
Reminder of Midterm Next Week
• Midterm covers chapters 1-7. 30 questions and 0.5 for each question. Total mark: 15

§ About 12 multiple choice questions: only one correct answer, zero or full mark
§ About 12 multiple answer questions: more than one correct answers, partial credit is allowed
§ About 5 short answer questions: one or more correct answers, partial credit is allowed

• Make sure you try the dummy exam with the lockdown browser and are able to take the test
• The exam will be available 4:30-5:45 PM ET Friday, March 12th on Blackboard, no class after exam
• Send me on Piazza via private posts on at most five recommended questions by the end of

Wednesday, March 10th
• Using the lockdown browser, blackboard will record your picture, your photo ID and your activity

during exam
• If you have difficulty to access the exam at blackboard, you can contact me via slack
• During exam, it is difficult to discuss questions with me. Just answer the question based on your

understanding. If you have questions, you can contact me after exam
• Because we are having midterm next week, the deadline for this chapter’s homework and

exercise is Thursday after spring break
§ Working on homework and exercise should still help your exam preparation

IS 651: Distributed Systems 1

Discussion #4

• CSS VS XSLT

2IS 651: Distributed Systems

CSS XSLT

Difference 1 Multiple stylesheet types with
cascading priorities

One stylesheet type

Difference 2 Used for HTML Used for structured document

Difference 3 Only client side Server side and client side

Difference 4 Its own syntax XML syntax

Difference 5 Same content, change
representation

Much powerful. Transformation result could
only have less data

Commonality 1 Both can be used for html representation

…

IS 651: Distributed Systems
Chapter 7: REST Web Services

Jianwu Wang
Spring 2021

Learning Outcomes

•After learning chapter 7, you should be able to
§ Understand the features of REST Web service and its differences

from SOAP based Web service
§ Know how to use proper method to call a REST Web service
§ Know JSON and its differences from XML
§ Know the cross-domain restriction and how to work around it

IS 651: Distributed Systems 4

REST Basics

• REST is a term coined by Roy Fielding in his Ph.D. dissertation to
describe an architecture style of networked systems. REST is an
acronym standing for Representational State Transfer. It is easier to
understand using representational resource state transfer.
§ Resource: Resources are any addressable object (as something with a URI on

the web), such as a book or student record
§ Representation: Resource representations for client and resources at server

side are separated
§ REST: access and manipulate resource states using a representational

approach. We don’t care how the resource is actually stored/managed on the
server, We only care its representation from the client view

IS 651: Distributed Systems 5

REST Basics (2)

• REST defines a set of architectural principles by which you can design
Web services that focus on a system's resources, including how
resource states are addressed and transferred over HTTP by a wide
range of clients written in different languages.
• An HTTP REST Web service follows three basic design principles

§ Use HTTP methods explicitly (HTTP is stateless)
§ Expose directory structure-like URIs
§ Transfer XML, JavaScript Object Notation (JSON), or both

§ There are no standards/specifications for REST Web service

IS 651: Distributed Systems 6

Use HTTP methods explicitly

• Methods
§ POST: create, sending data
§ GET: read, list, retrieve
§ PUT: replace, update
§ DELETE: delete

• GET Examples
§ From your web browser: https://api.targetlock.io/v1/post-code/21250
§ Curl command: curl -v https://api.targetlock.io/v1/post-code/21250

IS 651: Distributed Systems 7

https://api.targetlock.io/v1/post-code/21250
https://api.targetlock.io/v1/post-code/21250

POST vs. GET

• POST should be used for creating resources
• Common error:

§ Wrong: GET /adduser?name=Robert HTTP/1.1
§ Correct

POST /users HTTP/1.1
Host: myserver Content-Type: application/xml
<?xml version="1.0"?>
<user>
<name>Robert</name>
</user>

IS 651: Distributed Systems 8

GET vs. PUT
• GET is for data retrieval only. GET is an operation that should be free of side effects, a

property also known as idempotence.

• Common error:
§ Wrong: GET /updateuser?name=Robert&newname=Bob HTTP/1.1
§ Correct:

• Similarly, DELETE should be used rather than a deleteuser function with GET.

PUT /users/Robert HTTP/1.1
Host: myserver
Content-Type: application/xml
<?xml version="1.0"?>
<user>
<name>Bob</name>
</user>

IS 651: Distributed Systems 9

GET /users/Robert HTTP/1.1
Host: myserver
Accept: application/xml

Be Stateless

• A complete, independent request doesn't require the server, while
processing the request, to retrieve any kind of application/client
context or state.
§ Treats each request as an independent transaction that is unrelated to any

previous request

• A REST Web service application/client includes, within the HTTP
headers and body of a request, all of the parameters, context, and
data needed by the server-side component to generate a response.
• Stateless server-side components are less complicated to design,

write, and distribute across load-balanced servers.

IS 651: Distributed Systems 10

Be Stateless (2)

• A stateless service not only performs better, it shifts most of the
responsibility of maintaining state to the client application
• In a RESTful Web service, the server is responsible for generating

responses and for providing an interface that enables the client to
maintain application state on its own
• For example, in the request for a multipage result set, the client

should include the actual page number to retrieve instead of simply
asking for next
• The principle of loose-coupling implies statelessness

IS 651: Distributed Systems 11

Compare a Stateless and Stateful Service

IS 651: Distributed Systems 12

Expose Directory Structure-like URIs

• REST Web service URIs should be intuitive to the point where they are
easy to guess.
§ Think of an URI as a kind of self-documenting interface that requires little, if

any, explanation or reference for a developer to understand what it points to
and to derive related resources.

IS 651: Distributed Systems 13

Directory Structure-like URI Examples

• Example URIs from the book (not real):
§ http://www.w3schools.com/catalog/cds (for cd list)
§ http://www.w3schools.com/catalog/cds/2 (for the detailed info of the cd)
§ http://www.w3schools.com/getCD.php?cd=2 (not the best url, but same as

above)

• Examples from the #5 reference (not real):
§ http://www.parts-depot.com/parts (for a parts list)
§ http://www.parts-depot.com/parts/00345 (for a part)
§ http://www.parts-depot.com/parts/getPart?id=00345 (not the best url, but

same as above)

IS 651: Distributed Systems 14

Transfer XML, JSON, or both

• Example: A REST service makes available a URL to submit a purchase order
(PO)
§ The client creates an PO instance document which conforms to the PO schema that

Parts Depot has designed (and publicized in a WSDL document)
§ The client submits PO.xml as the payload (i.e., entity body) of an HTTP POST message

• The payload (HTTP entity body) should be in XML or JSON
• Both XML and JSON are semi-structured data, a.k.a. self-

describing structure
§ Does not obey the tabular structure like relational database
§ Contains tags to separate semantic elements and enforce hierarchies of records and

fields within the data

IS 651: Distributed Systems 15

JSON

• Alternative serialization

• A useful website to format/view data in json:
https://jsonformatter.org/json-viewer

{"menu": {
"id": "file",
"value": "File:",
"popup": {

"menuitem": [
{"value": "New", "onclick": "CreateNewDoc()"},
{"value": "Open", "onclick": "OpenDoc()"},
{"value": "Close", "onclick": "CloseDoc()"}]

}
}}

<?xml version="1.0" encoding="UTF-8"?>
<menu id="file" value="File">

<popup>
<menuitem value="New" onclick="CreateNewDoc()"/>
<menuitem value="Open" onclick="OpenDoc()"/>
<menuitem value="Close" onclick="CloseDoc()"/>

</popup>
</menu>

IS 651: Distributed Systems 16

https://jsonformatter.org/json-viewer

JSON Example

• The figure shows how JSON works
in JavaScript
§ Program link

• The JSON is included directly in the
program here, but could easily be
the result of a REST query
• It results in the simple text output

to the browser: Sally Green 27

IS 651: Distributed Systems 17

http://userpages.umbc.edu/~jianwu/is651/programs/ch7/json-demo.html

Guardian API

• Most Web applications offer a REST API such as Twitter, Flickr, YAHOO, Facebook, the
New York Times, NPR, and the Guardian Newspaper.

• The Guardian News
• Guardian Open Platform API docs
• Result result in JSON, DEMO

§ http://content.guardianapis.com/search?q=syria§ion=news&from-date=2013-09-01&api-
key=xyz

• Result result in XML, DEMO
§ http://content.guardianapis.com/search?q=syria§ion=news&from-date=2013-09-

01&format=xml&api-key=xyz
• You can use command to call the Rest web service

§ curl -v "http://content.guardianapis.com/search?q=syria§ion=news&from-date=2013-09-
01&api-key=xyz"

• You need to replace the xyz in the last two links with your api-key to make them work

IS 651: Distributed Systems 18

http://www.theguardian.com/us
http://open-platform.theguardian.com/
http://content.guardianapis.com/search?section=news&from-date=2016-01-01&q=syria&api-key=5f89370a-da23-421c-9c32-8db38f7da349
http://content.guardianapis.com/search?section=news&from-date=2016-01-01&q=syria&format=xml&api-key=5f89370a-da23-421c-9c32-8db38f7da349

Cross-Domain Restriction

• One problem that comes up is that web browsers have a security
limitation that requires any program running in the browser (using
JavaScript with AJAX) can only return results from the same domain
that the original web page came from.
§ This is called the cross-domain restriction
§ Our Guardian example would therefore not work for a web page we created

on gl since our web page is from umbc.edu and Guardian is on the
guardian.com

• Demo:
https://userpages.umbc.edu/~jianwu/is651/programs/ch7/cross_do
main_restriction.html

IS 651: Distributed Systems 19

https://userpages.umbc.edu/~jianwu/is651/programs/ch7/cross_domain_restriction.html

Work Around the Cross-Domain Restriction
• We can work around the restriction by having 1) a server-side

program to fetch data and 2) a client-side program to parse and
present the fetched data
• Instead of only having client-side javascript calling REST service

directly, we now have three roles: client, local server, service provider

IS 651: Distributed Systems 20

Client-side program
running on your
computer’s web browser

Server-side program
running on GL machine

REST service hosted at
Guardian

CURL and PHP in Server-Side Program

• Use a server-side program to retrieve the XML or JSON from Guardian
and then send it back to the user that requested the web page from
gl.
§ In order to do this, we will use PHP to issue the request using the Curl library.
§ The Curl library offers a way to send a URL programmatically and handle the

response.

IS 651: Distributed Systems 21

CURL and PHP Example
<?php

$querystring='q=debates§ion=news&from-date=2013-09-01&api-key=xyz';
$host ='https://content.guardianapis.com/search';
$request = $host.'?'.$querystring;

$ch = curl_init();
curl_setopt($ch, CURLOPT_URL, $request); // set url
curl_setopt($ch, CURLOPT_FAILONERROR, 1); // fail the request if return code is > 400
curl_setopt($ch, CURLOPT_FOLLOWLOCATION, 1);// allow redirects
curl_setopt($ch, CURLOPT_RETURNTRANSFER,1); // return variable
curl_setopt($ch, CURLOPT_TIMEOUT, 4); // times out after 4s
curl_setopt($ch, CURLOPT_HTTPGET, true); // set GET method

$json = curl_exec($ch);
curl_close($ch);
header("Content-type: application/json"); //send http header
echo "jsonProcessFn(".$json.");"; //wraps result in a function call

?>

• guardian.php
§ Program link
§ Source code link

IS 651: Distributed Systems 22

https://userpages.umbc.edu/~jianwu/is651/programs/ch7/guardian.php
http://userpages.umbc.edu/~jianwu/is651/programs/ch7/guardian.txt

JSONP (JSON with Padding) in Client-Side
Program
• The client-side program can use JSONP to call the PHP and process

the result.
§ JSONP uses the <script> tag, instead of the XMLHttpRequest object used in

the example in slide 19 (Cross-Domain Restriction)
§ JSONP requires the data is wrapped by function name

• Example: guardian.html

IS 651: Distributed Systems 23

https://userpages.umbc.edu/~jianwu/is651/programs/ch7/guardian.html

guardian.html Example – Part 1

IS 651: Distributed Systems 24

<!DOCTYPE html>
<html>
<style>

h3{background:red;}
span{color:green;}

</style>
<body>
<p id="output"></p>
<script>
function jsonProcessFn(data) {
var h3 = document.createElement("h3"); //create an h3 element
h3.innerHTML = "User Tier = "+ data.response.userTier;
//output element is defined in the html.
document.getElementById("output").appendChild(h3);
//response and results are at php results.
var arr = data.response.results;
for (var i = 0, len = arr.length; i < len; i++) {
newsProcessFn(arr[i]);

}
}

https://userpages.umbc.edu/~jianwu/is651/programs/ch7/guardian.html

guardian.html Example – Part 2
function newsProcessFn(news) {
var li = document.createElement("li");
var span1 = document.createElement("span");
span1.innerHTML = "Date= ";
var span2 = document.createElement("span");
span2.innerHTML = "Title= ";
li.appendChild(span1);
li.appendChild(document.createTextNode(news.webPublicationDate + " "));
li.appendChild(span2);
li.appendChild(document.createTextNode(news.webTitle));
document.getElementById("output").appendChild(li);

} </script>
<script src="guardian.php"></script>
</body>
</html>

IS 651: Distributed Systems 25

https://userpages.umbc.edu/~jianwu/is651/programs/ch7/guardian.html

