Grades Statistics

 Midterm 1: average 10.02 (out of 15) with standard deviation 1.93

= Many thanks to students who submitted question suggestions

* Grading rules for multi-answer questions: (summation of partial point for each
correct choice) - (summation of partial point for each incorrect choice)

= Midterm1 scores will be final after Friday 4/2

 Total points so far: average 33.68 (out of 40) with standard deviation 3.50
* The grading so far: [36, 40]: A; [30.18, 36): B; [0, 30.18): C or worse

* Please talk to me if you feel difficulty in learning
* No additional assignments to boost your mark based on individual requests
* Try to get full points for your case-study, remaining homework/exercises

Case Study Notes

* The goal of case study

Learn the latest techniques in distributed systems
Know and collaborate with other team members
Learn from other teams

* Process

Select topic: talk to your team members on which topic to work on after class

Inform your selection: post your topic on piazza (case-study folder) after class. New topics could
be proposed.

Search and select paper/project you want to work on: https://scholar.google.com/,
http://www.apache.org/, https://github.com, university library website, etc.

If one topic has more than one teams. Some coordination will be needed to make sure the team
will work on different papers/projects.

Send me a piazza post (case-study folder) and get my approval. You could attach files in your post
using menu item: Insert->Insert file

Work as a team
Present as a team on week 15 (05/07): every member needs to present

e Case Study Presentation Grading Rubric

Bonus points: up to 2 bonus points for use case if your team can have live demonstrations

IS 651: Distributed Systems

https://scholar.google.com/
http://www.apache.org/
https://github.com/
https://userpages.umbc.edu/~jianwu/is651/Case-Study-Presentation-Rubric.pdf

Case Study Topics
I

NoSQL/NewSQL Database
Parallel Computing
Distributed File System
Peer-to-peer (P2P) computing
Micro Services

Cloud computing

Big Data

N O 0 B W N

IS 651: Distributed Systems

Discussion #5

e A weather Web service maintains the current weather information
which gives different results for the same place when you invoke it at
different times. Whether it is a stateless or stateful service?

®» This Web service is a stateless service because the execution result doesn’t
rely on previous executions requested by the same client.

= Stateless service is about execution independence.

= The Web service could keep the weather state in database or external
resources. So stateless doesn’t mean no state at server side.

IS 651: Distributed Systems
Chapter 8: Distributed Systems
Basics

Jianwu Wang
Spring 2021

Learning Outcomes

* After learning this chapter, you should be able to

» Understand each technique (why we need it, how it works)
» Understand differences between similar techniques

Distributed Systems Basics

e Caching

* Replication

* Distributed naming

* Load-balancing

* Processes and threads
* Push technology

* Microservice

 Server virtualization (see Chapter 13)

IS 651: Distributed Systems

Caching

e Caching is an optimization for distributed systems that reduces
latency and decreases network traffic

* There are two categories of this kind of network-based cache:
= Web caching
= Application caching

Web Caching

* There are four locations for web
cache:

(1) GETUR
= Web browser cache (see figure)

GET UR

= Forward Proxy cache //—gxw‘ ce: Wed,5 Mar 2003 6:30:20 GMT
= Open proxy cache

= Reverse proxy cache i
* A proxy (server) acts as an Q i Figure 2
intermediary for requests from — —

clients seeking resources from v e
other servers w Wed 5 Mar 2003 6.30.20 GMT

@ 304 Mot Modified

IS 651: Distributed Systems 9

Forward Proxy Cache

* A forward proxy cache is located at the organization (as at UMBC) or
at the internet service provider (ISP)
* Two approaches used by forward proxy cache

= Configure the browser
" Interception caching

IS 651: Distributed Systems 10

Reverse Proxy Cache

* A reverse proxy cache is on the internal network of
the server
= Can reduce load on its origin servers

= Can distribute the load from incoming requests to several
servers (see load-balancing)

Origin Server

Cliert

IS 651: Distributed Systems

=

Origin Server

Reverse
Proxy

Origin Server

11

Content Delivery Network (CDN)

* As a type of reverse caching, this improves data access by locating
content in various places on the Internet in order to get it closer to
clients

= Example:

IS 651: Distributed Systems 12

Cache Info in HTTP Response Headers

* Date: response time
* Cache-Control: directives that MUST FIERL(LE U

be Obeyed Date: Fri, 30 Oct 1998 13:19:41 GMT
Server: Apache/1.3.3 (Unix)
* Expires: how long the cache should Cache-Control: max-age=3600, must-revalidate
be kept before the cache refreshes Expires: Fri, 30 Oct 1998 14:19:41 GMT
. Last-Modified: Mon, 29 Jun 1998 02:28:12 GMT
* LaSt-MOdIfIEd ETag: "3¢86-410-3596fbbc"
* ETag (Entity Tags): a short unique A S e

Content-Type: text’html

identifier that the server generates
for each object such as a web page

IS 651: Distributed Systems 13

Application Caching

* Application caching is caching that is managed by the application
itself to improve performance rather than the web and Internet
infrastructure

HTML

A |
CACHING

IS 651: Distributed Systems

14

Distributed Systems Basics

e Caching

* Replication

* Distributed naming

* Load-balancing

* Processes and threads
* Push technology

* Microservice

 Server virtualization (see Chapter 13)

IS 651: Distributed Systems

15

Replication

* General optimization on
any network for scalability
and fault-tolerance

* making copies of

information on different
nodes on a network

* having consistency
mechanism between the
replicas

* mostly at server side

* Eventual consistency

Partition

writes writes
. e o

AN

[Worker] [Worker]

reads N

\—[Client] [Client]—)

Read/write operation with

Partition and replication el
master-slave replication

IS 651: Distributed Systems 16

Distributed Systems Basics

e Caching

* Replication

* Distributed naming

* Load-balancing

* Processes and threads
* Push technology

* Microservice

 Server virtualization (see Chapter 13)

IS 651: Distributed Systems

17

Distributed Naming

* There are two major types of distributed naming systems:
= Structured naming (NFS, AFS, DNS)
= Attribute-based naming

/alpha.edu /transayc. /omeoa.com

X,

class . . /home /dépt . ¥. /fpublic ™. . fusr feroup .. /pub

N VN /]\ N /I\ AN N

fp;ilgers . fpl})ﬁ'ects bld . 7. }'/Sﬁc

/dlib.html ;’Sy%psis /bar.o /bar.c

IS 651: Distributed Systems 18

Network File System (NFS)

* A network file system protocol
originally developed by Sun
Microsystems in 1984, allowing a user
on a client computer to access files
over a network in a manner similar to
how local storage is accessed

* AFS is a more modern version
= We use it at UMBC

application NFS
presentation XDR
session RPC
transport UDP/TCP
network IP
data link

physical

network interface

Domain Name System (DNS)

* It is the most widely used distributed
naming system since it is used for looking up
the addresses of hosts on the Internet

* Two roles Chock for Zone
= Server: respond to requests to convert names to

é o7 E'E
IP addresses or the reverse £ e
. (\90/‘_&{\" Sarver
" Client (resolver): ask other name servers to W

convert names to IP addresses

* Two optimizations: caching and replication
Resolver demo

* Two resolver modes: recursive and iterative

IS 651: Distributed Systems 20

Attribute-based Naming

e Attribute-based naming is known as
directory services

* Allows searches by attributes
= |dap[s]://<hostname>:<port>/<base dn>"?
<attributes>?<scope>?<filter>

* Implementations/standards
= X.500

= Lightweight Directory Access Protocol
(LDAP)

= Active Directory

IS 651: Distributed Systems

=

. E

X.500 demo

The Directory

21

Distributed Systems Basics

* Caching

* Replication
 Distributed naming

* Load-balancing

* Processes and threads
* Push technology

* Microservice

 Server virtualization (see Chapter 13)

IS 651: Distributed Systems

22

Load-balancing

* Load-balancing is a technique to make many

servers appear as one server to clients and
thereby getting performance increase @ @
Y8 gp

* Three major methods of load balancing l l

= Round-robin Domain Name System (RRDNS)
= [oad-balancing switches

= Application servers I I I

IS 651: Distributed Systems 23

Round-Robin Domain Name System (RRDNS)

* RRDNS is a low cost (in fact, free!), low performance way to load-
balance

* Multiple IP addresses and servers for the same domain name

= A new request uses the next IP address, until it wraps around to the first IP
address again

tsunami.abc.net. A IN 86400 66.98.218.34
tsunami.abc.net. A IN 86400 67.15.128.71

Limitations of the Round-Robin Domain Name
System (RRDNS)

* Caching: DNS often caches the IP address of a domain. If the clients
that have a lot of requests happen to cache the same IP address,
the server will be overloaded.

* Lack of intelligence: RRDNS has no method of determining when a
node in a cluster is overloaded or even available, it will just result in
a bad request.

Load-Balancing Switches

* Load-balancing switches are the highest performance and most

common method

. Y . e
Proxy | Server Server . Server
[llP~'i1'.|.ml [lwvlrlual [|IP-'irtuul
Q=D L4 Switch
i ,
L =l = =
VUserq- - User Use-r‘ wUserr‘.

IS 651: Distributed Systems

26

Application Servers

* Application server load
balancing approaches use
the server to control the
load-balancing

In httpd .corf”:

ApIServBalance setl Jservl

ApJServBalarce setl Jserv2

ApIServBalance setl Jser3

ApIServHost Jservl ajprll:ff192.168.0.51:8835
AplServHost Jserv2 ajpvll:ff192.168.0.52:8885
ApIServHost Jserv3 ajprll:ff192.168.0.53.8835
ApIServRoute JS1 Jservl

IP: xxx xxx xxx .10

VI JSerV.corm

ApIServRoute JS2 Jserv2
ApJServRoute 153 Jserv3 Jservl
F‘_________---"‘” TCP 8885
| ——| Al?
Al Httpd L IP: 192.168.0.51
Client & hicses A taret Set Cookie:JServSession]D=xxxxx-JS1
Bl Http d .
Client B chooses a target Bl’ JS&I‘VZ
TCP 8885
IP: 192 .168.0.52
Set Cookie:JServSessionID=xxxxx-JS2
Apache Server
TCP port 80
Jserv3
TCP 8885

IP: 192.168.0.53

IS 651: Distributed Systems

27

Distributed Systems Basics

* Caching

* Replication
 Distributed naming

* Load-balancing

* Processes and threads
* Push technology

* Microservice

 Server virtualization (see Chapter 13)

IS 651: Distributed Systems

28

Processes and Threads

* Thread is often a component within a Physical memory
rocess ' | \w
P . . Co . 7 : ‘ memory mapping
* Multiple threads can exist within one T —p— 53%0] mamory space
process, and share resources such as . !
memory Process 1 Process 2
: Thread 1 | | Thread 2 Thread 1 | | Thread 2
* Benefits of Threads: e = e G
= |ess time to create a new thread Roaiss | Fesns Ropsters [l Regsios
. . PC PC PC PC
= [ess time to terminate a thread i i ! I
" [ess time to switch between two threads Thread scheduler (OS)
within the same process ! I
" [ess communication overheads — m——

IS 651: Distributed Systems 29

Processes and Threads (2)

one process
one thread

one process
multiple threads

multiple processes
one thread per process

multiple processes
multiple threads per process

-—-----J-----

IS 651: Distributed Systems

Benefits of Multithreading

Improve application responsiveness
= The user of a multithreaded GUI does not have to wait for one activity to complete before
starting another

Use multiprocessors more efficiently

= Numerical algorithms and applications with a high degree of parallelism, such as matrix
multiplications, can run much faster when implemented with threads on a multiprocessor

Improve program structure

= Some programs are more efficiently structured as multiple independent or semi-independent
units of execution instead of as a single, monolithic thread

Use fewer system resources
= Each process has a full address space and operating systems state

= The inherent separation between processes can require a major effort by the programmer to
communicate between the threads in different processes, or to synchronize their actions

Asynchronous Event Loop

* Web server normally uses multi-threading for different requests,
which has one problem

" |t creates a new thread for each synchronous request is that it is very memory
intensive and Disk I/O (input/output) bound

® Each thread cannot respond to client until the data is read from disk

* Asynchronous event loop is a new model to deal with the problem
" These servers run as a single threaded process asynchronously

= The server just runs an event loop that gets requests and passes them on to
other processes

= A callback mechanism informs the server process when data is ready
* Node.js is an open-source runtime environment based on this model

Distributed Systems Basics

* Caching

* Replication
 Distributed naming

* Load-balancing

* Processes and threads
* Push technology

* Microservice

 Server virtualization (see Chapter 13)

IS 651: Distributed Systems

33

Push Technology

* Push technology, or server push: a style of
Internet-based communication where the
request for a given transaction is initiated Before & After websocket

by the publisher or server Bt (M oauast & earon b2 s Taciiora

* Pull technology: the request for
information transmission is initiated by
the receiver/client

* (short) polling: the client periodically
(every few seconds) makes a request to
check for new data

* WebSockets provides for a bi-directional,

full-duplex communications channel over

a TCP socket

IS 651: Distributed Systems 34

Distributed Systems Basics

* Caching

* Replication
 Distributed naming

* Load-balancing

* Processes and threads
* Push technology

* Microservice

 Server virtualization (see Chapter 13)

IS 651: Distributed Systems

35

Microservice

* A system design pattern that

follows Service-Oriented
Architecture.

* Compared to monolithic
applications where different
functionalities are combined
into a single program,

microservice applications are

easier to design, implement,
deploy and maintain.

A monolithic application puts all its
functionality into a single process...

... and scales by replicating the

monolith on multiple servers

oV

oV

A microservices architecture puts

each element of functionality into a

separate service...

... and scales by distributing these services
across servers, replicating as needed.

Z

E @

|0 O Qe
y i

| N 4
(o]l [[®]lw

From https://martinfowler.com/articles/microservices.html

IS 651: Distributed Systems

36

https://martinfowler.com/articles/microservices.html

