
A Unified Data and Service Integration Approach for Dynamic Business
Collaboration

Chen Liu1, Jianwu Wang2, Yan Wen3,4, Yanbo Han1
1 Cloud Computing Research Center, North China University of Technology, Beijing, China

2 San Diego Supercomputer Center, UCSD, U.S.A.
3Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

4Graduate University of Chinese Academy of Sciences, Beijing, China
{liuchen, hanyanbo}@ncut.edu.cn, jianwu@sdsc.edu, wenyan84@hotmail.com

Abstract— In many collaborations across multiple
organizations, both data integration and service integration are
equally important. Most existing information system
integration approaches focus only on one aspect, resulting
incomplete intergration results. In this paper, we propose a
businss object model where data and its services are correlated,
and a corresponding unified approach in which the modeling,
composition and interaction of both data and service can be
achieved coherently. This approach can help dynamic businss
collaboration by on demand and automatic updates of both
data integration results and service integration results. The
feasiblity and advantages of the approach is validated via a use
case and a preliminary implementation.

Keywords- Data Integration; Service Integration;
Information System Integration; Dynamic Business
Collaboration

I. INTRODUCTION
Business collaboration is cooperation between multiple

enterprises or organizations working together to achieve a
business goal [1]. In recent years, as a new emerging
paradigm for distributed computing, Service Oriented
Architecture (SOA) has been widely adopted, which can
provide more flexible and dynamic collaboration pattern by
on demand integration of existing services cross
organizational boundaries.

However, most of current service integration approaches,
such as workflow modeling or service compositions [2][3][4],
mainly focus on the integration of service interfaces. A
complete collaboration process needs to be clearly
predefined before its execution. In these approaches, the
business data are hidden behind the control logic of
processes. Users cannot understand the data on the whole.
They can only observe the data from the inputs and outputs
of a service. It is hard for users to quickly capture data
changes and timely adjust processes, especially when
handling emergencies.

The process of a natural disaster relief, such as
earthquake rescue, is a typical example, which involves the
collaboration of multi-departments, e.g., government,
transportation and hospital, and their information systems.
Along with the updates of the disaster situations, decision
makers should constantly adjust their relief plans. For
example, new material shortage reports have to be responded
promptly by updating the original relief plan.

In our opinions, both data and service are equally
important and should be coherently correlated in dynamic
collaborations. The collaboration should promptly respond to
both data and service changes. Therefore, in this paper, we
explore how to achieve both data integration and service
integration and coherent interaction between them. The main
contributions are twofold. First, a business object model is
proposed to give equal attentions to data as well as its
handling interfaces (services), which provides a possibility to
easily share and integrate them in a coherent way. Secondly,
based on the lifecycle of the business object model, a unified
data and service integration approach, called UDSI, is
proposed for dynamic collaboration. The approach includes
business object modeling and composition, key information
monitoring and dynamic event response. Via the approach,
we can achieve on demand and automatic updates of both
data integration results and service integration results.

The rest of the paper is organized as follows. In the
Section 2, a simplified earthquake rescue case is presented to
illustrate the problems we are facing. To alleviate the
problem, our proposed UDSI approach is explained in
Section 3. Then we apply our approach in the rescue case to
demonstrate its feasibility and advantages. A prototype for
the approach is illustrated in the Section 5. Section 6
compares our work with related works. In Section 7, we
discuss our conclusions and plans for future work.

II. CASE STUDY AND PROBLEM ANALYSES
Delivery of Earthquake Relief Materials. When an

earthquake happens in a remote area, the Emergency Office
(EO) of the local government needs to take actions
immediately to deliver relief materials to the disaster area in
time. Near the disaster area, there are several Disaster
Preparedness Centers (DPCs), which store different kinds of
relief materials. The EO needs to make proper delivery plans
for these materials. The collaboration process among EO and
DPCs can be roughly divided into the following steps: 1) the
EO will get the required relief material lists; 2) the EO will
rank available DPCs according to the distances between their
locations and the disaster area; 3) the EO will query the
nearest DPC about its available material and dispatch trucks
to deliver them; 4) the EO will loop step 3 until all required
material are in delivery.

However, such collaboration process might not simply
proceed by following the steps. Disaster situations are
dynamic and evolving. The EO usually needs to make

2012 IEEE First International Conference on Services Economics

978-0-7695-4757-2/12 $26.00 © 2012 IEEE

DOI 10.1109/SE.2012.16

54

2012 IEEE First International Conference on Services Economics

978-0-7695-4757-2/12 $26.00 © 2012 IEEE

DOI 10.1109/SE.2012.16

54

decisions by analyzing related business data. For example,
after an earthquake happens, the EO may launch a material
delivering process to ship 1000 tents to the disaster area. The
number of the required tents is calculated by collecting data
about the disaster survivors at the beginning of the process.
However, in the initial stage of an earthquake, the number of
survivors cannot be completely counted. During the
shipment, the number of survivors may greatly increase.
Therefore, the EO needs to first check the amount of tents
already sent and the amount of tents in delivery, and then
deliver more materials to disaster area according to the new
survivor number.

Data integration is very important to effectively handle
the above-mentioned situations. If decision makers can
timely receive the notifications about tents shortage and be
presented the related information, they can quickly make
new decisions to dispatch more tents. Further, after these
new decisions take effects, users want to know their impact
back on key data information. However, in current
researches, there still lack a mature approach on how to help
users understand the data in a service integration
environment, and how to present business data changes when
there are service changes and vice versa.

In order to deal with the above challenges, we will
explain the rationales of our proposed UDSI approach and
demonstrate how it works.

III. THE UDSI APPROACH
The main idea of the UDSI approach is to mix up the

border of data model and service model. Data and service
should both be regarded as the first class elements for
business collaboration. So we propose a business object
model where business data, modeled as data object, and its
handling operations, modeled as data services, are two
equally important elements. Data objects are used to model
the business data to be shared across the organizations. They
are represented with the nested relational model, which
provide an intuitive and visualized way for business users to
handling complex data. A data service related to a data
object encapsulates a meaningful operation to handle the data
object. By combining data and its services, business object
model provides a coherent way to share, use and integrate
data objects and their services.

The Fig. 1 shows the rationales of the UDSI approach.
First, organizations in collaboration will encapsulate their
information systems, and share their business data and
services as business objects. For each business object, its
metadata will be put into a registry center, which is called
business object community. Different from service registry
centers where services are the only elements, business object
community provides a way to organize/view/search
resources based on services, data or their combinations. We
note that the business objects might be heterogeneous since
each organization itself can decide the content and structure
of each business object to be shared.

Business objects from individual information systems
can be integrated to get composite ones. The composition
process contains both data integration and service integration.
We will explain in detail in the following sub-sections how

to facilitate business object composition by utilizing and
extending our previously developed “Mashroom” tools [5].

To help data object representation and monitoring, key
performance indicators (KPIs) are proposed on the top of
atomic and composite business objects to get their key real
time information that is interested in the business
collaboration. KPI information of a composite business
object will be updated if any of its constituent business
objects is updated. This update can be done automatically via
the service integration made during the business object
composition.

Figure 1. Rationales of the UDSI approach.

Besides key information notification, KPI can also be
used to automatically trigger events once it changes. With
these events, we can pre-define event condition action
(ECA) rules to get recommended actions to deal with the
event. Each action here is defined as an atomic or composite
service, so that data evolutions/changes can be dynamically
and automatically responded.

Based on the business object model and composition,
data behind newly instantiated services by the above trigger
actions can be easily gotten and combined into existing
composite business objects. In this way, KPI can quickly
reflect the impacts of the new services.

The UDSI approach mainly includes three phases. First,
the business objects need to be modeled for the information
systems of each organization in possible business
collaborations. Secondly, the above-modeled individual
business objects are composed to get collective data and
services for certain specific business collaboration. Thirdly,
the atomic and composite business objects are used to easily
present key data information to users, and work together to
respond to events like earthquake. We will explain these
three phases in detail in the following sub-sections,
respectively.

A. Business objects modeling for individual information
systems
Organizations in collaboration first need to agree on how

to interact with each other. In our approach, business object
is used to model the information systems of each
organization for their interaction.

5555

Each business object is modeled by first modeling
sharable data objects using nested relational model and then
modeling data services affiliated with each data object using
general operators of the nested relational model. We call
these business objects that are modeled directly from
individual information systems as atomic business objects.

Nested relational model is used to represent the internal
structure and external view of a data object. This is because
nested relational model is simple, intuitive, and expressive
enough to represent the semi-structured or structured data [5].
For the definition of nested relational model, please refer to
paper [6].

Figure 2. A sample of nested relation model.

With the nested relational model, business data can be
visually presented as nested tables. Figure 2 shows a sample
nested table. It presents the delivering information of a
vehicle. The “Vehicle” relation has several atomic attributes
(namely ID, currentLocation, status, source, target) and a
sub-relation one named “MaterialList”. The sub-relation
describes the relief materials that are delivering or delivered
by this vehicle.

As our previous work in [5], namely “Mashroom”, we
take “column” and “row” as first class objects of a nested
table. A column represents an atomic attribute or a sub-
relation, while each row represents a tuple. An atomic
worksheet attribute can be one of six types: text, textlink,
img, imglink, video, and videolink. Furthermore, the syntax
of Mashroom formula is built from column references, row
references, operators, and constant values. The syntax of
column references and row references are built from path
expression in order to express the nested relational model
correctly. For example, a formula Vehicle/MaterialList/type
specifies the “type” column of the relation “MaterialList”
which is a sub-relation of the relation “Vehicle”, and
Vehicle/MaterialList specifies the first row of the sub-
relation MaterialList”. When a row and a column of atomic
attribute are given, then an array of cells is also defined. In
the above example, when we choose the row 1and column
“Vehicle/MaterialList/type”, then an array of cells, namely
[tent, water], is found.

As a data object is represented as a nested table, a data
service can be built based on operators for handling nested
tables. A set of operators for handling nested tables has been
proposed in our previous work. Table I shows some
commonly used operators. Complete operators could be
found in [5]. With these operators, users can easily define
required data operations and assign them with proper
business semantics. To be compatible with third-party
services, data services are also encapsulated as Web services.

TABLE I. UNARY OPERATORS FOR HANDLING THE NESTED TABLES

Operand Operator Semantics

Table CreateTable
to create a new table by copying a
sub-relation or an atomic attribute

from one of the current tables

Column
CreateColumn to create a new column and add it to

a table
DeleteColumn to delete a column from a table

RenameColumn to rename a column from a table

Row
Filter

to filter a table by some condition,
conditions is a group of condition
expressions defined on the atomic

attributes of this sub-relation

Sort to sort tuples in a table according to
values of a certain attribute

Cell CellEdit to edit a cell in a table

Another challenge here is how to keep consistency when
multiple services handle the same data object simultaneously.
In our current design, the changes made by services should
be transactional. An operation should have the effect of
having exclusive control over the involved data object when
making its changes.

B. Business objects composition from multiple information
systems
For certain business collaborations among several

organizations, such as delivery of disaster relief materials,
the information of each organization needs to be shared and
integrated on demand. So we need a simple way to compose
the business objects of each organization in order to get an
overall collective data and service.

Users can get composite business object by selecting
needed business objects and composing them via the
following steps: 1) choose business objects to be composed;
2) select or transform the data objects in these business
objects as needed using unary operators in Table I; 3)
combine multiple different nested tables into a new one
using multivariate operators (see below for details); 4)
modify the combined table again if needed using the unary
operators; 5) define the combined table as a data object; 6)
define the operator process used in step 1-4 as one special
data service of the data object, called “update”, and
optionally define more data service for the data object; 7)
publish a new business object based on the data object and
its data services.

To facilitate operations on multiple tables, we defined
two multivariate operators, namely Merge, and Fuse. More
operators could be defined for other functionalities.

The merge operator merges schema of several tables and
create a new head of a table. The formula of this operator for
two tables is merge(a, b, <a.X, b.Y>), where both a and b
can only be a relation or sub-relation, X and Y are atomic
attributes of relation/sub-relation a and b. This operator is
equivalent to the recursive union operation of the nested
relational model. To note that only attributes with same
names from two sub-relations will be merged. If the names
of the attributes are not the same, users have to map the
attributes first.

The fuse operator is designed to fuse values of attributes
in several tables. The formula of this operator for two tables

5656

is fuse(a, b, <a.X, b.Y>, function), where a, b can only be a
relation or sub-relation and X, Y have the same semantics as
they are in Merge operator. The function defines how to fuse
different values. For example, for numeric values, we can do
calculations including addition, subtraction, multiplication
and others. For string values, we can concatenate or reverse
them. The common functions can be pre-defined. Users can
choose needed ones when fusing tables.

The above business object composition steps show both
data integration and service integration can be achieved
during the same process by including data and service in
business object models. After the steps, users can choose to
use this business object immediately or publish it for other
users to use. We note that the same steps can be used to
support nested business object composition.

By saving the composition process for each composite
business object as a special data service, namely “update”,
the status and data of composite business objects can be
automatically updated based on their constituent business
objects changes. When a business object changes, it can
trigger the changes of all composite business objects made
from it by calling their “update” data services. Then the
operators used for each composite business object will be
calculated again to get its newest status and data.

C. Information Monitoring and Event Response
In many dynamic collaborations, existing systems need

to promptly adapt themselves to fit new scenarios. In our
approach, ECA rules are defined to dynamically respond to
new events.

In the UDSI approach, we first define a set of values used
to measure the status of a data object as KPIs. A KPI can be
quantified as a value or a vector containing multiple values.
The range of values can be flexible, such as number,
character or string. The real time information of each KPI is
gotten through periodically invoking the data services. KPI
helps business users easily analyze the large-scale business
data and quickly grasp their business semantics.

Since KPI represents key information in collaboration,
changes of each KPI are also important. So we model the
events and conditions of each ECA rule based on selected
KPI information.

We model the action of each ECA rule as a service to
interact with other services. An action might need to operate
multiple services with dependencies, and these complex
business logics can be modeled in services through service
composition. In the service composition, both data services
and third-party services could be employed.

After services are instantiated based on certain ECA rules,
the data behind the services can be integrated into existing
information monitoring via business object composition.
New service instances could cause changes of existing
business objects or creating new ones. As explained in
Section III.B, business object composition processes are only
based on the metadata of constituent business objects. So if

changed business objects or the metadata of new business
objects has been used in a business object composition, the
composite business object can be automatically updated. The
automatic update is done by including the new business
objects and re-calculating its composition operators by
calling its “update” data service. Otherwise, the new business
object has to be manually added into composite ones, which
will result in new composition process and “update” service.
For instance, new materials in delivery, triggered by one
ECA rule, need to be shown as parts of overall material
information at the EO. If a composite business object already
has vehicles as its constituent objects, its value can be
automatically updated. This example will be illustrated in
detail in Section IV.

In summary, dynamic interaction between data
integration and service integration is achieved here. First
existing service integration can be changed based on data
updates by instantiating new services via ECA rules.
Meanwhile, data integration results in composite business
objects can also be updated based on the changes of data
objects related to new services by calling or updating their
“update” services.

IV. APPLICATION
In this section, the case for the delivery of earthquake

relief materials in Section II is refined to illustrate how to use
the UDSI approach. We will still use the three phases in
Section III to demonstrate the application.

A. Atomic Objects Modeling
In this phase, each organization in the collaboration will

model its information systems as a set of atomic business
object, namely data objects as well as their data services.
Main business objects in the case are showed in Fig. 3.

(1) DPC: Storage
The DPCs will model the Storage business object to

represent their storage information about materials. Different
DPC may have heterogeneous internal data structures and
corresponding data services. In this case, we will use two
different Storage business objects.

(1.a) DPC StorageA
The DPC StorageA mainly stores and manages the

following materials: tents, stretcher, water and clothes.
Therefore, its data object is StorageA (tents, stretcher, water,
clothes). Several data services are provided for this object,
such as getAvailableTentsNumber(), and
getAvailableStretcherNumber().

(1.b) DPC StorageB
The DPC StorageB mainly stores and manages the

following materials: stretcher, medicine and war. So its data
object is StorageB (stretcher, medicine and water). It data
services include: getStretcherQuantity(),
getMedicineQuantity(), etc.

5757

Figure 3. Data objects and visual representation with nested-tables.

 (2) EO: RequiredMaterial
The EO will model the RequiredMaterial business object

to represent the required materials in the disaster area. The
corresponding data object is RequiredMaterial (type,
number). In that, the type attribute is for the type of required
material, such as tent, water and so on. The number attribute
is for the required quantity of a material.

Based on this data object, several data services can be
provided, such as getRequiredMaterialList() and
getRequiredMaterialNumber(type).

(3) EO: Vehicle
The EO will model the Vehicle business object to

represent the information of a vehicle that is in charge of
transporting materials to the disaster area. The corresponding
data object is Vehicle (ID, currentLocation, status, source,
target, MaterialList(ID, type, number)). For this data object,
several data services are provided, such as
getCurrentLocation (), getStatus(), deliver(), etc.

(4) EO: DestinationDepot

The EO will model the DestinationDepot business object
to represent received material information in a temporary
depot at disaster area. Its corresponding data object is (ID,
type, number). An example of its data service is
getAvailabelNumberOfMaterial(type).

B. Business Objects Composition
Furthermore, the above business objects can be

composed into new business objects on demand. For
example, when an earthquake happens, the materials like
tents, water and medicine consume very fast. The EO needs
to monitor the information about how many materials have
been in delivery and how many materials are still available.
The expected data object is CollectiveMaterial (type,
numberInDelivery, availableNumber).

However, this CollectiveMaterial information is
distributed among different kinds of data objects: Vehicle,
StorageA, StorageB. With the operators defined in Section
III, we can easily create a composite business object for this
purpose and get its real time value. The combination process
is illustrated in Fig. 4.

Figure 4. Composition of different data objects.

5858

C. Information Monitoring and Event Response
First, real time value monitoring can be realized via KPI

on business objects. Suppose the required tent number is one
key information during an earthquake rescue process. When
an earthquake happens, the required tent number needs to
reported timely from the earthquake location. We can create
a KPI based on the RequiredMaterial business object and its
data service getRequiredTentNumber(). Its real time value is
gotten through periodically invoking the data services, and
notified to related users during the earthquake response
period.

Data changes in KPI can trigger existing service
integration changes. Once a new required tent number is
reported, an event will be automatically created based on the
KPI information and trigger its action defined by ECA rules.
The action will trigger service invocation to get a
recommended tent dispatch plan.

TABLE II. SAMPLE ECA RULES

Sample ECA rules are listed in Table II. The service
logic of createDispatchPlan action is as follows. It will first
rank the DPCs based on their distances to the disaster
location (the nearer, the higher rank), then it dispatch all
available tents in each repository until the summary tent
number reach requested number. Detailed service logic can
described using service composition language like BPEL [7].

Another KPI example is vehicle status. If a vehicle
reports its status as “broken”, the EO has to respond quickly.
The same createDispatchPlan service in Table II can be used
here to get a new plan based on the material amount in the
vehicle.

Existing data integration result will reflect changes
affected by new service instantiation reversely. For example,
StorageA and StorageB need to decrease their material
amount if more materials are sent out. And new Vehicle
business objects are created for delivering the additional
materials. CollectiveMaterial business object should reflect
these changes. As shown in Fig. 4, business object
CollectiveMaterial is composed from StorageA, StorageB
and Vehicle. Existing changes for business object StorageA
and StorageB and new Vehicle business objects can be easily
incorporated into changes of the CollectiveMaterial object.

V. IMPLEMENTATION
We developed a prototype to support and validate the

UDSI approach, which is shown in Fig. 5. Fig. 5(a) shows
the tool to support the creation of an atomic data object. With
this tool, users can first create the head of a nested table to
describe the metadata of a data object. Then required data
will be extracted from the data sources and transformed into
a set of nested relations. Our current implementation can
support several common data sources, including the
relational database, XML, json and HTML. This process has
two key issues. The first one is how to transform a given data
source (such as HTML, XML, etc.) to the nested relations.
The second one is how to let users decide what data should
be transformed and how to realize it. The corresponding
techniques can be found in our previous papers [8] [9].

Based on the nested relation model, the created atomic
data objects can be easily visualized in a nested table. As
Fig.5(b) shows, users may create data services by wrapping
columns of a data object and choose required operators on
them. The operators can be provided as services. The input
parameters of an operator will be the input parameters of the
service. For example, in Fig.5(b), when we select the city
column, then we can choose the filter operators. The operator
needs users to input the filter value. Here, we input the “
(Beijing)”. This causes to establish a query service. It will
query all rows in the table where the value of city attribute
equals to “ (Beijing)”.

Fig. 5(c) shows our tool to combine multiple business
objects. The user interface is implemented on Flex [10]. The
workspace is divided into several regions. Region
displays the data service list. Once a data service is clicked,
its example data will be displayed in region as a nested
table. Region is the current worksheet where the
intermediate composition results will be displayed. Users can
compose the services by simple drag the target columns from
region to region and use appropriate operators
accordingly.

The KPI and corresponding ECA rules are realized with
the EQL (Esper Query Language) [11]. The service for each
action is either an existing Web service or a composite Web
service expressed by BPEL. With the predefined ECA rules,
the collaboration process can be realized in a more flexible
way. When an ECA rule is triggered, the corresponding
service will be invoked and the users who subscribe the
captured event will be notified.

1 If RequiredMaterial.getAvailableTent() > 0, then invoke
createDispatchPlan(RequiredMaterial.getRequiredTentNumber());

 2. If Vehicle.getStatus() = ‘broken’, then invoke
createDispatchPlan(Vehicle.getMaterial());

5959

Figure 5. The implementation of the prototype.

VI. RELATED WORK
In current research works, data integration and service

integration usually belong to two different research areas.
Although they have underlying relations, there still lack a
powerful abstraction and practicable approach to coherently
connect them.

Most data integration work aims to combining data
residing at different sources, and providing the user with a
unified view of these data [12]. In current works, a lot of
attentions have been paid on how to establish a global
schema, which can provide a reconciled and virtual view of
the underlying sources [13][14][15]. Yet these works do not
pay attention on how to enable data integration through
services, and how to update it when services on the data
changes.

Service integration study mainly focuses on combining
the functionalities of Web services [2][3][4]. However,
business data behind these services are hard to be combined.
Only service inputs and outputs, and the mappings among
them can be discovered and established.

Recently, some researchers have notified the importance
of modeling mutual relations between data and services.
Aalst et al. propose a new flexible paradigm for business
process support - Case handling [16]. Different cases can
establish a business collaboration via ECA rules, and the
rules can be triggered by data changes. Cohn et al. recognize
the importance of combining data with business process, and
propose artifact-centric business process models [17]. A
business artifact can be tracked as it progresses through a
business process, and services in a business process can
make changes to business artifacts. Müller et al. propose

their COREPRO approach, which supports dynamic business
process adaptation driven by its data [18]. However, these
studies mainly focus on how data can help business process
modeling and/or adaptation, and do not consider much on
how to get a collective data results during business process
execution and how the results are affected by business
process changes. In contrast, our UDSI approach treats data
and services equally in our business object model, explores
how to model and compose data and services in a unified
way, and specially investigates how data and service
composition results can influence each other dynamically.

VII. CONLUSIONS
In real application scenarios, data and services are often

coherent ingredients for information systems. Many services
are designed to handle business data and can be used to
realize data integration. Further, data changes will influence
the service invocations, and vice versa. This paper explores a
unified data and service integration approach for dynamic
collaboration, where the modeling, composition and
interaction of both data and service can be achieved
coherently.

In this paper, a business object model is proposed to
model business data as data object and its handling services
as two equally important elements. Based on the visual
nested table operators, on demand composition of multiple
business objects can be easily realized. We also propose KPI
on the top of business objects to monitor data changes. KPI
can trigger service invocations through pre-defined ECA
rules so that the events of data changes can be dynamically
responded. Further, data changes caused by the service
invocations can be reflected in existing business object and

6060

KPIs. Our preliminary prototype and application demonstrate
the feasibility and advantages of our approach.

For future work, we plan to validate and refine the
approach through more applications. Several aspects of the
approach can be improved. First, we will study how to
facilitate the composition of heterogeneous business objects
via (semi-)automatic semantic matching. Secondly, we will
investigate how to realize the role-based business object
sharing and presentation since different business object
might be shared based on user roles.

ACKNOWLEDGMENTS
The research work is partially supported by the National

Natural Science Foundation of China under Grant No.
60970131 and No.60903048.

REFERENCES
[1] B. Orriens, and J. Yang, “Bridging the gap between business and IT in
service oriented business collaboration,” Proc. the IEEE International
Conference on Services Computing (SCC05), IEEE, 2005, pp.315-318.
[2] S. Dustdar, and W. Schreiner, "A survey on web services composition,"
International Journal of Web and Grid Services, vol. 1(1), pp. 1-30, 2005.
[3] B. Benatallah, M. Dumas, and Z. Maamar, “Definition and Execution of
Composite Web Services: The SELF SERV Project,” Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering, vol. 25(4),
pp. 47-52, 2002
[4] F. Casati, M. Sayal, and M.C Shan, “Developing E-Services for
Composing E—Services,” Proc. the 13th Conference on Advanced
Information Systems Engineering (CAISE 01), Springer, 2001, pp: 171-186.
[5] G. Wang, S. Yang, and Y. Han, “Mashroom: end-user mashup
programming using nested tables,” Proc. the 18th international conference
on World Wide Web, 2009, pp. 861-870.
[6] L. S., Colby, “A recursive algebra and query optimization for nested
relations,” ACM SIGMOD Record, vol. 18 (2), pp. 273-283, 1989.

[7] BPEL, “Business process execution language for web services version
1.1,” http://www.ibm.com/developerworks/library/specification/ws-bpel/,
2007.
[8] S. Yang, G. Wang, and Y. Han, “Grubber: allowing end-users to
develop XML-Based wrappers for Web data sources,” Proc. the Advances
in Data and Web Management (APWeb/WAIM 2009), Springer ,2009,
pp:647- 652
[9] G. Ji, G. Wang, and Y. Han, “Creating customized data services from
web pages, ” The journal of High Technology Letters, Accepted.
[10]Flex, http://www.adobe.com/products/flex.html, last retrieved at
2012.5.
[11] Esper, http://esper.codehaus.org/, latest retrieved at 2011-05-20.
[12] M. Lenzerini, “Data integration: A theoretical perspective,” Proc. the
21th ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, ACM, 2002, pp. 233-246.
[13] A. Levy, A. Rajaraman, and J. Ordille, “Querying Heterogeneous
Information Sources Using Source Descriptions,” Proc. the 22th
International Conference on Very Large Data Bases (VLDB96), Morgan
Kaufmann Publishers Inc, 1996, pp.251-262.
[14] N. F. Noy, and M. A. Musen, “The PROMPT suite: interactive tools
for ontology merging and mapping,” International Journal of Human-
Computer Studies, vol.59(6), pp. 983-1024 , 2003.
[15] A. Halevy, A. Rajaraman, and J. Ordille, “Data Integration: The
Teenage Years,” Proc. the 32th International Conference on Very Large
Data Bases (VLDB06), VLDB Endowment, 2006, pp. 9-16.
[16] WMP. V. Aalst, M. Weske and D. Grünbauer, “Case handling: a new
paradigm for business process support,” Data & Knowledge Engineering,
vol. 53(2), pp. 129-162, 2005.
[17] D. Cohn, and R. Hull, “Business artifacts: A data-centric approach to
modeling business operations and processes,” Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering, vol. 32(3),
2009.
[18] D. Müller, M. Reichert, and J. Herbst, “A new paradigm for the
enactment and dynamic adaptation of data-driven process structures,”
Advanced Information Systems Engineering, vol. 5074/2008, pp. 48-63,
Springer, 2008, DOI: 10.1007/978-3-540-69534-9_4.

6161

