IS 651: Distributed Systems
Chapter 2: The Evolution of
Distributed Systems

Jianwu Wang
Spring 2021

Notes

* Please use Piazza, not email, for questions
= You are very welcome to reply others’ questions
= You can have public/private posts
= You can have pictures in your posts
= Do not ask how to do the exercise/homework, ask clarification questions
= Do not share your solutions with others
= Show courtesy and update whether the help you got works

* Lecture videos will be on blackboard (Course Videos) once they are available

* Assignment presentation: To show diverse solutions, members in the same team should avoid
presenting the same assignment

* All homework/exercises are due on Thursday

e Course website is https://userpages.umbc.edu/~jianwu/is651/651.syll.s21.html, and reference
page is https://userpages.umbc.edu/~jianwu/is651/651.ref.s21.html

IS 651: Distributed Systems

https://userpages.umbc.edu/~jianwu/is651/651.syll.s21.html
https://userpages.umbc.edu/~jianwu/is651/651.ref.s21.html

Learning Outcomes

* After learning chapter 2, you should be able to

» Understand the different generations of distributed systems and
the reason for the evolution

* Understand new terms from the chapter: middleware, remote
procedure call (RPC), message-oriented, Transaction, etc.

= Write XML documents and validate them using DTD

Basic Timeline of Distributed System
Evolution

Mainframes 1960s

Client/server 1970s

2 and 3-tiered Systems 1980s

N-tier Systems 1990s

Services 2000s

IS 651: Distributed Systems

Mainframe (1960s)

Terminals Disk Drives

HIHHH'".“”. '0' .l. ' .lll _J

minn ' T

= >{ vanrame |

Front-end
Controller

Punch Card Tape Drives
A typical mainframe architecture

IS 651: Distributed Systems 5

Client/Server (1970s)

* Minicomputers: smaller computers (not Personal Computer yet)
e Ethernet: form local-area networking (LAN)
e X.25: wide-area networking (WAN) service

i CIient server architecture
= Aclientis a requestor process and a server is a responder process
= One machine could be both client and server

* Beginnings of the Internet
= ARPANET
= TCP/IP stack

2 and 3-tier Systems (1980s)

* Personal Computer

* NetWare file servers

* Network file system (NFS)

* Remote procedure call (RPC)

e 3-tier system: with an
architectural middle tier, call
the application server, and
associated middleware

e Middleware

Novell
Netware Server
Internal NET=1

L]

-
e —
1 \\ ._l_%

1nm

Fio
-
=

NET=2

S—

NET=3

I:l_

ed I:’
‘ =1

PC#1

IS 651: Distributed Systems

il

=

PC#2 PC#

A 2-tier system

=il

Middleware

 Middleware is the software layer that

lies between the operating system and Computer 1 Computer 2 Computer 3

the applications on each side of a — ——
distributed computer network Application A Application B

* Middleware offers general services that

can be used by many applications Middleware

= Remote procedural call (RPC)
= Distributed cache

Client OS 1 Client OS 2 Client OS 3

= Message queue

* Major types of middleware . | Netwurk >

= Remote procedural call middleware
= Message-oriented middleware

IS 651: Distributed Systems 8

Remote Procedure Call (RPC) Middleware

* The application calls the remote
procedure locally at the stub

* The stub intercepts calls that are for
remote servers

= Marshalling: pack the parameters into a
message

= Make a system call to send the message

 The RPC Runtime handles message
sending

* The interface definition language (IDL)
handles message translation

 RPC hides heterogeneity among the
computers and handles the
communication across network

Application Application
Stub IDL Stub
RPC Runtime RPC Runtime
Network
< >

Messaging Modes of Communication

. f Application #1 \ 4 Application #2)
e Synchronous (blocking)
. el g 5 Process o
= RPC protocol is synchronous e > . " >4
= When a client makes a remote —t ——
call, the calling process blocks S —
or waits until it gets a reply b \ -
. : J - A J
* Asynchronous System 1 © System2
" The calling process just goes '
back to processing and is o Soskia
. T T, >{ L ==miEE @ h..eeeeee.
interrupted with a callback cciboe
message when it does get the el
response
. P T caa communication from client to server
Message -Orlented protocol [—T wesssgesoage (TOF bOth synchronous and asynchronous)
supports it

IS 651: Distributed Systems

10

Distributed File Systems

* A type of RPC middleware

* Allows users to mount OSI Layer File System 1 File System 2
directories from remote Application NFS NFS
computers into their own —— <OR DR
local directory, so they ,

Session RPC RPC
appear as local
Transport TCP TCP

* NFS: network file system

* XDR: external data
representation

IS 651: Distributed Systems

NFS distributed file system protocol stack

11

Transaction Middleware

e A database RPC middleware
uses an explicit 3-tier
architecture

* Transaction processing
monitor (TPM) at
middleware tier

Tier 1

Transaction

Client

Requests

Tier 2

Rep

application |

l

Y

TP moni

Reply

IS 651: Distributed Systems

R

Tier 3
Server
ly >
@st
Request
tor | Server
Reply
eply Server

12

Transactions

 All the participating operations on (distributed) resources should either
succeed or fail and recover together

e 2-Phase Commit

= commit-request phase: TPM request all the servers to commit and wait
responses

= commit phase: TPM decides either commit or abort based on responses

* A transaction is a unit of work with the following ACID properties

= ATOMICITY: A transaction should be done or undone completely and
unambiguously

= CONSISTENCY: A transaction should transform the system from one consistent
state to another consistent state

= |SOLATION: Each transaction should appear to execute independently of other
transactions that may be executing concurrently in the same environment

= DURABILITY: The effects of a completed transaction should always be persistent

Object-Oriented RPC Middleware

* RPC-based distributed systems based on object-oriented
programming principles

* Two main technologies

« Common Object Request Broker Architecture (CORBA): a standard designed
to facilitate the communication of systems that are deployed on diverse
platforms

 Distributed Component Object Model (DCOM): a proprietary Microsoft
technology for software distributed across several networked computers to
communicate with each other

CORBA

» Skeleton: stub for server object
* Object request broker (ORB)

= Mediates a method call from one Client | Object Client |~ Object
object to another local/remote object Stub | Skeleton 1(0)3 Stub | Skeleton
* Internet inter-ORB protocol (IIOP) <8 82
= Allows ORBs from different vendors to < Network >

communicate over the Internet

 The client cannot tell whether the
target object it communicates with
is local or remote

common object request broker architecture (CORBA)

IS 651: Distributed Systems 15

Message-Oriented Middleware (MOM)

* Point-to-point messaging (PTP): 1to 1
= Messages are sent to a queue, rather than directly to the intended receiver

‘ Sender ‘4_»‘ Message Queue

H‘ Receiver

Sender ’4 >I MQl |- p| MQ2 ‘4 >.Rcccivcr
b. ’ '

Message Queues (MQ).

* Publish/Subscribe messaging (pub/sub): M to N
* MOM is based on RPC

* MOM uses queues to give asynchronous communication from the viewpoint of the
sender and receiver

Point-to-point Messaging (P2P) Example

* MQSeries shows how P2P
architecture and
asynchronous
communication are
achieved using RPC
protocols

* Message channel agent
(MCA): controls message
sending and receiving

Example: IBM MQSeries

» General organization of IBM's MQSeries message-
queuing system.

Sending client Routing table Send queue queue Receiving client
I Queue] \ Queue \ r
Program manager [‘ manager _ Program‘
MQ Interface 4 \ « Y | ‘ e
X ([& & (8 &
) [1 | {) 1 X { 1
Server S
Stub atub ‘ MCA| ’MCA MCA‘MCA‘ stub Stub
. 7 -
‘ »
| 4 | (%
T T /w v 1 B
RPC Local network /)\
(synchronous) ! Internetwork ‘
e —— To other remot
Message passing queue managers
(asynchronous)
15

IS 651: Distributed Systems

17

Pub/Sub

* The Pub/Sub modelis an
excellent message delivery
model appropriate for
multiple senders and

multiple recipients publsher -€D<:
= Each publisher can send out

messages for multiple topics

= Fach subscriber can decide

which topics he/she is
interested

IS 651: Distributed Systems

- -

e —--

Communication Infrastructure

Subscriber 1

Subscriber 2

Subscriber 3

Database Access via ODBC

* |t shows a client-side type of
middleware

* Open Database Connectivity
(ODBC)

= A standard programming language
middleware API for accessing
database management systems

" The same client application uses
the different ODBC drivers to
access different types of databases

 Java Database Connectivity
(JDBC): an API for Java

|
SQL Server

ODBC Driver Types

Client Application
|
ODBC Driver Manager and ODBC Cursor Library
| | |

Oracle DB2 Informix

ODBC Driver ODBC Driver ODBC Driver ODBC Driver
| | | |
DB Library SQL*Plus DDCS I-Net
| | | |
TCP/IP (or other transport layer)
|
Ethernet, Token- Database Server
Ring, etc. via the network

N-tier Systems (1990s)

* N-tier systems are not a different approach than 3-tier systems, they
are just an elaboration of the same pattern

* Web server: serves content to the web using http protocol

* Application server: hosts and exposes business logic and processes

Presentation — Web Browser (client)

Communication — Web Server

Logic — Application Server

Storage — Database Server

IS 651: Distributed Systems

20

LAMP Web Scripting with N-tier Systems

* L —the operating system. L stands for Linux as the most common one, but
any operating system can be used such as Windows.

A —the web sever. A stands for Apache HTTP Server, as the most popular
open source web server, but any web server may be used.

* M — the database. M stands for MySqgl as a popular open-source
relational database, but any database may be used.

* P—the scripting language. P originally stood for Perl which is a popular
scripting language and oddly enough, many scripting languages begin
with P such as Python and PHP.

= Any scripting language may be used, however, such as Ruby and JavaScript.
= Scripting languages are characterized as interpreted and dynamically typed.

MEAN Web Scripting with N-tier Systems

* M- MongoDB, a NoSQL database
* E— Express.js, a web application framework that runs on Node.js

 A— Angular, a JavaScript MVC (model, view, control) framework that
runs in browser JavaScript engines

e N— Node.js, an execution environment for event-driven server-side
and networking applications

* MEAN applications can be written in one language, namely
JavaScript, for both server-side and client-side execution

environments.

= An open source project by IS students:
https://github.com/rogueriderhood/mean-project/

IS 651: Distributed Systems 22

https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/Express.js
https://en.wikipedia.org/wiki/Web_application_framework
https://en.wikipedia.org/wiki/AngularJS
https://en.wikipedia.org/wiki/Model-view-controller
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/Event-driven_architecture
https://en.wikipedia.org/wiki/Server-side
https://en.wikipedia.org/wiki/Client-side
https://github.com/rogueriderhood/mean-project/

J2EE (Enterprise Edition) Application Server

* Java naming and directory interface (JNDI): A naming service for containers
* The Java messaging service (JMS): MOM service offered by Java frameworks
 Remote method invocation (RMI): Java framework version of object-oriented RPC

* Servlet Container: a server-side software component for objects to receive a

requests and generate responses. A servlet is often built as Java Server
Pages (JSPs)

Enterprise JavaBeans (EJB) : a server-side software component for business logic
It is still widely used and can provide Web services

Web Browser Web Server Servlet EJB Container
> Container
(JSPs)

J2EE Application Server (JNDI, JMS, RMI)

Services (2000s)

Standard service contracts
= Participants have agreements
= They should also be discoverable by using some kind of registry or
directory
Loose coupling
= The participants have minimal dependencies on each other

Encapsulation
= Services should hide their logic from the outside world as a black box
= This increases flexibility, reusability and increases composability

= Services should also have location transparency where users do not
care where the services are located

Statelessness

= Keep track of as little state as possible
= This is a requirement for loose coupling and encapsulation

Provider
WSDL

Requesto
SOAP

Principles in Distributed System Evolution

* A lot of concepts/components were developed to enable network-
based communication among distributed computers via messages

= Marshalling, RPC Runtime, IIOP, IDL, message queue, MCA, etc.

* Some new techniques/models are built on top of existing
techniques/models
= RPC -> MOM -> Pub/Sub
= Many seemingly different techniques/models (NFS, ODBC, transaction
middleware, CORBA and DCOM) are all built on top of RPC
* Some new techniques/models are extensions of existing
techniques/models
= 2 tier -> 3 tier -> n tier -> service

Extensible Markup Language (XML)

* Markup language: text document with annotation (normally using
tags)
= HyperText Markup Language (HTML)
= EXtensible Markup Language (XML)
= EXtensible HyperText Markup Language (XHTML)

= etc.
e XML documents form a tree structure

e Well-formed XML VS. Valid XML

e XML validation

= Document type definition (DTD)
= XML Schema

Well-formed XML

* It contains only properly encoded, legal Unicode characters

* None of the special syntax characters (<, &) appear except when
performing their markup-delineation roles

* The begin, end, and empty-element tags that delimit the elements
are correctly nested, with none missing and none overlapping

* The element tags are case-sensitive - the beginning and end tags
must match exactly

* There is a single "root" element that contains all the other elements
* Well-form check command: S>xmllint --noout shiporder.xml

Valid XML

The declaration in line 1 is contains question
mark characters and is called a processing
instruction. It refers the version and encoding
for the XML document

Line 2 has a reference to an external DTD file
that contains the DTD

= |t can be replaced by embedding DTD content

Line 3 is the root tag for the document. Note
that it contains an attribute. Any XML tag may
have an attribute and it must be quoted.

Note that even though item is repeated, it
uses the same tag. Never create tags like
item1, item?2, etc

<?xml version="1.0" encoding="utf-8" 7>
<!DOCTYPE shiporder SYSTEM "shiporder.dtd">
<shiporder orderid="889923">
<orderperson>John Smith</orderperson>
<shipto>
<name>0la Nordmann</name=>
<address>Langgt 23</address>
<city>4000 Stavanger</city>
<country>Norway</country>
</shipto>
<item>
<title>Empire Burlesque</title>
<note>< Special Edition > </note>
<quantity>1</quantity>
<price>10.90</price>
</item>
<item>
<title>Hide your heart</title>
<quantity>1</quantity>
<price>9.90</price>
</item>

</shiporder>

IS 651: Distributed Systems 28

Document Type Definition (DTD)

e The declaration of the DTD in the XML document has the syntax where SYSTEM refers to that fact that the DTD is a private
implementation for this document rather than a standard. It would change to PUBLIC if it was a standard.

* <IDOCTYPE root-element SYSTEM "file.dtd" >
* DTDs do not have XML syntax. They have their own syntax.
 The !IELEMENT declares an element (also called a tag).

* The child elements of a tag are declared as an ordered list in parentheses. If an element can be repeated 1 or more times, it
must have a plus sign (+) after it. The character star (*) means 0 or more and so makes elements optional.

* Aleaf node of the hierarchy is declared #PCDATA which means parsed character data and it is the text of the content.

* The < and > are XML built-in entities for the less than and greater than (< >) characters. XML markup characters cannot
be used because they would confuse a parser, so these pre-defined entities must replace them.

* There are no data types in DTDs. Everything is text.

 The !ATTLIST declares an attribute for an element and typically declares it as CDATA which means character data. This means
that the XML parser does not parse it.

* One can require a document to have an attribute in order to be valid by using #REQUIRED.

DTD Example

<!ELEMENT shiporder (orderperson, shipto, item+)>
<!ELEMENT orderperson (#fPCDATA)>
<!ELEMENT shipto (name, address, city, country)=
<!ELEMENT name (#PCDATA)>

<!ELEMENT address (#PCDATA)>

<!IELEMENT city (#PCDATA)>

<!ELEMENT country (fPCDATA)>

<!ELEMENT item (title, note*, quantity, price)>
<!ELEMENT title (#PCDATA)>

<!ELEMENT note (#PCDATA)>

<!IELEMENT quantity (#PCDATA)>

<!ELEMENT price (#PCDATA)>

<!ATTLIST shiporder orderid CDATA #REQUIRED>

* Validation command: S>xmllint --noout --valid shiporder.xml

IS 651: Distributed Systems

Demo

* Well-form check command
= xmllint --noout shiporder.xml
= xmllint --noout shiporder-not-well-formed.xml|
= xmllint --noout shiporder-well-formed-not-valid.xml

* Validation check command
= xmllint --noout --valid shiporder.xml
= xmllint --noout --valid shiporder-well-formed-not-valid.xml

