θ(s)),

subject to the boundary conditions θ(0) = 0, θ(1) = 0, x(0) = 0, x(1) = 0, z(0) = 0,
and nz(1) = λ (which follows from the definition of n; note that we don’t consider
the condition nx(1) = −µ as a boundary condition, since µ is an unknown constant).
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4.2.2. Computing Critical Points. The equilibrium equations (4.9) are a set
of integro-differential equations that can be solved using a standard finite difference
method. Subdivide [0, 1] into N equal pieces of length ∆s = 1

N and let zi be our
approximation for the value of z( iN ). The approximation of the equilibrium equations
at s = i

N is:

nTi (d3)θ(θi) = K
θi+1 − 2θi + θi−1

(∆s)2
−Kθ̂′′(i/n), i = 1, . . . , N − 1

ni − ni−1

∆s
= −2

N−1∑
j=0,j 6=i

[
fη

(∣∣∣∣ iN − j

N

∣∣∣∣ , |ri − rj |
)

ri − rj
|ri − rj |

]
∆s
2

− 2
N−1∑

j=0,j 6=i−1

[
fη

(∣∣∣∣ iN − j + 1
N

∣∣∣∣ , |ri − rj+1|
)

ri − rj+1

|ri − rj+1|

]
∆s
2
, i = 1, . . . , N,

ri − ri−1

∆s
= d3(θi), i = 1, . . . , N,

(4.9)

where the integral has been approximated using a trapezoid rule. There are 5N − 1
unknowns, namely θ1, . . . θN−1, r1, . . . , rN−1, zN , n0, . . . ,nN−1, and (nx)N to be
determined from the 5N − 1 equations in (4.9). The remaining variables θ0, θN , r0,
xN , and (nz)N are known from the boundary conditions.

The system of equations (4.9) were solved via parameter continuation in λ using
the Trilinos package [10] (http://trilinos.sandia.gov), using the NOX package
[19] to solve the nonlinear system and LOCA [21] to control the parameter continua-
tion. See Sec. 4.5 for further details.

4.3. The Second Variation. To assign an index to each critical point, the
second variation is computed and expressed as a quadratic form. We have previously
shown in [17] how the general theory presented in Sec. 2 implies that the presence
of an isoperimetric constraint (here

∫ 1

0
sin(θ(s))ds = 0) leads to the inclusion of a

familiar Lagrange multiplier term in the second variation: we replace the functional
J from (4.1) by J∗ ≡ J − µ

∫ 1

0
sin θ(s)ds for some constant µ and then apply the

standard conjugate point theory to δ2J∗ (cf. [11, p. 85]).
We substitute θ + h into the functional J∗ and collect the terms of second-order

in h. After an integration by parts, we find:

δ2J∗[h] =
1
2

∫ 1

0

h(s)(−Kh′′(s)− λ cos θ(s)h(s) + µ sin θ(s)h(s))ds+R[h], (4.10)

where R[h] is the piece coming from the repulsive potential term:

R[h] =
1
2

∫ 1

0

∫ 1

0

{(∫ s

t

(d3)θ(τ)h(τ)dτ
)T

M(s, t)
(∫ s

t

(d3)θ(κ)h(κ)dκ
)

+
∫ s

t

[
fη(|s− t|, |x|)x

T

|x|

]
h(w)2(d3)θθ(w)dw

}
dtds,

for x ≡ r(s)− r(t) and the 2 × 2 matrix function M defined by

M(s, t) ≡
[
fηη(|s− t|, |x|)xxT

|x|2
+ fη(|s− t|, |x|) I

|x|
− fη(|s− t|, |x|)xxT

|x|3

]
. (4.11)
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We note that h lies in the space of admissible variations defined by the linearized
boundary conditions and isoperimetric constraint:

Ã([0, 1]) ≡
{
h ∈ C2(0, 1) : h(0) = h(1) = 0,

∫ 1

0

cos(θ(s))h(s) ds = 0
}
. (4.12)

Applying Lemma 4.1 to the second half ofR[h] with G(s, t) = fη(|s−t|,|r(s)−r(t)|)
|r(s)−r(t)| (r(s)−

r(t)) and H(w) = h(w)2(d3)θθ(θ(w), we find:

R[h] =
∫ 1

0

∫ 1

s

∫ 1

0

[
fη(|w − t|, |r(w)− r(t)|) (r(w)− r(t))T

|r(w)− r(t)|

]
h(s)2(d3)θθ(s)dtdwds+ Z.

where

Z ≡ 1
2

∫ 1

0

∫ 1

0

∫ s

t

∫ s

t

h(τ)h(κ)(d3)θ(τ)TM(s, t)(d3)θ(κ)dτdκdtds.

Inserting this into (4.10), and recalling the definition of n:

δ2J∗[h] =
1
2

∫ 1

0

h(s)
(
−Kh′′(s) + n(s)T (d3)θθ(θ(s))h(s)

)
ds+ Z.

Given a critical point (n, θ, r), we give a label to the “Lagrange multiplier” term in
δ2J∗:

L(s) ≡ n(s)T (d3)θθ(θ(s)).

It will be convenient to write the term Z in a slightly different form. First, using
the symmetry M(s, t) = M(t, s), we can restrict the integration range of the outer
two integrals from the unit square to the triangle 0 ≤ t ≤ s ≤ 1, and double the
result, canceling the leading factor of 1/2:

Z =
∫ 1

0

∫ s

0

∫ s

t

∫ s

t

h(τ)h(κ)(d3)θ(τ)TM(s, t)(d3)θ(κ)dτdκdtds.

Now we reorder the integrals as dt ds dτ dκ:

Z =
∫ 1

0

∫ 1

0

∫ 1

max(τ,κ)

∫ min(τ,κ)

0

h(τ)h(κ)(d3)θ(τ)TM(s, t)(d3)θ(κ)dtdsdτdκ.

We briefly justify the new limits of integration. First, the variables (τ, κ) can take on
any values in the unit square, since any given values τ, κ are between t and s if t = 0
and s = 1. Then, for a given (τ, κ), the variable s can take on any value between
max(τ, κ) and 1 because we can, for example, have t = 0, and then both τ and κ
will be between t and s, but s can not be below max(τ, κ), since then either τ or
κ (or both) will not be between s and any t ≤ s. Finally, for given values (τ, κ, s),
the variable t can take on any value between 0 and min(τ, κ) since then (τ, κ) will be
between t and s, but t cannot be above min(τ, κ) since then either τ or κ (or both)
will not be between t and s. Thus,

Z =
1
2

∫ 1

0

h(τ)
(∫ 1

0

B(κ, τ)h(κ)dκ
)
dτ,
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where

B(κ, τ) ≡ 2(d3)θ(θ(τ))T
(∫ 1

max(τ,κ)

∫ min(τ,κ)

0

M(s, t)dtds
)

(d3)θ(θ(κ)).

Combining the two pieces, the second variation becomes:

δ2J∗[h] =
1
2

∫ 1

0

h(τ)
[
−Kh′′(τ) + L(τ)h(τ) +

∫ 1

0

B(κ, τ)h(κ)dκ
]
dτ,

where the integration variable s in the non-potential term has been renamed to τ , to
combine with Z.

Thus, the second variation can be written as a quadratic form

δ2J∗[h] =
1
2
〈h,Oh〉,

where the operator O is defined by

Oh(τ) ≡ Sh(τ) + Ih(τ), (4.13)

where

Sh(τ) ≡ −Kh′′(τ) + L(τ)h(τ)

is the differential piece (which would be the entire second-variation operator in the
absence of the repulsive potential) and

Ih(τ) ≡
∫ 1

0

B(κ, τ)h(κ)dκ

is the piece corresponding to the potential.

4.4. Determining the Index. In this section, we use the theory developed in
Sec. 2 to compute an index for each critical point. We first embed the operator O in a
particular family Oσ and establish a few properties of Oσ, and also of its contact piece
Iσ. After introducing a projection operator to accommodate the integral constraint∫ 1

0
sin θds = 0, we find the relevant definition of conjugate point for the planar rod

problem as involving a projected variant of Oσ, for which we address assumptions
A1−A4 using the properties of Oσ and Iσ proved earlier. We conclude by presenting
algorithms for finding conjugate points and for determining the sign of the crossing
velocity associated to each conjugate point.

4.4.1. Defining a family of eigenvalue problems. This problem has two
additions to the classical theory sketched in Sec. 3: the contact potential term and the
integral constraint. We will deal first with the contact potential term, by considering
the family of Dirichlet spaces

C2
d([0, σ]) ≡

{
h ∈ C2(0, σ) : h(0) = h(σ) = 0

}
(these were the spaces Ã([0, σ]) in Sec. 3, but here they are just an intermediate step),
and the family of eigenvalue problems

Oσζ = ρ(σ)ζ on C2
d([0, σ]) (4.14)
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for

Oσh(τ) ≡ Sh(τ) + Iσh(τ), (4.15)

where

Iσh(τ) ≡
∫ σ

0

Bσ(κ, τ)h(κ)dκ,

for

Bσ(κ, τ) ≡ 2(d3)θ(θ(τ))T
(∫ σ

max(τ,κ)

∫ min(τ,κ)

0

M(s, t)dtds
)

(d3)θ(θ(κ)).

In other words, the differential operator piece of O is left untouched, while the
upper limits of the relevant integrals in the integral piece are changed from 1 to σ.

We will establish a few properties of the spectra for the family (4.14) of eigenvalue
problems. First, by rescaling the independent variable, we can rewrite (4.14) so it
involves a common space:

Oσζ = ρ(σ)ζ on C2
d([0, 1])

for

Oσh(τ) = − 1
σ2
h′′(τ) +Wσh(τ) + Iσh(τ),

where

Iσh(τ) ≡
∫ 1

0

Bσ(σκ, στ)h(κ)dκ, Wσh(τ) ≡ L(στ)h(τ).

We define

Vσh(τ) ≡ − 1
σ2
h′′(τ) +Wσh(τ)

4.4.2. Properties of Iσ and Oσ. Since Oσ is equal to the sum of the Sturm-
Liouville operator Vσ (which is known to obey these assumptions, as shown in Sec. 3)
and the integral operator Iσ, we first establish some properties of Iσ.

Lemma 4.2. The operator Iσ : L2([0, 1]) → L2([0, 1]) is symmetric.
Proof. Defining the shorthand Π(s) ≡ (d3)θ(θ(σs)), θm ≡ min(στ, σκ) and θM ≡

max(στ, σκ), we have

〈h1, Iσh2〉 = 2
∫ 1

0

∫ 1

0

∫ σ

θM

∫ θm

0

h1(τ)Π(τ)TM(s, t)Π(κ)h2(κ)dt ds dκ dτ

The integrand is a scalar, so it is equal to its transpose:

〈h1, Iσh2〉 = 2
∫ 1

0

∫ 1

0

∫ σ

θM

∫ θm

0

h2(κ)Π(κ)TM(s, t)Π(τ)h1(τ)dt ds dκ dτ

where we have used the fact that M is a symmetric matrix. Swapping the outer two
integrals, and then renaming κ to τ and vice versa, we find:

〈h1, Iσh2〉 = 2
∫ 1

0

∫ 1

0

∫ σ

θM

∫ θm

0

h2(τ)Π(τ)TM(s, t)Π(κ)h1(κ)dt ds dκ dτ = 〈h2, Iσh1〉.
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Lemma 4.3. The operator Iσ : L2([0, 1]) → L2([0, 1]) is bounded with ‖Iσ‖ ≤
8σ2β.

Proof. First we recall that the mollifier included in the potential function f was
chosen so that M(s, t) → 0 as s→ t. Therefore, M is continuous on the compact set
[0, 1]× [0, 1], which means there will be a constant β so that each of the four entries
of the matrix M(s, t) is less than or equal to β for all s, t ∈ [0, 1]. Intuitively, the
critical point r0 will have a “distance of closest approach” that minimizes |r(s)−r(t)|
for a pair of points on the rod where s, t are not close in arclength, say, |s− t| > 0.1
(see [13, Lemma 2] for an estimate of the distance of closest approach). Choosing |x|
equal to this distance of closest approach provides an upper bound for the quantities
fηη/|x|2, fη/|x|, and fη/|x|3 that comprise M.

Since the entries of (d3)θθ are bounded by 1 (they are either cos θ or sin θ), we
can see immediately that |Bσ(σκ, στ)| ≤ 8σ2β. Now,

‖Iσh‖2 =
∫ 1

0

∣∣∣∣∫ 1

0

Bσ(σκ, στ)h(κ)dκ
∣∣∣∣2 dτ ≤ ∫ 1

0

‖Bσ(·, στ)‖2‖h‖2dτ

by Hölder’s Inequality. Since |Bσ(σκ, στ)| ≤ 8σ2β, we have:

‖Iσh‖2 ≤
∫ 1

0

(
8σ2β‖h‖

)2
dτ = 64σ4β2‖h‖2,

or ‖Iσh‖ ≤ 8σ2β‖h‖, completing the proof.
Theorem 4.4. The spectrum of Oσ consists of a discrete set of eigenvalues

ρ1(σ) ≤ ρ2(σ) ≤ · · · . Furthermore, for σ sufficiently close to zero, ρ1(σ) > 0.
Proof. We know that Vσ is a self-adjoint Sturm-Liouville operator obeying Leg-

endre’s strengthened condition, so its spectrum consists of a discrete set of isolated
eigenvalues. The operator Oσ is a perturbation of Vσ by the bounded symmetric
operator Iσ, and is therefore self-adjoint, and every element in the spectrum of Oσ
is within ‖Iσ‖ of every element in the spectrum of Vσ [14, p. 291]. Furthermore,
since Iσ is a compact operator [14, p. 157, Ex. 4.1] and the essential spectrum of
Vσ is empty, so must be the spectrum of Oσ [1, p. 207]. Therefore, the spectrum of
Oσ must, like that of Vσ, be bounded below and have no accumulation points, and
therefore consists of eigenvalues ρ1(σ) ≤ ρ2(σ) ≤ · · · .

As noted in Sec. 3, we know by standard Sturm-Liouville theory that the eigen-
values of Vσ are positive and bounded away from zero for σ > 0 small, i.e., there
exists ε, δ > 0 so that ρj(σ) > ε for all σ ∈ (0, δ). That the same property holds for
Oσ, which is Vσ perturbed by Iσ, follows from a continuity argument as follows: the
spectrum can change by at most ‖Iσ‖ [14, p. 291], and by Lemma 4.3, ‖Iσ‖ ≤ 8σ2β,
so therefore the eigenvalues of Oσ are all positive for σ small (e.g., choose σ small
enough that 8σ2β < ε).

4.4.3. Incorporating the integral constraint. Next we follow the method-
ology described in [17] to account for the presence of an isoperimetric constraint∫ 1

0
sin(θ(s))ds = 0. As described above, the space of allowed variations is

Ã([0, 1]) = {h ∈ C2
d([0, 1]) :

∫ 1

0

T (s)h(s)ds = 0},
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where

T (s) ≡ cos(θ(s)),

and for each h ∈ Ã([0, 1]), we have δ2J∗[h] = 1
2 〈h,Oh〉. (For the remainder of this

section, we use this as the definition of Ã rather than the previous definition in Sec. 3.)
However, to use the conjugate point theory outlined here, we may not use O as our
second variation operator, because the range of O contains functions that are not in
Ã([0, 1]) (since they do not satisfy the linearized integral constraint). To remedy this,
we define Q to be the (self-adjoint) orthogonal projection that maps L2([0, 1]) onto
the orthogonal complement within L2([0, 1]) of the function T . Since all h ∈ Ã([0, 1])
are orthogonal to T , we have Qh = h, so that the second variation can be trivially
rewritten as

δ2J∗[h] =
1
2
〈Qh,OQh〉 =

1
2
〈h, (QOQ)h〉

Thus, we can take the operator QOQ as our second variation operator, and if we
define W to be the orthogonal complement of T in L2([0, 1]), then W contains the
range of QOQ, and Ã([0, 1]) is dense in W, as required by our theory.

Next we need to embed the operatorQOQ and space Ã([0, 1]) within a σ-dependent
family, and thus we define Qσ to be the (self-adjoint) orthogonal projection that maps
L2([0, σ]) onto the orthogonal complement within L2([0, σ]) of the function

Tσ(s) ≡ cos(θ(s/σ)).

Now we consider the operators QσOσQσ and the eigenvalue problem QσOσQσh =
ρ(σ)h on the family of spaces

Ã([0, σ]) ≡ {h ∈ C2
d([0, σ]) :

∫ σ

0

h(s)Tσ(s)ds = 0}

4.4.4. Assumptions A1−A4. We will now address assumptions A1-A4 for
this family of eigenvalue problems, building on the properties proven above about the
eigenvalue problem for Oσ on C2

d([0, σ]). As discussed at the end of Sec. 2, we will
not prove A3 or the isolation of the eigenvalues in A1, since the perturbations of the
Sturm-Liouville operator could, in principle, lead to the violation of these conditions,
although not for a generic perturbation. We will address how such violations would
be detected in the numerics (and no such evidence was seen).

First we note that our choice of Qσ implies that if we rescale the independent
variable to live on [0, 1] rather than [0, σ], then we have the family of eigenvalue
problems of the operator QOσQ on the common space Ã([0, 1]).

Since we showed in Thm. 4.4 that Oσ has no essential spectrum on C2
d([0, 1]),

the same follows for QOσQ on Ã([0, 1]) [17, p. 3067]. Thus the spectrum of QOσQ
on Ã([0, 1]) consists of a discrete set of eigenvalues ρ1(σ) ≤ ρ2(σ) ≤ · · · (we know
they are bounded below since the set of values of 〈h,QOσQh〉 for h ∈ Ã([0, 1]) is
a subset of the set of the values of 〈h,Oσh〉 for h ∈ C2

d([0, 1]). This verifies most
of assumption A1, but not entirely, in that this argument can not show that the
eigenvalues are simple. Indeed, for some Iσ, it may happen that some pair of isolated
eigenvalues of the original operator −(1/σ2)(d2/dτ2) may perturb to the same value
in the spectrum of Oσ. We will assume that this does not happen in our application.
For an arbitrarily chosen critical point, the probability of such a multiple eigenvalue
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occurring should be zero. Furthermore, the existence of a non-simple eigenvalue would
only really interfere with our index theory if it happened to a zero eigenvalue (an even
more unlikely event), since that would cause us to miscount the number of eigenvalues
changing sign at a conjugate point.

In a similar vein, we are not able to prove that assumption A3 holds for our
application. Recall that for the classic calculus of variations problem in Sec. 3, the
eigenvalues ρi were decreasing functions of σ, and thus the same property holds for the
eigenvalues of Vσ. However, upon perturbation by Iσ, the eigenvalues can in principle
have turning points as σ varies, and thus the same might in principle be true for the
projected operator QOσQ. Indeed, this is an important realization that enables the
extension of the classic conjugate point test to the more general index theory sketched
in Sec. 2. We will assume that none of these turning points occurs at a zero eigenvalue.
Again, among generic perturbations and choices of critical point, the existence of a
turning point at a zero eigenvalue should be a probability-zero event.

Our numerical implementation should detect at least some of the non-generic
violations of A1 or A3, in ways that we outline in Sec. 4.4.5, and we saw no evidence
of such violations.

Next, we verify assumption A4. Thm. 4.4 shows that, for σ sufficiently small,
the lowest eigenvalue of Oσ on C2

d([0, 1]) is positive. This implies that, for all h ∈
C2
d([0, 1]), we have 〈h,Oσh〉 > 0. Now let h1 ∈ Ã([0, 1]) ⊂ C2

d([0, 1]) be the eigenvector
of QOσQ corresponding to the smallest eigenvalue, i.e., QOσQh1 = ρ1(σ)h1. Then,
exploiting the fact that Qh1 = h1,

ρ1(σ) = 〈h1,QOσQh1〉 = 〈Qh1,OσQh1〉 = 〈h1,Oσh1〉 > 0.

In preparation for verifying A2, we prove two lemmas relating to the continuity
of the operators Iσ and Wσ with respect to σ.

Lemma 4.5. There exist constants γ, α so that for 0 ≤ σ ≤ σ∗ ≤ 1, we have

‖Wσ∗ −Wσ‖ ≤ γ(σ∗ − σ), ‖Iσ∗ − Iσ‖ ≤ α(σ∗ − σ).

Proof. The first claim follows easily from the fact that the function L(s) is differ-
entiable, hence Lipschitz. By definition, for any h ∈ L2([0, 1]),∣∣Iσ∗h(τ)− Iσh(τ)∣∣ = ∣∣∣∣∫ 1

0

[Bσ∗(σ∗κ, σ∗τ)−Bσ(σκ, στ)]h(κ)dκ
∣∣∣∣

≤
∫ 1

0

(|Bσ∗(σ∗κ, σ∗τ)−Bσ∗(σκ, στ)|+ |Bσ∗(σκ, στ)−Bσ(σκ, στ)|) |h(κ)|dκ

≤
(∫ 1

0

(|Bσ∗(σ∗κ, σ∗τ)−Bσ∗(σκ, στ)|+ |Bσ∗(σκ, στ)−Bσ(σκ, στ)|)2 dκ
)1/2

‖h‖

(the last step is Hölder’s Inequality). From the definition of Bσ, we have:

|Bσ∗(σκ, στ)−Bσ(σκ, στ)| =

∣∣∣∣∣2(d3)θ(θ(στ))T
(∫ σ∗

σ

∫ min(στ,σκ)

0

M(s, t)dtds
)

(d3)θ(θ(σκ))

∣∣∣∣∣ .
Repeating the bounding argument used in the proof of Lemma 4.3, but adjusting
for the fact that the rectangle of integration in the double integral above has area
bounded by σ∗ − σ, we find:

|Bσ∗(σκ, στ)−Bσ(σκ, στ)| ≤ 8β(σ∗ − σ).
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For the other term, we find Lipschitz bounds (uniform in σ) for Bσ(κ, τ) as a
function of κ and τ (in [0, σ]). For example, for κ < τ , we have

∂Bσ
∂κ

= 2 [(d3)θ(θ(τ)]
T

[∫ σ

τ

∫ κ

0

M(s, t) dt ds
]

(d3)θθ(θ(κ))θ′(κ)

+2 [(d3)θ(θ(τ)]
T

[∫ σ

τ

M(s, κ)ds
]

(d3)θ(θ(κ)).

Since the entries of M are all between −β and β, and the entries of (d3)θ and (d3)θθ
are between −1 and 1, we have ∣∣∣∣∂Bσ∂κ

∣∣∣∣ ≤ 8βα1 + 8β

where α1 = sups∈[0,1] |θ′(s)|. Therefore, for any κ1, κ2 ∈ [0, τ ], we have by the Mean
Value Theorem that

|Bσ(κ2, τ)−Bσ(κ1, τ)| ≤ 8β(α1 + 1)|κ2 − κ1|.

Repeating this argument for κ > τ , we find the same Lipschitz bound for κ1, κ2 ∈ [τ, 1]
(the partial derivative is different but has the same bound). Finally, if κ1 < τ < κ2,
we have

|Bσ(κ2, τ)−Bσ(κ1, τ)| ≤ |Bσ(κ2, τ)−Bσ(τ, τ)|+ |Bσ(τ, τ)−Bσ(κ1, τ)|
≤ 8β(α1 + 1)(κ2 − τ) + 8β(α1 + 1)(τ − κ1)
= 8β(α1 + 1)(κ2 − κ1).

Thus 8β(α1 + 1) is a Lipschitz bound for Bσ as a function of κ (and an analogous
argument gives the same Lipschitz bound for Bσ as a function of τ). Therefore,

|Bσ∗(σ∗κ, σ∗τ)−Bσ∗(σκ, στ)| ≤ 8β(α1 + 1)(σ∗κ− σκ) + 8β(α1 + 1)(σ∗τ − στ).

Therefore, combining the above results

∣∣Iσ∗h(τ)− Iσh(τ)∣∣ ≤ (∫ 1

0

(8β(α1 + 1)(κ+ τ)(σ∗ − σ) + 8β(σ∗ − σ))2 dκ
)1/2

‖h‖

= 8β(σ∗ − σ)
(∫ 1

0

((α1 + 1)(κ+ τ) + 1)2 dκ
)1/2

‖h‖

≤ 8β(2α1 + 3)(σ∗ − σ)‖h‖.

Therefore, by the definition of operator norm, ‖Iσ∗ −Iσ‖ ≤ 8β(2α1 + 3)|σ∗ − σ|.

Finally, we verify assumption A2, i.e., we prove that ρn is a continuous function
of σ. Suppose not, i.e., ρn is not continuous at some particular σ. Then there exists
ε > 0 and some sequence σj → σ such that |ρn(σj)−ρn(σ)| > ε for all j. In particular,
one (or possibly both) of the following two cases must hold:

• Case I: there exists a sequence σj → σ such that ρn(σj) > ρn(σ) + ε for all j.
• Case II: there exists a sequence σj → σ such that ρn(σj) < ρn(σ)− ε for all j.
We will rule out each case and thereby complete the proof. We will use three

fundamental properties of operators M with spectra of the type considered here:
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(A) If x is a unit vector in the span of the first n eigenvectors of M, then 〈x,Mx〉
is less than or equal to ρn, the nth smallest eigenvalue of M.

(B) If X is an n-dimensional subspace of the domain of M, then for some x ∈ X,
we have 〈x,Mx〉 ≥ ρn.

(C) If x is a unit vector orthogonal to the first n − 1 eigenvectors of M, then
〈x,Mx〉 ≥ ρn.

Property (A) follows by writing x as a linear combination of the first n eigenvec-
tors, and (C) follows similarly by writing x as a linear combination of eigenvectors
n and larger. Property (B) can be proven from the maximin characterization of
eigenvalues (see (4.16) below).

Ruling out Case I

Let h1, · · ·hn be unit eigenvectors corresponding to the smallest n eigenvalues
of QOσQ on Ã([0, 1]), and let x be any unit vector in Bn ≡ span{h1, · · · , hn}, i.e.,
x = c1h1 + · · ·+ cnhn where (c1)2 + · · ·+ (cn)2 = 1. Then (integrating by parts)

∣∣〈x,−d2x/ds2
〉∣∣ = |〈x′, x′〉| ≤

n∑
k=1

n∑
l=1

|ckcl〈h′k, h′l〉| ≤ n2 max
k,l=1,··· ,n

|〈h′k, h′l〉| .

Therefore, by Lemma 4.5,∣∣〈x,QOσj
Qx〉 − 〈x,QOσQx〉

∣∣ = ∣∣〈x,Oσj
x〉 − 〈x,Oσx〉

∣∣
≤
∣∣∣∣ 1
(σj)2

− 1
σ2

∣∣∣∣ ∣∣∣∣〈x,−d2x

ds2

〉∣∣∣∣
+
∣∣〈x, (Iσj

+Wσj
− Iσ −Wσ

)
x〉
∣∣

≤ n2 max
k,l=1,··· ,n

|〈h′k, h′l〉|
∣∣∣∣ 1
(σj)2

− 1
σ2

∣∣∣∣+ (α+ γ)|σj − σ|.

Therefore, since σj → σ, and the above bound goes to zero in that limit, we have
some natural number J so that for j ≥ J and all x ∈ Bn,

〈x,QOσj
Qx〉 < 〈x,QOσQx〉+ ε.

By property (A), 〈x,QOσQx〉 ≤ ρn(σ), and by property (B), for some x ∈ Bn, we
have 〈x,QOσjQx〉 ≥ ρn(σj). Combining these facts with the inequality above, we
find that ρn(σj) < ρn(σ) + ε for j ≥ J , which contradicts Case I.

Ruling out Case II

On the other hand, suppose that Case II holds. By the maximin characterization
of ρn(σj) [29, p. 24], we have

ρn(σj) = max
p1,··· ,pn−1

min
x
〈x,QOσj

Qx〉 (4.16)

where {p1, · · · , pn−1} ranges over all orthonormal sets in Ã([0, 1]) and x ranges over
all unit vectors in Ã([0, 1]) orthonormal to all the vectors pj . Thus, since Case II says
that ρn(σj) < ρn(σ) − ε for all j, it must be that for any choice of orthonormal set
{p1, · · · , pn−1}, we have, for all j,

min
x
〈x,QOσj

Qx〉 < ρn(σ)− ε.
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In particular, if we choose pj = hj , there exists some unit vector x orthogonal to all
of the first n− 1 eigenvectors of QOσQ so that

〈x,QOσj
Qx〉 < ρn(σ)− ε. (4.17)

Now, for this vector x, we have:∣∣〈x,QOσjQx〉 − 〈x,QOσQx〉
∣∣ = ∣∣〈x,Oσjx〉 − 〈x,Oσx〉

∣∣
≤
∣∣∣∣ 1
(σj)2

− 1
σ2

∣∣∣∣ ∣∣∣∣〈x,−d2x

ds2

〉∣∣∣∣
+
∣∣〈x, (Iσj +Wσj − Iσ −Wσ

)
x〉
∣∣

≤
∣∣∣∣〈x,−d2x

ds2

〉∣∣∣∣ ∣∣∣∣ 1
(σj)2

− 1
σ2

∣∣∣∣+ (α+ γ)|σj − σ|.

Therefore, since σj → σ, and the above bound goes to zero in that limit, we have
some natural number J so that for j ≥ J ,

〈x,QOσjQx〉 > 〈x,QOσQx〉 − ε.

But by property (C), 〈x,QOσQx〉 ≥ ρn(σ), so we have shown that for j ≥ J ,

〈x,QOσj
Qx〉 > ρn(σ)− ε, (4.18)

which contradicts the inequality (4.17). Thus, Case II is not possible.

4.4.5. Algorithm for finding conjugate points. The previous section de-
veloped the theoretical basis for using conjugate points as a means of determining
the index of a critical point. In this section, we discuss how to numerically compute
the number of conjugate points corresponding to each solution. Consider nontrivial
solutions to the conjugate point equation

QσOσQσh = 0, h(0) = h(σ) = 0, 〈h, Tσ〉 = 0, (4.19)

where 〈 , 〉 is the L2 inner product on [0, σ]. Since h is required to be orthogonal to
Tσ on [0, σ], we have Qσh = h. Also, since Qσ is the projection onto the orthogonal
complement of Tσ, the definition of projection allows (4.19) to be written in the form

(Sh)(τ) +
∫ σ

0

Bσ(κ, τ)h(κ)dκ = cTσ(τ), h(0) = h(σ) = 0, 〈h, Tσ〉 = 0, (4.20)

where c is any real number. To solve (4.20), we will solve both the homogeneous
system:

(Sh)(τ) +
∫ σ

0

Bσ(κ, τ)h(κ)dκ = 0, h(0) = 0, h′(0) = 1 (4.21)

(call this solution hhom), and the nonhomogeneous system:

(Sh)(τ) +
∫ σ

0

Bσ(κ, τ)h(κ)dκ = Tσ(τ), h(0) = 0, h′(0) = 0 (4.22)

(call this solution hnon). Then any solution h to (4.20) without the conditions h(σ) = 0
and 〈h, Tσ〉 = 0 is a linear combination c̆hhom + chnon where c is the constant from
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(4.20) and c̆ = h′(0). Then, the two conditions h(σ) = 0 and 〈h, Tσ〉 = 0 are enforced
by solving the linear system[

hhom(σ) hnon(σ)
〈hhom, Tσ〉 〈hnon, Tσ〉

] [
c̆
c

]
= 0, (4.23)

which means that the 2× 2 matrix must have determinant zero.
To numerically determine hhom and hnon given a numerical approximation to

a critical point (θ,n, r) computed on a uniform grid of [0, 1] with N subintervals,
we do the following. We run a loop of σ = k/N for k = 4 through N . For each
k, we determine a numerical approximation to hhom by discretizing (4.21) at k − 1
interior points of [0, k/N ], to find the unknowns h2 = hhom(2/N) through hk =
hhom(k/N), with hhom(0) = 0 and hhom(1/N) ≈ (hhom)′(0)/N = 1/N known from
the boundary conditions. The expression Sh = −Kh′′+[(n)T (d3)θθ(θ)]h is discretized
via a standard central difference. The integral

∫ k/N
0

Bσ(κ, τ)h(κ) dκ is discretized via
the trapezoid rule. This discretization of (4.21) yields k − 1 linear equations for the
k−1 unknowns h2, · · · , hk, and the last unknown is our computed value for the upper
left entry in the “stability matrix” in (4.23). The lower-left entry of this matrix is
computed by applying the trapezoid rule using the computed values h2, · · · , hk (and
the known values h0 and h1).

A similar procedure applied to (4.22) allows us to compute the upper right and
lower right entries of the stability matrix.

As k advances through the loop, whenever the determinant of the stability matrix
crosses zero, we have a conjugate point. We estimate the exact location σ of the
conjugate point via the secant method, and then compute the velocity of the zero
eigenvalue as described in the next section.

We pause to consider how violations of A3 or the simple eigenvalue portion of
A1 would be manifested in this numerical implementation. If two more more eigen-
values pass through zero at the same instant, then we should see numerical instability
in solving (4.21) or (4.22) (if either of these equations individually does not yield
a unique solution), or the matrix in (4.23) should become rank-zero (if more than
one combination of the solutions to (4.21) and (4.22) yields a conjugate point). If
an eigenvalue has a turning point at zero, then the computed velocity of the zero
eigenvalue should be close to zero. We saw none of these effects in our computations.

Especially with critical points for which contact is considerable, the determinant
of the stability matrix can become rapidly oscillatory close to σ = 1, which can make
it more difficult to detect zero crossings.2 This can be addressed by increasing N or
(more efficiently) by locally refining the grid of σ values where the stability matrix
is computed. The determinant of the stability matrix appears to obey the Sturm
separation theorem (zeroes of the determinant and its derivative alternate), so we
have found that refining the grid at apparent turning points in the determinant that
would violate the separation theorem is a successful strategy in finding all of the
conjugate points.

Some precomputation (before the σ loop has begun) allows for a more efficient
determination of the values of Bσ(κ, τ). First, we compute numerical estimates for

2We note that this rapid oscillation appears to be alleviated if we require h to be orthogonal
to the restriction of T to [0, σ] rather than to Tσ . This alternate choice for embedding the σ = 1
eigenvalue problem within a family may thus be preferable numerically. We have chosen the Tσ

embedding here because it seems to facilitate the verification of A2 (since we can rescale so that
all the eigenvalue problems occur on a common space) but we see no reason to doubt that A2 also
holds for the other choice.
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all values of

C1(s, χ) ≡ 2
∫ χ

0

M(s, t)dt

for 0 < χ ≤ s ≤ 1 with χ, s multiples of 1/N , and then use those to precompute
numerical estimates for all values of

C2(ψ, χ) ≡
∫ 1

ψ

C1(s, χ) ds

for 0 < χ ≤ ψ ≤ 1 with χ, ψ multiples of 1/N . Then, for any σ that is a multiple of
1/N , and for any i, j with i/N, j/N ≤ σ, the quantityBσ(j/N, i/N) can be determined
quickly via the formula

Bσ

(
j

N
,
i

N

)
=

(d3)θ

(
θ

(
i

N

))T [
C2

(
max(i, j)

N
,
min(i, j)

N

)
− C2

(
σ,

min(i, j)
N

)]
(d3)θ

(
θ

(
j

N

))
.

(4.24)

4.4.6. Crossing Velocity. Assume that there is a conjugate point, that is, a
value of σ such that ρ(σ) = 0. Since we assume that the crossing is transverse
(assumption A3), in a neighborhood of σ, ths eigenvalue will cross zero with either a
negative velocity or a positive velocity. Here we derive (via a perturbation argument)
a computation for determining the sign of this “crossing velocity”.

For each s ∈ (0, 1), we let ρj(s) be the eigenvalues of QsOsQs, with corresponding
normalized eigenfunction denoted as hj(·; s). We assume that σ is a conjugate point,
so that ρj(σ) = 0 for some j. We seek to determine the sign of ρj(σ − ε) for some
small ε > 0: if ρj(σ − ε) < 0, the conjugate point has positive-velocity; otherwise it
has negative-velocity.

We first note that, by the construction of Tσ, the function

χ(s) ≡ hj

(
σs

σ − ε
;σ
)

is an element of the domain Ã([0, σ− ε]), since it vanishes at s = 0 and s = σ− ε and
is orthogonal on [0, σ − ε] to Tσ−ε (as can be seen by rescaling s by σ − ε).

Claim: For ε sufficiently small, the sign of 〈χ,Oσ−εχ〉 (with the inner product on
[0, σ − ε]) is the same as the sign of ρj(σ − ε).

Proof.
Let χ̂ be the L2([0, σ− ε])-normalized scaling of χ; clearly the sign of 〈χ̂,Oσ−εχ̂〉

is the same as the sign of 〈χ,Oσ−εχ〉. Then, if we assume that the eigenfunctions,
like the eigenvalues, are continuous in σ, we must have

χ̂(s) =
√

1− b2 hj(s;σ − ε) + bhr(s),

where b = O(ε) and hr is a unit vector orthogonal to hj(·;σ − ε). Expanding hr in
the remaining eigenfunctions at σ − ε:

χ̂(s) =
√

1− b2 hj(s;σ − ε) + b
∑
i 6=j

cihi(s;σ − ε).
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Next we note that since 〈χ̂, Tσ−ε〉 = 0 on [0, σ − ε], we have Qσ−εχ̂ = χ̂, so that

〈χ̂,Oσ−εχ̂〉 = 〈χ̂,Qσ−εOσ−εQσ−εχ̂〉.

Then, since the hi are orthonormal eigenfunctions of Qσ−εOσ−εQσ−ε, a straightfor-
ward computation shows that:

〈χ̂,Oσ−εχ̂〉 = (1− b2)ρj(σ − ε) + b2
∑
i 6=j

(ci)2ρi(σ − ε).

Since b = O(ε) and ρj(σ − ε) = O(ε), the first term dominates the second term, so
that

〈χ̂,Oσ−εχ̂〉 = ρj(σ − ε) +O(ε2).

Since ρj(σ − ε) = O(ε), we can see that for ε sufficiently small, ρj(σ − ε) has the
same sign as 〈χ̂,Oσ−εχ̂〉, and hence the same sign as 〈χ,Oσ−εχ〉.

Finally, we derive an expression that is independent of ε and has the same sign as
the small-ε limit of 〈χ,Oσ−εχ〉, and that furthermore is convenient to compute given
the computational scheme described in the previous section. We have

〈χ,Oσ−εχ〉 =
∫ σ−ε

0

hj

(
σs

σ − ε
;σ
)[

− Kσ2

(σ − ε)2
h′′j

(
σs

σ − ε
;σ
)

+ L(s)hj

(
σs

σ − ε
;σ
)

+
∫ σ−ε

0

Bσ−ε(κ, s)hj

(
σκ

σ − ε
;σ
)
dκ

]
ds.

The change of variables τ ≡ σs/(σ − ε) in the outer integral yields:

〈χ,Oσ−εχ〉 =
σ − ε

σ

∫ σ

0

hj(τ ;σ)
[
− Kσ2

(σ − ε)2
h′′j (τ ;σ) + L

(
(σ − ε)τ

σ

)
hj(τ ;σ)

+
∫ σ−ε

0

Bσ−ε

(
κ,

(σ − ε)τ
σ

)
hj

(
σκ

σ − ε
;σ
)
dκ

]
dτ.

Since we are only concerned with the sign of 〈χ,Oσ−εχ〉, we will henceforth consider

E ≡
∫ σ

0

hj(τ ;σ)
[
− Kσ2

(σ − ε)2
h′′j (τ ;σ) + L

(
(σ − ε)τ

σ

)
hj(τ ;σ)

+
∫ σ−ε

0

Bσ−ε

(
κ,

(σ − ε)τ
σ

)
hj

(
σκ

σ − ε
;σ
)
dκ

]
dτ.

Now, we note that since 0 = ρj(σ) = 〈hj(·;σ),Oσhj(·;σ)〉, we have

0 =
∫ σ

0

hj(τ ;σ)
[
−Kh′′j (τ ;σ) + L(τ)hj(τ ;σ) +

∫ σ

0

Bσ(κ, τ)hj(κ;σ)dκ
]
dτ.

Thus,

E =
∫ σ

0

[
L

(
(σ − ε)τ

σ

)
− σ2

(σ − ε)2
L(τ)

]
(hj(τ ;σ))2 dτ

+
∫ σ

0

∫ σ−ε

0

Bσ−ε

(
κ,

(σ − ε)τ
σ

)
hj(τ ;σ)hj

(
σκ

σ − ε
;σ
)
dκdτ

−
∫ σ

0

∫ σ

0

σ2

(σ − ε)2
Bσ(κ, τ)hj(τ ;σ)hj(κ;σ)dκdτ.
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By Taylor expansion,

L

(
(σ − ε)τ

σ

)
− σ2

(σ − ε)2
L(τ) = −ετ

σ
L′(τ)− 2ε

σ
L(τ) +O(ε2)

In the first double integral, we change variables from κ to σκ/(σ − ε) (but still
calling it κ for convenient comparison to the second double integral) to find

σ − ε

σ

∫ σ

0

∫ σ

0

Bσ−ε

(
(σ − ε)κ

σ
,
(σ − ε)τ

σ

)
hj(τ ;σ)hj(κ;σ)dκdτ.

Now, if we expand the two double integrals in ε, the O(1) terms will cancel, so we
merely compute the O(ε) terms. For the first double integral, this O(ε) term is

− ε

σ

∫ σ

0

∫ σ

0

Bσ(κ, τ)hj(τ ;σ)hj(κ;σ)dκdτ − ε

∫ σ

0

∫ σ

0

∂Bσ
∂σ

(κ, τ)hj(τ ;σ)hj(κ;σ)dκ dτ

− ε

σ

∫ σ

0

∫ σ

0

ρ
∂Bσ
∂κ

(κ, τ)hj(τ ;σ)hj(κ;σ)dκ dτ − ε

σ

∫ σ

0

∫ σ

0

τ
∂Bσ
∂τ

(κ, τ)hj(τ ;σ)hj(κ;σ)dκ dτ,

(4.25)

while for the second double integral, the O(ε) term is

−2ε
σ

∫ σ

0

∫ σ

0

Bσ(κ, τ)hj(τ ;σ)hj(κ;σ)dκdτ.

Adding these together (and noting that the third and fourth integrals in (4.25) are
equal, since Bσ(κ, τ) = Bσ(τ, κ) for all τ, κ), we have:

E = −ε
(∫ σ

0

[
τ

σ
L′(τ) +

2
σ
L(τ)

]
(hj(τ ;σ))2 dτ

+
∫ σ

0

∫ σ

0

[
3
σ
Bσ(κ, τ) +

∂Bσ
∂σ

(κ, τ) +
2κ
σ

∂Bσ
∂κ

(κ, τ)
]
hj(τ ;σ)hj(κ;σ)dκdτ

)
+O(ε2).

Thus, in order to compute 〈χ,Oσ−εχ〉 correct to leading order in ε, we numerically
compute (via the trapezoid rule) the following integrals:∫ σ

0

L(τ) (hj(τ ;σ))2 dτ,
∫ σ

0

τL′(τ) (hj(τ ;σ))2 dτ,
∫ σ

0

∫ σ

0

Bσ(κ, τ)hj(κ;σ)hj(τ ;σ)dκdτ,∫ σ

0

∫ σ

0

∂Bσ
∂σ

(κ, τ)hj(κ;σ)hj(τ ;σ)dκdτ,
∫ σ

0

∫ σ

0

κ
∂Bσ
∂κ

(κ, τ)hj(κ;σ)hj(τ ;σ)dκdτ,

taking advantage of (4.24) to efficiently compute Bσ. Single-integral expressions for
∂Bσ/∂σ and ∂Bσ/∂κ can be computed from the definition of Bσ, and these single
integrals can be derived from the pre-computed values of C1 from Sec. 4.4.5 via a
formula analogous to (4.24). Similarly, it is straightforward to write down L′ in terms
of θ, n, θ′, and n′ (the latter two of which we estimate by finite difference).

4.5. Results. Using the methods described in the previous sections, families of
critical points were computed and an index assigned to each critical point. The results
are shown in Figs. 4.3, 4.4, and 4.5.

Each figure shows a bifurcation diagram of the loading force λ plotted against
the height z(1), with the solid lines corresponding to solutions for a given value
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Fig. 4.3. The bifurcation diagram of the planar elastic rod with repulsive force strength a = 2
(with a = 0 shown as a dashed line), plotting loading force λ and the rod height z(1) for a variety of
critical points. Some sample configurations are shown as insets. The index is indicated by grayscale.
The horizontal line at z(1) = 1 consists of straight configurations with varying amounts of loads.
Branches of buckled solutions emerge from this branch at a sequence of bifurcation points.

of the repulsive force strength parameter a and the dashed lines for “non-contact”
solutions with a = 0 (so that the rod is allowed to pass through itself with no penalty).
Representative shapes of the rod are shown as insets in Fig. 4.3. The index is depicted
by grayscale, as illustrated in the figure legends.

Each diagram contains a branch of straight-rod solutions (the horizontal line at
z(1) = 1), and two curves of buckled-rod solutions branching off at bifurcation points.
(There are an infinite number of such branches, but only the first two are shown.)
Each branch was computed by a three-stage parameter continuation. We start at
a value of λ somewhat before the bifurcation point in question, with an intrinsic
shape θ̂(s) = βs4/12 (the particular formula is not important) for a small value of
β > 0, and use the straight rod as the initial guess for the solution of the equilibrium
equations (4.9). The first stage of parameter continuation increases λ somewhat past
the bifurcation value, and, because of the presence of intrinsic shape, the computed
solutions track closely the desired bifurcating branch (if we had β = 0, we would
just stay on the branch of straight-rod solutions as λ increased). The second stage
decreases β to zero, turning off the intrinsic shape. The third stage decreases λ, so
that we backtrack to the bifurcation point and then “bounce” off it and compute the
entire branch of buckled solutions. (In truth, the bifurcation point is a pitchfork,
the two outer tines of which lie on top of each other in our chosen (λ, z(1)) diagram,
so we are not really bouncing but rather moving smoothly to the other half of the
pitchfork.)
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Fig. 4.4. The bifurcation diagram of the planar elastic rod with repulsive force strength a = 4
(with a = 0 shown as a dashed line), plotting loading force λ and the rod height z(1) for a variety
of critical points.

As one would expect from classical theory, the straight-rod solution is stable (has
index zero) to the first bifurcation point, then unstable, with the index increasing by
one at each bifurcation point.

The first bifurcating branch closely tracks the corresponding a = 0 branch, but
diverges from it for larger values of λ, with the divergence more pronounced for larger
values of a (since larger forces are required to counteract the larger repulsive force).
For both the contact and non-contact problems, this branch contains stable solutions.
(Actually, the non-contact branch dips below z(1) = 0 outside the region we have
graphed, and these configurations are unstable, with index one. The contact branch
does not cross z(1) = 0 since the repulsive force prevents the rod from passing through
itself.)

The second bifurcating branch begins with index-one solutions for both the con-
tact and non-contact problems. For small values of a (and for a = 0), this branch folds
and becomes index-two. Further on this branch, the repulsive force has a stabilizing
influence, causing a second fold that returns the index to one (while the non-contact
problem remains at index two). For a = 8, the repulsive force eliminates the first fold
altogether, so that the branch stays at index one.

These results can be partially verified using the independent idea of distinguished
diagrams, which predicts the change in index at a fold in the appropropiate bifurcation
diagram. In the next section, we verify that the (λ, z(1)) diagram is “distinguished”,
and that the change in index seen in the folds in Figs. 4.3 and 4.4 match this theory.

5. Distinguished Diagrams. A complementary method for determining sta-
bility is that of distinguished bifurcation diagrams, pioneered by Thompson [25] in
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Fig. 4.5. The bifurcation diagram of the planar elastic rod with repulsive force strength a = 2
(with a = 0 shown as a dashed line), plotting loading force λ and the rod height z(1) for a variety
of critical points.

finite dimensions, and by Maddocks [16] for calculus of variations problems. The
essential idea of distinguished diagrams is that certain projections of a bifurcation di-
agram allow one to determine how stability changes at a fold. Typically, the ordinate
of the distinguished diagram gives information regarding the sign of the derivative
of a specific eigenvalue that is zero at the fold, which, for example, indicates which
branch of the fold has a negative eigenvalue and hence does not correspond to minima
of the functional.

Previously, distinguished diagrams have been determined in several problems in-
volving the classic functional from Sec. 3, for problems with or without isoperimetric
constraints, and where the bifurcation parameter appears in the functional, in the
boundary conditions, or as a Lagrange multiplier [16, 12]. For the planar rod example
in Sec. 4, the distinguishing feature is the repulsion term that appears in the func-
tional. The following calculation shows that the distinguished diagram results that
appeared in [16] and [12] remain the same in the presence of this repulsive potential
(with the endload λ taken to be the bifurcation parameter).

Assume that we have a branch of critical points (n(s;ω), r(s, ω), θ(s;ω)) that sat-
isfy the Euler-Lagrange equations (4.7), plus the boundary conditions θ(0) = θ(1) = 0
and integral constraint

∫ 1

0
sin(θ(s))ds = 0, where ω is introduced to parametrize the

branch of solutions. As we have seen, at each value of ω, we are interested in the
eigenvalue problem

Sh+ Ih− cT = ρh (for some c), h(0) = h(1) = 0,
∫ 1

0

h(s)T (s) ds = 0, (5.1)
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and in particular in the number of negative eigenvalues ρ at that value of ω.
We want to determine how the eigenvalues ρ change as a fold (a point on the

branch of solutions where λ changes direction) is traversed. We begin by demonstrat-
ing that the eigenvalue problem (5.1) has a zero eigenvalue ρ = 0 at a fold. Differ-
entiating the Euler-Lagrange equations (4.7), the integral constraints, and boundary
conditions with respect to ω along the branch yields:

S θ̇ + I θ̇ − λ̇ sin θ − µ̇T = 0, θ̇(0) = 0, θ̇(1) = 0,
∫ 1

0

θ̇(s)T (s) ds = 0, (5.2)

where a dot over a variable indicates differentiation with respect to ω. At a fold
(assuming the branch is smooth), we have λ̇ = 0, and in this case, the set of equations
(5.2) is equivalent to the eigenvalue problem (5.1) having a zero eigenvalue ρ = 0
(with c = µ̇) with corresponding eigenvector θ̇.

Thus, at a fold, ρj = 0 for some j. Let hj(s;ω) be an eigenvector corresponding to
the jth smallest eigenvalue in (5.1). For each ω, we can write θ̇(s;ω) = α(ω)hj(s;ω)+
γ(s;ω) where γ is L2-orthogonal to hj . From above, we know that at the fold, γ ≡ 0.

Now we take the inner product of hj with the first equation in (5.2):

〈hj , (S + I)θ̇〉 − λ̇〈hj , sin θ〉 = 0,

where the µ̇ term vanishes since 〈hj , T 〉 = 0 for each ω. From (5.1), we know that
(S + I)hj = ρjhj + cT , and applying this to the equation above (and exploiting the
self-adjointness of S + I), we find:

〈ρjhj + cT, θ̇〉 − λ̇〈hj , sin θ〉 = 0,

Using the facts that 〈T, θ̇〉 = 0 for each ω and θ̇ = αhj + γ,

ρjα = λ̇〈hj , sin θ〉.

Next we differentiate this with respect to ω:

ρ̇jα+ ρjα̇ = λ̈〈hj , sin θ〉+ λ̇
d

dω
〈hj , sin θ〉.

Evaluating at the fold (where ρj = 0 and λ̇ = 0):

ρ̇jα = λ̈〈hj , sin θ〉.

Multiplying both sides by α and using the fact that αhj = θ̇ (at the fold):

ρ̇jα
2 = λ̈〈θ̇, sin θ〉 = λ̈

∫ 1

0

θ̇ sin θ ds.

Finally, we note that for any ω,

sin(θ(s;ω))
d

dω
[θ(s;ω)] = − d

dω
cos(θ(s;ω))

which means that∫ 1

0

sin(θ(s;ω))
d

dω
[θ(s;ω)] = − d

dω

∫ 1

0

cos(θ(s;ω))ds = − d

dω
[z(1;ω)].
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Thus, at the fold, we have:

ρ̇jα
2 = −λ̈d[z(1)]

dω

Thus the (λ, z(1)) bifurcation diagram is “distinguished” in that we can read the
sign of ρ̇j from the shape of the branch in this diagram (at a fold in λ). Specifically,
at a fold that opens to the left (so that λ̈ < 0), the index is one smaller above the fold
point than below it (since we can choose to parametrize the branch so that increasing
ω corresponds to increasing z(1), and then see that ρ̇j > 0). Similarly, at a fold
that opens to the right (so that λ̈ > 0), the index is one larger above the fold point
than below it (since we can choose to parametrize the branch so that increasing ω
corresponds to increasing z(1), and then see that ρ̇j < 0).
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