
Note on Case study

IS 651: Distributed Systems 1

• Post at the Piazza post on your topic on your choice for your papers/projects by
04/16
• Providing multiple candidates will help me suggest the best one for you
• You can directly upload papers you selected
• You can utilize additional resources, including multimedia resources, to

explain/demonstrate the concepts and working mechanism
• Add references/acknowledgement if you use resources from others and make

sure you can explain them well
• Analyze the techniques objectively, including its strength, weakness, applicable

conditions
• Make connections with what we have learned, especially Chapter8 (Distributed

System Basics)
• Make sure to sign up your presentation’s time slot via the spreadsheet

https://docs.google.com/spreadsheets/d/1-yk9xTQs4nVjogecSR5CRbxED0BDb83yWc0-gxSh-_U/edit

Discussion #8

IS 651: Distributed Systems 2

• Briefly explain how the implementation of catalog application looks
like without following service-oriented architecture, and its
differences from the current one
§ Implementation without SOA

o MEAN/LAMP stack for web application
o 3 layers: application, business logic, database
o Mostly for human, not programs, to use

§ Differences
o Using SOA have an additional layer: service layer. It hurts latency but supports easy

integration with other applications through service API and loose-coupling
o If the implementation follows object-oriented programing, it is easy to convert it to

follow SOA using third-party libraries

IS 651: Distributed Systems
Chapter 11: REST Revisited

Jianwu Wang
Spring 2021

Learning Outcomes

•After learning this chapter, you should be able to
§ Learn RSS and display RSS feed programmatically
§ Understand different XML parsers and their differences
§ Understand and build mashup applications
§ Implement REST services w/o CodeIgniter

IS 651: Distributed Systems 4

REST Revisited

• REST defines a set of architectural principles by which you can design
Web services that focus on a system's resources
§ How resource states are addressed and transferred over HTTP

• An HTTP REST Web service follows three basic design principles:
§ Use HTTP methods (GET, POST, PUT, DELETE) explicitly (HTTP is stateless)
§ Expose directory structure-like URIs
§ Transfer XML, JavaScript Object Notation (JSON), or both

• REST should be stateless
§ But sometimes, it needs to handle some states

IS 651: Distributed Systems 5

Flickr API Images
• In Chapter 7, we only see xml in return by calling Flickr API, not the

actual image

• We can construct image based on the reply using structure:
http://farm{farm-id}.static.flickr.com/{server-id}/{id}_{secret}.jpg
§ http://farm4.static.flickr.com/3232/5794206993_861560fe53.jpg

IS 651: Distributed Systems 6

https://api.flickr.com/services/rest/?method=flickr.photos.search&api_key=cf05f33a242aa942100801884dbae443&tags=nature&per_page=10
http://farm4.static.flickr.com/3232/5794206993_861560fe53.jpg

phpFlickr: a third-party library for Flickr
• Comments of the demo program

1. All the variables above this comment
initialize a variable for use in the Flickr API
URL. The user IDs for the Flickr are in a
format like 45883295@N04

2. This program is for the Flickr API
flickr.photos.search entry and uses the
previous variables

3. This block loops through all the results of
the search and creates the image links

4. Note how the mapping we see in the
demo/exercise is done automagically here!
(The line should not wrap.)

• The REST service link to retrieve the same
images without phpFlickr library

IS 651: Distributed Systems 7

<?php
require_once("phpFlickr.php");
$f = new phpFlickr("YOUR_FLICKR_API_KEY");
$tag = "YOUR_TAG";
$num = "NUMBER_OF_RESULT_TO_RETURN";
$nsid = "USER_ID"; //1
$photos = $f -> photos_search(array("user_id" =>

$nsid, "tags" => $tag, "per_page" => $num,
"sort" => "date-posted-desc")); //2

if(count($photos) == 0) { //counting the size of
array

echo "<p>Sorry, the requested photo(s) could
not be found.</p>";

} else {
foreach($photos['photo'] as $photo) { //3
echo "<a href='http://www.flickr.com/photos/" .
$photo['owner'] . "/" . $photo['id'] .
"/' title='View larger'>";

echo "buildPhotoURL($photo,
"Medium") . "' alt='$photo[title]'
border='0'>"; //4

}
}

?>

https://userpages.umbc.edu/~jianwu/is651/programs/ch11/flickrPhotos.php
https://www.flickr.com/services/api/flickr.photos.search.html
https://api.flickr.com/services/rest/?method=flickr.photos.search&format=rest&user_id=49598046@N00&tags=Missouri&per_page=10&sort=date-posted-desc&api_key=0d34827fd806f23c72a6d9899fcabd4d

RSS (Really Simple Syndication)

• A different family of XML
vocabularies for blogs and
other uses
• All RSS is XML with various

schemas depending on
version
• An RSS document, called

"feed" or "channel", includes
text and metadata of the text
• A feed/channel contains one

or more items

IS 651: Distributed Systems 8

Display RSS Feeds using Magpie library

• Comments of the demo program
1. As usual, we must include the library

code for use in the program.
2. I used an RSS feed from the

Washington Post about politics
§ You can substitute the URL for any feed
§ You can go to the feed URL and see that it is

typically transformed by default in your web
browser, but the program receives the XML

§ You can see this by using curl from the
command-line. It will return the XML feed
rather than the HTML that your browser
displays

IS 651: Distributed Systems 9

<?php
require_once 'magpie/rss_fetch.inc'; //1
$url =

'http://feeds.washingtonpost.com/rss/politics'; //2
$rss = fetch_rss($url);
$i=0;
echo "Site: ", $rss->channel['title'], "
"; //3
foreach ($rss->items as $item) { //4

$title = $item['title'];
$url = $item['link'];
echo "$title
";
if(++$i==3) break;

}
?>

https://userpages.umbc.edu/~jianwu/is651/programs/ch11/rss.php
https://www.washingtonpost.com/discussions/2018/10/12/washington-post-rss-feeds/
http://feeds.washingtonpost.com/rss/politics

Display RSS Feeds using Magpie library (2)

• Comments of the demo program
3. Magpie parses the XML of the

feed into PHP arrays
§ That is how the code can address

tags using array notation such as
channel['title']

§ Magpie returns a PHP object and
then uses the arrow notation to
access each tag as in: $rss-
>channel['title']

4. The foreach loop gets the
desired subset of these tag
variables for display

IS 651: Distributed Systems 10

<?php
require_once 'magpie/rss_fetch.inc'; //1
$url =

'http://feeds.washingtonpost.com/rss/politics'; //2
$rss = fetch_rss($url);
$i=0;
echo "Site: ", $rss->channel['title'], "
"; //3
foreach ($rss->items as $item) { //4

$title = $item['title'];
$url = $item['link'];
echo "$title
";
if(++$i==3) break;

}
?>

https://userpages.umbc.edu/~jianwu/is651/programs/ch11/rss.php

Quick Question

• RSS feeds are really the first REST web service (before we have REST
web service concept), why?

IS 651: Distributed Systems 11

XML Parsers

• Object-based (DOM)
• Event-based
• Push Parsers (SAX)
• Pull Parsers (StAX)

IS 651: Distributed Systems 12

XML Parser Classification

XML DOM Parser

Mashups
• A mashup is a web-based application that uses and combines data

from two or more sources to create new services
• Mashup of the Movie Blogger rss feed and The Open Movie Database

(Omdbapi) for movie data
• Final Demo (the movies listed change over time)

§ Demos with source codes: Demo 1, Demo 2, Demo 3

• Helper Function Code - to do the call to omdbapi and return the data
§ You can use it unchanged, but be sure you understand it
§ Change .txt to .php and put in your gl account

IS 651: Distributed Systems 13

http://www.movie-blogger.com/feed/
http://www.omdbapi.com/
https://userpages.umbc.edu/~jianwu/is651/programs/ch11/omdbapi_movie_blogger_mashup.php
https://userpages.umbc.edu/~jianwu/is651/programs/ch11/omdbapi_title.php
https://userpages.umbc.edu/~jianwu/is651/programs/ch11/omdbapi_title2.php
https://userpages.umbc.edu/~jianwu/is651/programs/ch11/omdbapi_mashup_starter.php
https://userpages.umbc.edu/~jianwu/is651/programs/ch11/omdbapi.txt

Creating a REST API using CodeIgniter
• Demo
• GET has function index() in the controller

§ Get all the records from the database with the URL:
http://host/CI/index.php?/Rest/

§ Get a specific record using the id as:
http://host/CI/index.php?/Rest/index/1

§ The if statement checks for the id using the CI URI Class.
The segments are numbered with #1 being rest. So #3
would the id=1 above

§ postmodel is the model implementation to fetch data.
Fetched data is returned to client

• POST has function create()
§ One can create a record with a URL such as:

http://host/CI/index.php?/Rest/create/Motorhead/Ham
mered/Rock

§ The id can be ignored as it will be auto-incremented by
the database

§ postmodel function to save data. A message array is
returned to client

IS 651: Distributed Systems 14

https://userpages.umbc.edu/~jianwu/is651/programs/ch9/ci/index.php?/Rest/
http://host/CI/index.php?/Rest/

Creating a REST API using CodeIgniter (2)

• PUT has the function edit ()
since it updates an existing
record.
• Sample Url:

http://host/CI/index.php?/Rest
/edit/Motorhead/Hammered/
Metal/2 if it has id=2

• DELETE has the function
delete () and deletes records
by id
§ Sample Url:

http://host/CI/index.php?/Rest
/delete/2

IS 651: Distributed Systems 15

The Problem?

• The problem is we have not really implemented a uniform HTTP
method interface
§ We can see this by issuing a GET command using curl to update. It works!

o curl -v -X GET http://host/CI/index.php?/Rest/edit/Motorhead/Hammered/Metal/2
§ This is bad because updates are supposed to use PUT

IS 651: Distributed Systems 16

Creating a (correct) REST API

• Demo
• So now we have a complete REST API

for the cdStore service that meets all
the requirements for a RESTful
architecture in CodeIgniter.

IS 651: Distributed Systems 17

https://userpages.umbc.edu/~jianwu/is651/programs/ch9/ci/index.php?/Rest2/

Creating a REST API without CodeIgniter

• You will implement one for your own catalog in the homework from
scratch - not using CodeIgniter
• Scratch API - use this for the homework

IS 651: Distributed Systems 18

http://userpages.umbc.edu/~jianwu/is651/651book/is651-strapdown.php?f=is651-Chapter11.md

