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Abstract—Memory-based methods for recommending data 
services predict the ratings of active users based on the 
information of other similar users or items, where the 
similarity algorithm always plays a key role. In many 
scenarios, we find that the similarity of two users always show 
different effectiveness when predicting different ratings. 
Normal similarity algorithms usually do not count the 
difference, since they originate from statistic and algebra fields 
and do not directly aim at recommendations. This paper 
proposes a novel method to amend the user similarity 
generated by a normal similarity algorithm to more accurately 
describe the effectiveness of the similarity on a targeted item. 
We apply our method to improve the Pearson Correlation 
Coefficient (PCC) algorithm which is one of the most 
commonly used similarity algorithms. The experiment results 
on some practical datasets show that our method is slightly 
better than the original PCC algorithm for predicting ratings 
in recommendations. 

Keywords-data services; recommender system; user 
similarity; collaborative filtering 

I.  INTRODUCTION  
Data service recommendation predicts the interest of data 

services(items) for an active user by collecting rating 
information from other similar users or items, and related 
techniques have been widely employed in some famous web 
communities [14], such as Amazon1 and Ebay2. The key idea 
is that the active user will prefer those items that are 
preferred by similar users. 

Memory-based approaches have been deeply studied and 
widely used in practice, which can be divided in two 
categories: user-based [4, 8, 10] and item-based [17, 6]. 
When estimating an unknown test rating, memory-based 
approaches will firstly collect the similar users or items by 
some similarity algorithms, such as Pearson Correlation 
Coefficient (PCC) [16] and Vector Space Similarity (VSS) 
[4]. Then, the rating information of similar users or items 
will be handled by some prediction algorithms to produce the 
estimated value for the test rating. 

In many scenarios, we find that the similarity of two 
users always show different effectiveness when predicting 
different ratings. For example, user u and v are similar users 
since they share the preference on items i1, i2, i3, i4, which are 

                                                           
1 http://www.amazon.com/ 
2 http://www.ebay.com/ 

all data services on comedy movies. Item i5 and i6 are 
unknown ratings of user v, where i5 is a data service on 
comedy movies and i6 is a data service on science-fiction 
movie. The ratings of user u on item i5 and i6 will be used to 
predict the rating of i5 and i6 for user v respectively 
according to the similarity between u and v. The similarity 
will be more effective to predict the rating of user v on item 
i5 than that on item i6, due to our common experiences that it 
is unreasonable to infer a user’s preference on a science-
fiction movie from his/her preference on comedy movies. 
Similarly, if user w and v are similar because they both like 
several action movies, the similarity between user u and v 
will be more effective than the similarity between w and v to 
predict the rating of user v on item i5. Yet normal similarity 
algorithms usually do not count such differences, since they 
generate from more universal statistic principles and do not 
directly aim at recommendations. So, there is a latent error 
factor when applying such algorithms into the 
recommendation tasks directly. 

Based on the above observations, we argue that the 
aspect of the predicted item should be elaborately counted in 
the user similarity calculation to get better recommendations. 
This paper proposes a novel method to amend the user 
similarity generated by a normal similarity algorithm to 
describe the effectiveness of the similarity on a targeted item 
more accurately. Given a specific similarity algorithm, our 
method can work in two ways: one is called Correction 
Policy, which uses item relationships to adjust the user 
similarity; the other is named Precision Policy, which selects 
the more suitable co-rated items to calculate user similarities. 

We note that this paper focuses on the effectiveness 
description of the user similarity on different items and the 
influence analyses of the effectiveness on the rating 
prediction, rather than addressing a combined model to get 
the optimal recommendation as we have learnt from the 
Netflix Prize competition [3]. So, we apply our method to 
improve the Pearson Correlation Coefficient (PCC) 
algorithm which is one of the most commonly used 
similarity algorithms. The experiment results on some 
practical datasets show that our method outperforms the 
original PCC algorithm for predicting ratings in 
recommendations. 

The rest of the paper is organized as follows. The next 
section provides a brief review of related work. Section 3 
presents our method of the item-targeted user similarity. The 
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results of an empirical analysis are presented in Section 4, 
followed by a conclusion in Section 5. 

II. RELATED WORK 

A. Definitions and Notations  
Let I = {i1, i2, ..., in} be a set of items, U = {u1, u2, ..., um} 

be a set of users, and Iu be the set of items rated by u. The 
relationship between users and items is denoted by an M N 
matrix, where each entry ru,i represents the rating of item i 
made by user u. Let ur  represent the average rate of user u 
on all rated items. 

B. Recommendation Methods  
We will first briefly review the development in 

recommendation. Generally, existed algorithms fall in either 
of the following two categories: memory-based filtering and 
model-based filtering [7]. 

1)Memory-based Approaches.Memory-based approaches 
essentially are heuristics to predict a missing rating by 
aggregating the rating of k-neighbors who have previously 
rated the item. To identify the k-neighbors, several 
algorithms have been proposed to compute the similarity 
between each pair of users or items. The common-used 
aggregation is to compute the weighted average of the k-
neighbors’ ratings on the particular item [1]. Considering the 
fact that different users may use the rating scale differently, 
the weighted sum uses their deviations from the average 
rating of the corresponding neighbor. Two types of memory-
based approaches have been studied: user-based [4, 8,10] 
and item-based [17, 6]. User-based approaches predict the 
ratings of active users based on the ratings of similar users 
found, and item-based approaches predict the ratings based 
on the information of the computed similar items. 

2)Model-based Approaches. In contrast to memory-
based methods, model-based approaches use the training 
examples to learn a predefined model, which is then used to 
make rating predictions. There are various approaches in this 
category. Typical examples include clustering model [21, 20, 
11], aspect models [9, 19] and latent factor models [5]. 
Dimensionality reduction and matrix reconstruction 
techniques are often the subject of discussion [2, 18] . 
Model-based approaches are often time-consuming to build 
and update, and cannot cover as diverse a user range as the 
memory-based approaches do [3]. In order to take the 
advantages of memory-based approaches and model-based 
approaches, hybrid approaches have been studied recently. 
For example, Bell et al. combined the output of multiple 
recommender algorithms to improve performance [12, 2]. 

3)Similarity Computations. As mentioned above, 
similarity algorithms are used to collect the similar neighbors 
in memory-based approaches, and directly affect predictions 
accuracy. Various approaches have been used to compute the 
similarity between users or items in recommender systems. 
We will take user similarities as examples to explain the 
principal of these approaches. The two most popular 
approaches are Pearson Correlation Coefficient (PCC) [16] 
and Vector Space Similarity (VSS) [4]. PCC algorithm [16] 

measures the similarity between two users based on the items 
that both users have rated in common: 
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where Sim(u, v) denotes the similarity between user u and 
user v, and i belongs to the subset of items co-rated by both 
users u and v. Obviously, Sim(u, v) is ranging from [0, 1]. 

VSS algorithm [4] measures the similarity of user u and 
user v by computing the cosine angles between the rating 
vectors of them: 
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where u�  and v�  denotes the rating vectors of user u and 
v respectively. 

Generally, PCC approach is more accurate than VSS 
approach, since it considers the factor of the differences of 
user rating styles [14]. The adjusted cosine similarity 
compensates this drawback by subtracting the corresponding 
user average from each co-rated pair and has been shown 
more effective for measuring item similarities [17]. On the 
other hand, PCC algorithm overestimates the similarities of 
users who happen to have rated a few items identically, but 
may not have similar overall preferences [15]. Herlocker etc. 
proposed to use the following equation to modify the user 
similarity [15]. 
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Here � is a threshold parameter. This method solved the 
problem when only few items rated but in case that when 
|Ia�Ib| is much higher than �, the modified similarity will be 
larger than 1. In order to bound the similarity value to the 
interval [0,1], Hao etc. proposed another equation [14]: 
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Some other researchers address the fact that the similarity 
algorithms would not work well when there are few items 
co-rated by both user u and v. It was empirically shown that 
the rating prediction accuracy could improve if we firstly 
smooth the missing data of the user-item matrix [14, 21]. 

III. ITEM-TARGETED USER SIMILARITY 
The basic idea of the item-targeted user similarity is to 

amend the user similarity generated by a normal similarity 
algorithm to describe the effectiveness of the similarity on a 
targeted item more accurately. We will explain our method 
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based on the PCC algorithm since it is one of the most 
commonly used similarity algorithms. Our method can work 
in two ways to calculate the item-targeted user similarity. In 
the following two sub-sections, we will discuss them in 
details. 

A. Correction Policy 
The key idea of Correction Policy is to adjust the original 

user similarity using a correction factor which measures the 
similarity effectiveness on the predicted rating, and the 
original user similarity is calculated by a normal similarity 
algorithm, such as PCC. The correction factor is as follows: 
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where i is the predicted rating. Given a specific item i, 
the above equation evaluates the quality of the user similarity 
according to the similarity relationships between the item i 
and the items which are shared by the user u and v. We call 
this factor as Similarity Quality. By definition, the value of 
Similarity Quality lies in the range [0,1]. Also, the more 
similar the shared items and the item i are, the larger the 
SimQau value is. Based on Similarity Quality, the revised 
similarity between two users for a specific item i  is as 
follows: 

                   ),,(),(),,( ivuSimQauvuSimivuSim ∗=              (6) 

Here Sim(u, v) lies in the interval [-1, 1]. Sim(u, v, i) will 
be an order of magnitude lower than Sim(u, v) since the value 
of SimQau(u, v, i) lies in the interval [0, 1]. So the 
contribution of similar users on the predicted rating will be 
largely reduced. It is a reasonable inference if we predict the 
unknown rating using the revised similarity, the predicted 
rating will be less than it should be. Therefore, a recovery 
function is required to ensure the revised similarity can keep 
the effectiveness of the similarity quality while removing the 
harmful impact mentioned above. So that the similarity is 
further revised as: 

)),,(),((),,( ivuSimQauvuSimFivuSim ∗=  

                          
x

xxF =)( , x [-1,1]                         (7) 

Obviously, when the value of x lies in [-1, 1], the interval 
of F(x) is still in [-1,1] and meanwhile  F(x) is larger than the 
absolute value of x. In Section 4, we will test the effect of the 
method on some practical datasets. 

B. Precision Policy 
The key idea of Precision Policy is to select such co-rated 

items that are similar to the specific item i to calculate the 
similarity between user u and v. Based on the PCC 
algorithm, we measure the item-targeted similarity between 
two users by adding another factor i: 
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Where � is the item similarity threshold, and Sim(i, j) is 
computed by the normal PCC algorithm. The selection of the 
parameter � is important since a big value will always cause 
the shortage of similar users, and a relative small value will 
not get rid of the impact of the dissimilar items. 

In practice, two similar users do not always share such 
items that are highly similar to the predicted item. In order to 
adequately utilize the information of such users, the item-
targeted similarity is calculated as the follow steps: 

• Step 1: To compute the similarity of two users by the 
Eq.1; 

• Step 2: If the similarity is less than �, then it is 
recalculate by the Eq.8 

Where � is a value assigned beforehand. The advantage 
of this method is that we can discover the similarity between 
users as much as possible, which will provide more useful 
information for the prediction task. This combined method 
will be referred to as c-Precision Policy and the raw 
precision policy expressed by the Eq.8 is called r-Precision 
Policy. In Section 4, we will tune the parameter based on our 
experiments and present the empirical result. 

C. Recommendation Framework 
With the above item-targeted similarity algorithm, there 

are still several basic problems for recommendations. One is 
how to select similar users, and another is how to estimate 
the unknown rating using the similar users’ information. 

The first question comes from the fact that the similar 
users with a lower similarity value will decrease the accuracy 
of the prediction. Although the item-targeted similarity may 
have an advantage over the original similarity, we still 
cannot neglect this problem. In this paper, we adopt the 
method proposed in the paper [14] to deal with this problem. 
Before making a prediction, a set of k most similar users S(u) 
toward user u are first generated according to: 

                      { }uuiuuSimuuS aaa ≠>= ,),,()( θ                  (9) 

where Sim(ua, u, i) is calculated using Eq.7 or Eq.8 
respectively corresponding to the Correction Policy and the 
Precision Policy, and  is the similarity threshold. 
According to Eq.9, the candidate user will be selected as the 
similar user if the similarity between the candidate user and 
the active user is larger than , which tells us that the 
selection of  is important. We will tune the parameter  
based on our experiments and present the empirical results in 
Section 4. 

To solve the second question, a sum of the average rating 
made by the active user u and a weighted average of the 
similar users’ ratings on the specific item is used to generate 
the prediction on the unknown rating: 
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where r
_

u denotes the average rating made by user u and 
Sim(u, v, i), which is computed by Eq.7 or Eq.8, is the item-i-
targeted similarity between user u and user v. This weighted 
sum of deviations from the similar users’ average rating 
specially take into account the fact that different users may 
use rating scale differently. 

IV. EXPERIMENTS 
We did multiple experiments to evaluate the 

effectiveness of our method. In particular, we address the 
following issues: 

• How do the recovery function F and the threshold  
affect the accuracy of predictions in the correction 
policy? 

• How do the thresholds  and � affect the accuracy 
of predictions in the precision policy? 

• For the two item-targeted similarity policies, namely 
Correction Policy and Precision Policy (including c-
precision policy and r-precision policy), which one 
more effective? 

• Is the item-targeted user similarity better for 
predictions compared with the user similarity which 
our method amends? 

A. Datasets 
Two datasets from movie rating are used in our 

experiments: MovieLens3 and Netflix24. We will report the 
simulation results in details. 

TheMovieLens dataset contains 100,000 ratings (1-5 
scales) rated by 943 users on 1682 movies, and each user at 
least rated 20 movies. The density of this datasets is 8.77%. 
To test on different numbers of training users, we extracted a 
subset of 500 users with more than 40 ratings. The first 200 
users are used for training and we altered the training size to 
be 50, 100, 200 users. The last 300 users are used for test, 
and each rating of these users was predicted using an all-but-
one policy [4]. The Netflix2 dataset contains over 100 
million ratings (1-5 scales) rated by 480189 users on 17770 
movies. We randomly extracted a subset of 500 users with 
more than 80 ratings on 3000 movies. The first 200 users are 
used for training and we altered the training size to be 100, 
200 users. The last 300 users are used for test, and each 
rating of these users was predicted using an all-but-one 
policy. 

B. Metrics 
The major criterion for evaluating rating-oriented 

recommendation algorithms is the rating prediction accuracy 
[13]. Several techniques have been proposed to achieve it 
including Mean Absolute Error (MAE), Mean Squared Error 
(MSE), Normalized Mean Absolute Error (NMAE), and so 

                                                           
3 http://www.grouplens.org/ 
4 http://www.netflixprize.com/ 

on. In this paper, the Mean Absolute Error metrics is selected 
since it works well for measuring how accurately the 
algorithm predicts the rating of a randomly selected item 
[10]. MAE is defined as: 

                                    
N

rr
MAE iu iuiu� −

= , ,, ˆ                     (11) 

where ru,i denotes the rating that user u gave to item i, and 

iur ,ˆ denotes the rating that user u gave to item i which is 
predicted by our approach, and N denotes the number of 
tested ratings. 

C. Impact of Recovery Function and  

 
Figure 1.  Impact of parameter F and  on MovieLens dataset. 

 
Figure 2.  Impact of parameter F and  on Netflix2 dataset. 

As shown in Eq.9, when predicting the ratings under the 
correction policy, we give a threshold  to decide the 
selection of similar users which has been collected. By 
assigning a different value to , the performance of the 
prediction could be affected. The value of  is varied from 0 
to 1. When setting  as 0, the algorithm uses all the similar 
users to complete the prediction. When  is set as 1, only 
users that are equal to the active user will be used to predict 
the unknown rating. We tune the value  to show the 
performance on prediction. 

Fig.1 and Fig.2 show the performance changes when the 
threshold  increases from 0 to 1. We can see that the 
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correction policy will achieve the best performance around  
= 0.2 on both the MovieLens dataset and the Netflix2 
dataset. The change trends are similar for different numbers 
of users. 

D. Impact of Parameter  
When we adopt the r-precision policy to implement 

recommendations, parameter  may affect the accuracy of 
the item-targeted similarity between two users since it is 
used to decide which items will be selected for computing 
the similarity value. When setting  as 0, all shared items 
between two users will be used to compute the similarity, 
and so the item-targeted similarity algorithm is equal to the 
normal PCC algorithm. In this experiment, we varied the 
range of  from 0 to 1 with a step value of 0.1. Fig.3 and 
Fig.4 show how the parameter  affects the accurcy of 
predictions on the MovieLens dataset and the Netflix2 
dataset respectively. 

 
Figure 3.  Impact of parameter F and  on Netflix2 dataset. 

 
Figure 4.  Impact of parameter F and  on Netflix2 dataset. 

From Fig.3, we can see that the r-precision policy 
achieves the best performance around =0.4 on the 
MovieLens dateset. Fig.4 shows that the r-precision policy 
achieves the best performance around =0.8 on the Netflix2 
dateset. Although the optimal value of  is different on the 
two datasets, the change trends are similar for different 
numbers of users on a certain dataset. 

E. Impact of Parameter  
We expect that parameter  can make predictions based 

on the c-precision policy more accurate in practice since it 

enables the algorithm to avoid the recalculation for the users 
with a high similarity value. Based on the above training 
results, we tested the parameter  on the MovieLens and the 
Netflix2 datasets. For the MovieLens dataset, we assigned 
0.4 to  and selected 50, 100 and 200 training users. For the 
Netflix2 dataset, we assigned 0.8 to  and selected 100 and 
200 training users. In this experiment, we varied the value of 

 from 0 to 1 with a step value of 0.1. Fig.5 and Fig.6 tell us 
how the parameter  affects the accuracy of predictions 
based on the all-but-one policy  

 
Figure 5.  Impact of parameter  on MovieLens dataset 

 
Figure 6.  Impact of parameter  on Netflix2 dataset 

As showed in Fig.5, given 50, 100 and 200 training users 
respectively, this c-precision policy will achieve the best 
performance around =0.1 on the MovieLens dataset. Fig.6 
shows that this policy will achieve the best performance 
around =0 on the Netflix2 dataset when selecting 100 and 
200 training users respectively. Also, the changing 
tendencies are also similar at different user numbers. This 
result tells us that the c-precision policy have no obvious 
effects on improving the prediction accuracy. 

F. Comparisons 
We note that this paper focuses on describing the 

effectiveness of the user similarity on different items and 
analyzing the influences of the effectiveness on the rating 
prediction, rather than addressing a combined model to get 
the optimal recommendation as we have learnt from the 
Netflix Prize competition [3]. We discuss how to implement 
our method by amending a normal algorithm, which will be 
called original algorithm hereinafter. So, we will compare 
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our method with the original algorithm which is the PCC 
algorithm in this paper.  

Since the c-precision policy is a weak method for 
improving the prediction accuracy, we mainly compare the 
original PCC algorithm with our Correction Policy and r-
Precision Policy in this experiment. The evaluation on the 
MovieLens and the Netflix2 datasets is done based on all-
but-one policy. For the MovieLens dataset, we set =0.4, 
=0.2 as suggested by the above results and vary the number 
of test users from 50 to 200. For the Netflix2 dataset, we set 

=0.8, =0.2 and vary the number of test users from 100 
to 300.  

Note that the test users and the training users come from 
different user sets and the details have been explained in 
Section 4.1. The results are shown in Tab.1 and Tab.2 
respectively. 

TABLE I.  MAE ON MOVIELENS DATASET FOR THE COMPARED 
ALGORITHMS 

 50 users 100 users 200 users 

PCC algorithm 0.77991 0.75738 0.73821 

Correction Policy 0.77708 0.75469 0.73631 

r-Precision Policy 0.77155 0.75046 0.73168 

TABLE II.  MAE ON NETFLIX2 DATASET FOR THE COMPARED 
ALGORITHMS 

 100 users 200 users 300 users 

PCC algorithm 0.76007 0.72306 0.72173 

Correction Policy 0.74929 0.72041 0.71883 

r-Precision Policy 0.74599 0.71524 0.71766 

 
We note that the performance of different algorithms 

would improve along with the increase of the test user 
numbers. This is because, with a larger user database, it will 
be easier to find sufficient number of neighbors with high 
similarities to the active user so that his preferences can be 
estimated more accurately. Also, our method gives better 
results on the Netflix2 dataset, since this dataset have greater 
number of movies and it will be easier to find more similar 
items to calculate the item-targeted similarity. The above test 
results show that the item-targeted similarity can induce 
more accurate precisions than the original algorithm. 

V. CONCLUSIONS 
In this paper, we propose an item-targeted similarity 

method for data service recommendation based on the 
observation that the effectiveness of the user similarity is 
subject to the predicted item. Our method takes into account 
the relationship of the predicted item and the items used by 
similarity computations. We select the PCC algorithm as the 
original algorithm and devise two policies for computing 
item-targeted similarities: one is the correction policy and 
the other is the precision policy. The experiment results on 
some practical datasets show that our method outperforms 

the original similarity method when predicting ratings in 
recommendations. 

For future work, we plan to do more research on how to 
apply our methodology in the calculation of item similarities. 
We will also try to combine our method with some other 
techniques and study their usefulness to recommendations 
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