Comparison of Distributed Data-Parallelization Patterns for Big Data Analysis: A Bioinformatics Case Study

Jianwu Wang, Daniel Crawl, Ilkay Altintas

San Diego Supercomputer Center, University of California, San Diego

Kostas Tzoumas, Volker Markl

Technische Universität Berlin
Background – DDP Patterns

- Distributed Data-Parallelization (DDP) Patterns
 - Many identified DDP Patterns: Map, Reduce, Match, CoGroup, and Cross (a.k.a. All-Pairs).
 - Reusable practices for efficient design and execution of big data analysis and analytics applications.
 - Combine data partition, parallel computing and distributed computing technologies.
Background – Details on Some Identified DDP Patterns
Challenges

• Which DDP patterns fit for a specific program? Which one is the best? What are the main factors affecting the performance?
 – Comparisons of different DDP patterns on performance when applied to the same tool and the main factors affecting such performance have not been well studied.
Work Summary

- Using an existing bioinformatics tool as an example, called CloudBurst, demonstrate multiple feasible DDP options for the same tool.
- Identify two key factors affecting the performances of different DDP options.
- Demonstrate the feasibility of the identified factors and show that switching DDP option could speed up performance by over 1.8 times.
A Bioinformatics Case Study - Background

• **Sequence Mapping Tools**
 – Map query sequences to reference sequences to know whether there are similar fragments in reference data for each query sequence and their locations.

• **Seed-and-Extend Algorithm for Sequence Mapping**
 – First finds sub-strings called *seeds* with exact matches in both query and reference sequences;
 – Then extends the seeds into longer, inexact matches.
A Bioinformatics Case Study - CloudBurst

- **CloudBurst**: a Parallel Seed-and-Extend Sequence Mapping Tool
 - Its scalability and performance speedup in distributed environments have been verified.
 - Its original implementation is based on MapReduce.
 - We re-implemented it using MapReduce, MapCoGroup, MapMatch.
Original CloudBurst using MapReduce

Query and reference datasets of CloudBurst have to be distinguished throughout the phases.
CloudBurst using MapCoGroup

Map: Two Map functions for query and reference separately.
CoGroup: Each instance gets a reference list and a query list for the same key, so it has one less loop compared to CloudBurst using MapReduce.
CloudBurst using MapMatch

Map: Two Map functions for query and reference separately.

Match: Each instance gets one query value and one reference value for the same key, it does not need any of the loops in CloudBurst using MapReduce.
DDP Performance Comparison

• Main difference of the above three implementations
 – How the Map output data is read into and processed in Reduce/CoGroup/Match?

• Total execution time of Reduce/CoGroup/Match includes two main parts
 – User function execution time
 – User function execution number
The First Performance Factor

• The difference between the numbers of keys in the two input data, denoted as p.
 – It reflects the balance of the two input datasets.
 – If one dataset is much larger than the other one, their key sets will have less common keys.
 – If a key only exists in one dataset,
 • Match will not have user function executions for it.
 • Reduce still needs to run user function executions for it.
 – Reduce is more suitable for balanced input datasets and Match is more suitable for imbalanced ones.
The Second Performance Factor

• The average number of values per query/reference key, denoted as q.
 – It reflects the sparseness of the values for each key.
 – If a key has a lot of values,
 • Match has to have a separate user function instance for each possible value pairs.
 • Reduce only needs one execution to process all values for the same key.
 • Reduce has less user function execution number.
 – Reduce is more suitable for condensed values per key and Match is more suitable for sparse values per key.
Performance Analysis for CoGroup

- **User function execution time**
 - CoGroup takes less time than Reduce since it does not need the first loop in Seed Extension phase.
 - It takes more time than Match because it has unnecessary executions with empty set from one input.

- **User function execution number**
 - This number for CoGroup is the same with Reduce’s and less than Match’s.

- **Overall, its total execution time should be between those of Reduce and Match.**
Questions to be Answered by Experiments

• Would changing the DDP pattern to execute the same function have a big influence on the performance?

• Can the two factors identified above adequately explain the performance differences?
Experiment Information (1)

• **DDP Execution Engine**
 – We use Stratosphere (version 0.2) because it supports Map, Reduce, CoGroup and Match directly.

• **Test Bed**
 – It is done on five compute nodes in a compute Cluster environment.
 – Each node has two four-core CPUs.
 – We only run the programs with a static environment because the target is to compare performance differences of the DDP patterns, not scalability.
• **Execution Parameter for CloudBurst**
 – *mismatches* (k) specifies the maximum allowed length of differences. It affects the results greatly.
 – Both values of p and q will change accordingly when k value changes.
 – So we tested different executions of the same program and parameters except k value.

• **Parallelization Parameter**
 – All experiments are done with 12 parallel instances for Map, Reduce, Match and CoGroup.
• **Experimental Data**

 – The first experiment processes two large datasets from real projects.

 • Query dataset: over nine million sequences.
 • Reference dataset: over 1.2 million sequences.

 – The second experiment processes only a large reference dataset.

 • Query dataset: only include the first 5000 sequences used above.
 • Reference dataset: the same as above.
Experiment Results for Execution Times (1)

The execution times (unit: minute) of different DDP implementations of CloudBurst for large query and reference.

<table>
<thead>
<tr>
<th>Mismatch number (k)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MapReduce</td>
<td>2.786</td>
<td>3.405</td>
<td>3.537</td>
<td>8.622</td>
</tr>
<tr>
<td>MapCoGroup</td>
<td>1.564</td>
<td>1.916</td>
<td>2.477</td>
<td>24.640</td>
</tr>
<tr>
<td>MapMatch</td>
<td>1.474</td>
<td>1.883</td>
<td>2.689</td>
<td>47.393</td>
</tr>
</tbody>
</table>

Finding:
1. The performances of MapMatch is better than those of MapReduce for $k = 0, 1, 2$; but much worse when $k = 3$.
2. MapCoGroup’s execution times are always between those of MapReduce and MapMatch.
Experiment Results for Execution Times (2)

The execution times (unit: minute) of different DDP implementations of CloudBurst for only large reference.

<table>
<thead>
<tr>
<th>Mismatch number (k)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MapReduce</td>
<td>1.920</td>
<td>2.313</td>
<td>2.565</td>
<td>2.538</td>
</tr>
<tr>
<td>MapCoGroup</td>
<td>1.523</td>
<td>1.754</td>
<td>1.907</td>
<td>1.888</td>
</tr>
<tr>
<td>MapMatch</td>
<td>1.453</td>
<td>1.690</td>
<td>1.763</td>
<td>1.799</td>
</tr>
</tbody>
</table>

Finding:

1. The performances of MapMatch are always better than those of MapReduce for this experiment.
2. MapCoGroup’s execution times are always between those of MapReduce and MapMatch.
Finding Summary

• Different DDP patterns have great impact on the execution performance of CloudBurst.

• No DDP pattern combination is always the best, even only for different parameter values of the same tool.

• DDP pattern selection of the same tool could be very important for its performance.
Experiment Results for Factors

Relationship between execution speedup and its factors for large query and reference.

<table>
<thead>
<tr>
<th>Mismatch number ((k))</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key set size difference ((p)) (unit: million)</td>
<td>167</td>
<td>163</td>
<td>116</td>
<td>0.28</td>
</tr>
<tr>
<td>Average value number per key ((q))</td>
<td>1.6E-5</td>
<td>1.6E-2</td>
<td>6.05E-1</td>
<td>2.73E3</td>
</tr>
<tr>
<td>Speedup ratio of MapMatch to MapReduce</td>
<td>1.890</td>
<td>1.704</td>
<td>1.201</td>
<td>0.181</td>
</tr>
</tbody>
</table>

Relationship between execution speedup and its factors for only large reference.

<table>
<thead>
<tr>
<th>Mismatch number ((k))</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key set size difference ((p)) (unit: million)</td>
<td>179</td>
<td>189</td>
<td>149</td>
<td>4.16</td>
</tr>
<tr>
<td>Average value number per key ((q))</td>
<td>0</td>
<td>1.8E-5</td>
<td>4.6E-4</td>
<td>1.74</td>
</tr>
<tr>
<td>Speedup ratio of MapMatch to MapReduce</td>
<td>1.321</td>
<td>1.369</td>
<td>1.455</td>
<td>1.411</td>
</tr>
</tbody>
</table>
Finding Summary

- The values of the two factors greatly affect which DDP pattern has better performance.
- Most speedup ratios decrease along with the decrease of p values and the increase of q values.
Conclusions

• Different DDP patterns could have a great impact on the performances of the same tool.

• MapReduce can be used for wider range of applications with either one or two input datasets. But it is not always the best choice for application complexity and performance.

• Two affecting factors, namely input data balancing and value sparseness, can explain their performance differences.
Future Work

• Investigate more tools for multiple DDP patterns and their performances on other DDP engines to generalize our findings.

• Study how to utilize the identified factors to automatically select the best DDP pattern combination from multiple available ones.
• **Acknowledgements**
 – NSF ABI Award DBI-1062565 for bioKepler
 – The Gordon and Betty Moore Foundation award to Calit2 at UCSD for CAMERA
 – The rest of bioKepler and Stratosphere teams for their collaboration
 – FutureGrid project for experiment environment support

• **Contact**
 – jianwu@sdsc.edu