
Grades Statistics 

• Midterm 1: average 10.02 (out of 15) with standard deviation 1.93
§ Many thanks to students who submitted question suggestions
§ Grading rules for multi-answer questions: (summation of partial point for each 

correct choice) - (summation of partial point for each incorrect choice)
§ Midterm1 scores will be final after Friday 4/2

• Total points so far: average 33.68 (out of 40) with standard deviation 3.50 
§ The grading so far: [36, 40]: A; [30.18, 36): B; [0, 30.18): C or worse

• Please talk to me if you feel difficulty in learning
• No additional assignments to boost your mark based on individual requests
• Try to get full points for your case-study, remaining homework/exercises

IS 651: Distributed Systems 1



Case Study Notes
• The goal of case study 

§ Learn the latest techniques in distributed systems
§ Know and collaborate with other team members
§ Learn from other teams

• Process
§ Select topic: talk to your team members on which topic to work on after class
§ Inform your selection: post your topic on piazza (case-study folder) after class. New topics could 

be proposed.
§ Search and select paper/project you want to work on: https://scholar.google.com/, 

http://www.apache.org/, https://github.com, university library website, etc. 
§ If one topic has more than one teams. Some coordination will be needed to make sure the team 

will work on different papers/projects.
§ Send me a piazza post (case-study folder) and get my approval. You could attach files in your post 

using menu item: Insert->Insert file
§ Work as a team
§ Present as a team on week 15 (05/07): every member needs to present 

• Case Study Presentation Grading Rubric
§ Bonus points: up to 2 bonus points for use case if your team can have live demonstrations

IS 651: Distributed Systems 2

https://scholar.google.com/
http://www.apache.org/
https://github.com/
https://userpages.umbc.edu/~jianwu/is651/Case-Study-Presentation-Rubric.pdf


Case Study Topics
Team Topic

1 NoSQL/NewSQL Database
2 Parallel Computing
3 Distributed File System
4 Peer-to-peer (P2P) computing
5 Micro Services
6 Cloud computing
7 Big Data

…

IS 651: Distributed Systems 3



Discussion #5

• A weather Web service maintains the current weather information 
which gives different results for the same place when you invoke it at 
different times. Whether it is a stateless or stateful service?
§ This Web service is a stateless service because the execution result doesn’t 

rely on previous executions requested by the same client.
§ Stateless service is about execution independence.
§ The Web service could keep the weather state in database or external 

resources. So stateless doesn’t mean no state at server side.

IS 651: Distributed Systems 4



IS 651: Distributed Systems
Chapter 8: Distributed Systems 

Basics

Jianwu Wang
Spring 2021



Learning Outcomes

•After learning this chapter, you should be able to
§ Understand each technique (why we need it, how it works)
§ Understand differences between similar techniques

IS 651: Distributed Systems 6



Distributed Systems Basics

• Caching
• Replication
• Distributed naming
• Load-balancing
• Processes and threads
• Push technology
• Microservice
• Server virtualization (see Chapter 13)

IS 651: Distributed Systems 7



Caching

• Caching is an optimization for distributed systems that reduces 
latency and decreases network traffic
• There are two categories of this kind of network-based cache:

§ Web caching
§ Application caching

IS 651: Distributed Systems 8



Web Caching

• There are four locations for web 
cache:
§ Web browser cache (see figure)
§ Forward proxy cache
§ Open proxy cache
§ Reverse proxy cache

• A proxy (server) acts as an 
intermediary for requests from 
clients seeking resources from 
other servers

IS 651: Distributed Systems 9



Forward Proxy Cache

• A forward proxy cache is located at the organization (as at UMBC) or 
at the internet service provider (ISP)
• Two approaches used by forward proxy cache 

§ Configure the browser
§ Interception caching

IS 651: Distributed Systems 10



Reverse Proxy Cache

• A reverse proxy cache is on the internal network of 
the server
§ Can reduce load on its origin servers
§ Can distribute the load from incoming requests to several 

servers (see load-balancing)

IS 651: Distributed Systems 11



Content Delivery Network (CDN)

• As a type of reverse caching, this improves data access by locating 
content in various places on the Internet in order to get it closer to 
clients
§ Example: Netflix

IS 651: Distributed Systems 12



Cache Info in HTTP Response Headers

• Date: response time
• Cache-Control: directives that MUST 

be obeyed 
• Expires: how long the cache should 

be kept before the cache refreshes 
• Last-Modified
• ETag (Entity Tags): a short unique 

identifier that the server generates 
for each object such as a web page

IS 651: Distributed Systems 13



Application Caching

• Application caching is caching that is managed by the application 
itself to improve performance rather than the web and Internet 
infrastructure

IS 651: Distributed Systems 14



Distributed Systems Basics

• Caching
• Replication
• Distributed naming
• Load-balancing
• Processes and threads
• Push technology
• Microservice
• Server virtualization (see Chapter 13)

IS 651: Distributed Systems 15



Replication

• General optimization on 
any network for scalability 
and fault-tolerance
• making copies of 

information on different 
nodes on a network
• having consistency 

mechanism between the 
replicas
• mostly at server side 

• Eventual consistency

IS 651: Distributed Systems 16

Partition and replication Read/write operation with 
master-slave replication



Distributed Systems Basics

• Caching
• Replication
• Distributed naming
• Load-balancing
• Processes and threads
• Push technology
• Microservice
• Server virtualization (see Chapter 13)

IS 651: Distributed Systems 17



Distributed Naming

• There are two major types of distributed naming systems:
§ Structured naming (NFS, AFS, DNS)
§ Attribute-based naming

IS 651: Distributed Systems 18



Network File System (NFS)

• A network file system protocol 
originally developed by Sun 
Microsystems in 1984, allowing a user 
on a client computer to access files 
over a network in a manner similar to
how local storage is accessed
• AFS is a more modern version

§ We use it at UMBC

IS 651: Distributed Systems 19

application NFS

presentation XDR

session RPC

transport UDP/TCP

network IP

data link
network interface

physical



Domain Name System (DNS) 

• It is the most widely used distributed 
naming system since it is used for looking up 
the addresses of hosts on the Internet
• Two roles

§ Server: respond to requests to convert names to 
IP addresses or the reverse 

§ Client (resolver): ask other name servers to 
convert names to IP addresses

• Two optimizations: caching and replication
• Two resolver modes: recursive and iterative

IS 651: Distributed Systems 20

Resolver demo



Attribute-based Naming

• Attribute-based naming is known as 
directory services
• Allows searches by attributes

§ ldap[s]://<hostname>:<port>/<base_dn>?
<attributes>?<scope>?<filter>

• Implementations/standards
§ X.500
§ Lightweight Directory Access Protocol 

(LDAP)
§ Active Directory

IS 651: Distributed Systems 21

X.500 demo



Distributed Systems Basics

• Caching
• Replication
• Distributed naming
• Load-balancing
• Processes and threads
• Push technology
• Microservice
• Server virtualization (see Chapter 13)

IS 651: Distributed Systems 22



Load-balancing

• Load-balancing is a technique to make many 
servers appear as one server to clients and 
thereby getting performance increase
• Three major methods of load balancing

§ Round-robin Domain Name System (RRDNS)
§ Load-balancing switches
§ Application servers

IS 651: Distributed Systems 23



Round-Robin Domain Name System (RRDNS) 

• RRDNS is a low cost (in fact, free!), low performance way to load-
balance
• Multiple IP addresses and servers for the same domain name

§ A new request uses the next IP address, until it wraps around to the first IP 
address again

IS 651: Distributed Systems 24



Limitations of the Round-Robin Domain Name 
System (RRDNS)
• Caching: DNS often caches the IP address of a domain. If the clients 

that have a lot of requests happen to cache the same IP address, 
the server will be overloaded. 

• Lack of intelligence: RRDNS has no method of determining when a 
node in a cluster is overloaded or even available, it will just result in 
a bad request.

IS 651: Distributed Systems 25



Load-Balancing Switches

• Load-balancing switches are the highest performance and most 
common method

IS 651: Distributed Systems 26



Application Servers

• Application server load 
balancing approaches use 
the server to control the 
load-balancing

IS 651: Distributed Systems 27



Distributed Systems Basics

• Caching
• Replication
• Distributed naming
• Load-balancing
• Processes and threads
• Push technology
• Microservice
• Server virtualization (see Chapter 13)

IS 651: Distributed Systems 28



Processes and Threads

• Thread is often a component within a 
process
• Multiple threads can exist within one 

process, and share resources such as 
memory 
• Benefits of Threads:

§ Less time to create a new thread
§ Less time to terminate a thread
§ Less time to switch between two threads 

within the same process
§ Less communication overheads

IS 651: Distributed Systems 29



Processes and Threads (2)

IS 651: Distributed Systems 30



Benefits of Multithreading

• Improve application responsiveness
§ The user of a multithreaded GUI does not have to wait for one activity to complete before 

starting another

• Use multiprocessors more efficiently
§ Numerical algorithms and applications with a high degree of parallelism, such as matrix 

multiplications, can run much faster when implemented with threads on a multiprocessor

• Improve program structure
§ Some programs are more efficiently structured as multiple independent or semi-independent 

units of execution instead of as a single, monolithic thread

• Use fewer system resources
§ Each process has a full address space and operating systems state 
§ The inherent separation between processes can require a major effort by the programmer to 

communicate between the threads in different processes, or to synchronize their actions

IS 651: Distributed Systems 31



Asynchronous Event Loop

• Web server normally uses multi-threading for different requests, 
which has one problem
§ It creates a new thread for each synchronous request is that it is very memory 

intensive and Disk I/O (input/output) bound 
§ Each thread cannot respond to client until the data is read from disk

• Asynchronous event loop is a new model to deal with the problem
§ These servers run as a single threaded process asynchronously
§ The server just runs an event loop that gets requests and passes them on to 

other processes
§ A callback mechanism informs the server process when data is ready

• Node.js is an open-source runtime environment based on this model

IS 651: Distributed Systems 32



Distributed Systems Basics

• Caching
• Replication
• Distributed naming
• Load-balancing
• Processes and threads
• Push technology
• Microservice
• Server virtualization (see Chapter 13)

IS 651: Distributed Systems 33



Push Technology

• Push technology, or server push: a style of 
Internet-based communication where the 
request for a given transaction is initiated 
by the publisher or server 
• Pull technology: the request for 

information transmission is initiated by 
the receiver/client
• (short) polling: the client periodically 

(every few seconds) makes a request to 
check for new data
• WebSockets provides for a bi-directional, 

full-duplex communications channel over 
a TCP socket

IS 651: Distributed Systems 34



Distributed Systems Basics

• Caching
• Replication
• Distributed naming
• Load-balancing
• Processes and threads
• Push technology
• Microservice
• Server virtualization (see Chapter 13)

IS 651: Distributed Systems 35



Microservice

• A system design pattern that 
follows Service-Oriented 
Architecture.
• Compared to monolithic 

applications where different 
functionalities are combined 
into a single program, 
microservice applications are 
easier to design, implement, 
deploy and maintain. 

IS 651: Distributed Systems 36

From https://martinfowler.com/articles/microservices.html

https://martinfowler.com/articles/microservices.html

