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Abstract— The pervasive imbalanced class distribution oc-
curring in real-world stream applications, such as surveillance,
security and finance, in which data arrive continuously has
sparked extensive interest in the study of imbalanced stream
classification. In such applications, the evolution of unstable class
concepts is always accompanied and complicated by the skewed
class distribution. However, most of the existing methods focus
on either class imbalance problem or non-stationary learning
problem, the combined approach of addressing both issues has
enjoyed relatively little research. In this paper, we propose a
hybrid framework for imbalanced stream learning that consists
of three components: classifier updating, resampling and cost
sensitive classifier. Based on the framework, we propose a hybrid
learning algorithm to combine data-level and algorithm-level
methods as well as classifier retraining mechanics to tackle class
imbalance in data streams. Our experiments using real-world
datasets and synthetic datasets show that our proposed hybrid
learning algorithm can have better effectiveness and efficiency.

Keywords—Class imbalance, concept drift, data stream mining,
hybrid learning.

I. INTRODUCTION

More than two decades of continuous development learn-
ing has produced a variety of algorithms for classification.
Traditional classifier identifies a suitable hypothesis to make
good prediction from a stationary environment, the instances
of which belong to an underlying distribution defined by a
generating function. This static dataset is therefore assumed
to be bounded and the algorithm can afford to read the
data several times to learn the relevant concepts pertaining
to the underlying generating function. However, the dynamic
environment in many real-world applications, such as health
care [1], intrusion detection [2] or financial businesses [3], can
change the target concept over time. This poses a difficulty
for traditional learning algorithm as the data is non-stationary
and arrives over time in streams of instances (incremental) or
batches (batch) instead of being available from the beginning.
Learning under such conditions requires classifier to be trained
on the information before time step t to predict new instances
arriving at time step t + 1, and to update incrementally by
leveraging the newly available data at time step t + 1 while
simultaneously maintaining the performance of the classifier
on the information before time step t. Furthermore, these
scenarios also present the distribution of examples is skewed
since representatives of some of classes, called minority
classes, are represented by a negligible number of instances
pertaining to other classes, called majority classes, that are

considered. At the same time although minority classes are
rare, they are usually the important case of the study as it may
carry important and useful knowledge. For instance, correctly
identify fraud, the number of which is severely less compared
with the amount of normal customers, in the credit card fraud
identification is more important, and hence we require methods
to improve its recognition accuracy. This domain, known as
imbalanced learning, requires to take dataset imbalance into
consideration in classifier designing, otherwise the traditional
classifier can be easily fooled, being overwhelmed by the
majority classes and ignoring the minority classes.

The concept drift results from dynamic environment in real-
world application always arises along with class imbalance and
further exacerbated each other. In recent years, a number of
studies have been proposed to address variation in the underly-
ing function [4] and to tackle class imbalance [5], respectively.
However, the combined research, especially in streaming data
settings, has received relatively little attention [6]. To the best
of our knowledge, there is no study yet combining data-level
and algorithm-level methods as well as classifier retraining
mechanics for the classification of imbalanced streaming data.
This paper describes a novel hybrid learning framework in
dealing with imbalanced stream classification. In our approach,
concept drift in stream is detected considering each single-
class performance along with class percentages calculated
in dynamically changing environment to decide when to
invoke the hybrid learner to deal with concept drift and class
imbalance. With the information of concept drift and class
imbalance, the hybrid learner applies sampling techniques to
adjust the learning bias from majority towards the minority,
and chooses to either be confident with the current learner
or update the learner with the new concept learned from cur-
rent stream by ensembling cost-sensitive classifiers. Minority
instances from previous streams are also being kept track of
simultaneously with the goal of a performance balance among
classes.

In summary, the contributions of the papers are as follows:
1) A novel hybrid learning framework is proposed to

address non-stationary learning problem and class imbalance
issue concurrently. This customizable framework is flexible in
incorporating a variety of different methods for the task at
hand.

2) According to the proposed framework, a hybrid learning
algorithm is designed to integrate resampling, cost sensitive
as well as classifier retraining mechanics in dealing with



imbalanced stream classification.
3) As the first work that formally introduces cost sensitive

learning in streaming data settings, experiments are carried
out on both real-world datasets and synthetic datasets to
compare the efficiency performance from resampling, cost
sensitive and resampling in conjunction with cost sensitive
perspectives. The experimental results conclude the positive
impact of combining data-level and algorithm-level methods
on effectiveness and efficiency, which are two essential targets
of stream learning applications.

The remainder of the paper is organized as follows. Section
II and III review theoretical background regarding concept
drift and class imbalance as well as related works. Section
IV proposes the learning framework for imbalanced stream
classification and describes it in details. The experimental
study on both real world and synthetic datasets is performed
and the obtained results are analyzed in Section V. Finally,
Section VI states conclusions and future works.

II. BACKGROUND

When learning from streaming data, concept drift in-
volves changing the concept of a given target. Assuming
at time step t a sequence of labelled data instances ζ =
{(X0, y0), (X1, y1), . . . , (Xt, yt)} presented in chronological
order, where Xi is a p-dimensional feature vector and each
instance has a corresponding class label yi. The learning
algorithm is trained given ζ and predicts unlabeled instance
Xt+1 at time step t + 1. Once yt+1 is predicted, the actual
class label of Xt+1 becomes available and new instance Xt+2

at time t + 2 arrives afterwards. Concept drift occurs when
the target concept of time t is different from time (t + 1)’s.
Depending on the rate at which concept drift presents, the
drift may be considered as gradual or abrupt. In gradual drift,
the change between two concepts happens with a smooth
transition. Abrupt drift, on the contrary, the change between
concepts suddenly switch within a definite time period. As
concepts change over time, if there are instances where a
concept reoccurs, this is called reoccurring drift. The variation
in the underlying function, from Bayes’ theorem’s perspective,
can result from changes occur in three major ways: the prior
probability of observing each class p(yi), the conditional
probability that an instance drawn from class yi would be Xi

and the posterior distributions of class membership p(yi|Xi).
Kelly et al. claim that it is only the change in posterior
probability that is important [22]. Learning from data streams
therefore requires a learning system being able to remain
stable on previously learned and not outdated concepts while
incrementally update the knowledge learn on new data with
possible concept drift. For more details, refer to [7].

III. RELATED WORK

In recent years, a number of methods have been proposed
to learn in the presence of concept drift. These approaches
fall largely in three groups: 1) adaptive-based approaches use
restricted or expanded data to build the classifier that predicts

new instances in some region of the feature space [8]; 2)
modification methods, which are classifier agnostic, select or
weight the instances and the outdated training instances can
be discarded based on their weights [9]; 3) an ensemble of
classifier produces outputs of several classifiers and combine
them to determine a final classification [10]. Considering
the advantages of above three techniques in streaming data,
our proposed framework encompasses keeping track of up to
date minority instances in building the learning classifier, and
discarding old examples as well as trained classifiers when the
most recent data stream indicates a change in the distribution.
In addition, trained classifiers are combined to create more
accurate classifies to overcome concept drift.

Learning from data stream also suffers from class imbal-
ance, a large number of approaches have been proposed with
respect to this specific issue. These methods fall into three
main categories. First, data-level solutions [5] concentrate on
modifying the original collection of training set in order to
reduce or eliminate the extent of datasets imbalance, such as
generating new samples for the minority class (oversampling),
getting rid of objects from majority class (undersampling) and
combining both methods to change the distribution balance of
original data. Second, algorithm-level solutions [12] modify
existing algorithms to alleviate their bias towards majority
class for the sake of benefiting the classification of the minority
class, such as cost-sensitive methods [13], which incorporate
different misclassification penalty for each of considered class
so that the classifiers pay more attention to underrepresented
set of instances, and one class learning [14], which creates
a data description to concentrate only on a single group of
examples instead of bias towards any group. Last, hybrid
solutions [15] are proposed that combine the strong points
of previous two methods to address classification with uneven
data representation, Wozniak et al. [16], for instance, propose
notion of hybridization of data-level solutions and classifier en-
sembles, resulting in a robust and efficient learning algorithm.
In our proposed framework, the distributions of positive and
negative objects are monitored to determine when to reduce
imbalance rate by data-level solutions, the imbalance rate is
further reduced according to varying error costs that introduced
by MetaCost [13], a procedure that make error-based classifier
cost-sensitive.

The fact that unstable class concepts in numerous real-life
applications also suffer from skewed class distribution has
drew increasing attention which seeks to tackle both issues
simultaneously. However, as noted in [6], there is relative
paucity of such research into imbalanced streaming data, and
the existing methods mainly focus on either of them. Licht-
enwalter et al. propose a method, called Boundary Definition
(BD), to define the class boundary in propagating instances
misclassified by the current model [17], and the performance
of ensemble members that built on such boundary shows
improvement. Recently, a selectively retrain approach based
on clustering updates the ensemble classifier with the base
classifier that trained on the most up-to-date chunk [18]. Our
proposed framework outlines a new approach that utilizes a



hybrid learning framework in imbalanced stream classification
setting.

IV. HYBRID LEARNING FRAMEWORK

Our approach stems from the common idea, that of the
moving window [9], for learning from streaming data sources.
This idea, as its name implies, is about maintaining a classifier
that can be updated incrementally from a moving window of
newly available instances. We integrate imbalance learning
when applying this idea to address both concept drift and
class imbalance concurrently. Our proposed learning frame-
work consists three main components, each component in
constant dialogues with other components for the update-to-
date status of data streams and takes corresponding response
accordingly. Figure 1 shows the workflow of the proposed
learning framework.

The first component, called Classifier Updating, is designed
to trigger the classifier updating mechanism based on the
performance of each single-class. Most methods proposed so
far are based on overall prediction error made by the learner
to detect concept drift and to take the corresponding action
adaptively when its performance degrades [4]. The underlying
assumption behind those methods believes the functioning
deterioration of learner, that trained on out-of-date concepts,
is result from the incapability of synthesizing current drifting
concept. However, this assumption is not appropriate when
taking imbalance characteristic into data streams consider-
ation. Take the simplest binary classification of a dataset
which consists of 99 percent of majority instances and 1
percent of minority instances as an example, a naı̈ve classifier
can get an accuracy of 99 percent by simply classifying all
instances into majority category. Although the superb face
value is overly outperforms random guess, it cannot reflect
the performance on minority class and therefore contributes
too little to discover the drift in imbalance data stream. In our
framework, we evaluate prediction errors for each individual
class to provide more adequate information on the functional-
ity of trained classifier, based on this information, the updating
status of ensemble classifier is further determined. Specifically,
when a new batch of data stream arrives, prediction is made
based on the current learner and corresponding performance
metrics of both minority and majority class are computed.
On the condition that recalls from both classes are better
than predefined thresholds, the training data that the current
learner built on still carries with up-to-date concepts, learner
update is therefore considered not necessary for computational
efficiency. On the other hand, when prediction error that
attributes to either minority or majority class is greater than
predefined threshold or both of them go below the satisfaction
border line, training a new classifier for the new concept is
triggered.

The second component, called Resampling, gets involved
in the learning mechanism immediately after the trigger of
updating classifier. The imbalance status is also monitored
each time a new batch of data stream arrives. Based on

this captured information, our framework determines whether
to initiate resampling. Other than under-representativeness,
poor performance is also results from other factors such as
the complexity of data distribution [19]. Therefore, it is not
necessary to complicate the learning procedure if the data is
evenly distributed. In our framework, resampling techniques
will be invoked to give minority class more focus only on
the condition that class imbalance is recognized. In this paper,
the synthetic minority oversampling technique (SMOTE) [11]
is employed to increase the chance of training minority class
instances, and the chance of training majority class examples
is decreased by undersampling. Here, undersampling and over-
sampling are used in conjunction with resample heuristics to
increase precision while minimally affecting recall. According
to the prediction results made by the learner on the new batch
of data stream, the heuristic function first divides instances into
four subsets: misclassified minority instances, misclassified
majority instances, correctly classified minority instances and
correctly classified majority instances. The heuristic function
ranks the first two subsets with higher weights with the idea
of propagating misclassified instances defines class boundary
better than correctly classified instances. Therefore, SMOTE is
only applied on misclassified minority examples to give more
focus on these instances, the chance of training majority class
is decreased by undersampling correctly classified majority
instances as they are less likely in helping with precision im-
provement. In the meanwhile, misclassified majority instances
remain unchanged to avoid too much information loss, so
does correctly classified minority instances. These four subsets
after resampling comprised the new training set for updating
classifier.

Different from existing approaches whose classifiers mini-
mize zero-one loss in the streaming data settings [6], the third
component of our framework, in order to further reduce the im-
balance rate, wraps a “meta-learning” stage around the error-
based classifier such that the classifier effectively minimizes
cost, with a bound on the sum of zero-one loss. This proce-
dure makes error-based classifier cost-sensitive and is known
as MetaCost [13]. In this circumstance, the Bayes optimal
prediction for a given example x is the class i that minimizes
the conditional risk defined as R(i|x) =

∑
jP (j|x)C(i, j),

where P (j|x) represents the probability of each class j for
the given example x and C(i, j) is the cost matrix being the
cost of misclassifying the example with actual class j as class
i. In our approach, there is no cost for correct classification
of either class and the cost of misclassifications are set
according to the imbalance rate monitored from the second
component. Considering the learning difficulty of minority
instances due to their sparsity, a queue structured minority
window is maintained in the framework as the collection of
minority instances from the previous streams. This design
ensures first added minority examples will be the first one
to be removed when size limit reaches so as to better address
minority-class concept learning. After the triggering of training
a new classifier, the instances from minority window along
with dataset from the second component are used to train a
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Fig. 1: A hybrid learning framework in dealing with imbalanced stream classification.

new cost-sensitive learner for the new concepts from current
stream. Then, the strength of newly discovered predictive
relationships on the current batch of data stream is assessed.
The newly trained classifier will be added to contribute for the
ensemble learner if its recalls from both classes are better than
predefined thresholds, framework completes the learning of
current stream with updating minority window. Otherwise, the
new learned classifier is discarded and only minority window
updating is performed. The ensemble learner is also designed
in the queue structure.

Other than the resampling techniques that employed in this
work, a variety of different methods [5] from the resampling
community can be embedded into our proposed framework to
customizably solve the problems according to the character-
istics therein and from different perspectives. This framework
is also flexible in the way that can be modified so as to
adapt to different circumstances. For instance, when dealing
with a task that prior experience or knowledge demonstrates
the existence of imbalance feature all over data streams, the
module that monitors imbalance status can be deactivated
for better efficiency. Similarly, when the hypothesis from
current data stream is particularly being concerned, learner
update is therefore preferred upon the arrival of every batch of
new data stream. Under this circumstance, classifier updating
unit is expected to be turned off and its dialogues with
other components can be muted, the remaining components
communicate directly without the intervention of classifier
updating component.

Based on the above hybrid learning framework, we propose
a hybrid stream learning algorithm, which is detailed in Algo-
rithm 1. Given the selected values of sliding window (SW) size
Ss, minority window (MW) size Sm, ensembled cost-sensitive
classifier window (CW) size Sc, satisfactory classifier accuracy
threshold α, imbalance threshold β as well as the data stream
sources (D) as input, the algorithm predicts the class label for
each instance and outputs the values of evaluation metrics for
each sliding window. It consists of four parts. In the first part
(line 1-3), it simulates the arrival of data streams with fixed
window size. The second part (line 5-14) deals with the arrival
of data streams when CW is empty. Line 6-8 train an initial
classifier on the current window and determine whether to add
it to CW considering its prediction errors for each individual
class. Line 9-14 retrain a classifier based on the resampled
window instances if the current window is imbalanced and
determine whether the retrained classifier should be added into
CW. The third part (line 15-24) further processes the data
streams when CW contains at least one trained classifier. Line
16 and 17 find whether classifier updating and resampling are
necessary, respectively. Line 20-24 update the CW with the
retrained classifier. The fourth part (line 25-28) works with
the maintenance of MW. The algorithm stops until the data
streams come to an end (In Algorithm 1, accmin and accmaj

are abbreviations for the accuracy of minority instances and
majority instances, respectively).



Algorithm 1 Hybrid Learning Algorithm
1: while D has more instances do
2: if |SW | < Ss then
3: Add instance to SW;
4: else
5: if CW == ∅ then
6: Train the initial cost-sensitive classifier with

data from SW;
7: if accmin > α&&accmaj > α then
8: Add the trained classifier to CW;
9: else

10: if imbalance rate of SW is less than β then
11: Resampling SW;
12: Retrain an initial cost-sensitive classi-

fier with resampled SW;
13: if accmin > α&&accmaj > α then
14: Add the trained classifier to CW;
15: else
16: if accmin < α&&accmaj < α then
17: if imbalance rate of SW is less than β then
18: Resampling SW;
19: Retrain a new cost-sensitive classifier

with resampled SW;
20: if accmin > α&&accmaj > α then
21: if |CW | < Sc then
22: Add the new trained classifier to

CW;
23: else
24: Replace the oldest classifier with

the new trained classifier;
25: if |MW | < Sm then
26: Add minority instances from SW to MW;
27: else
28: Replace the oldest minority instances with new

minority instances.

V. EXPERIMENTS

This section presents an empirical study designed to eval-
uate the performance of our proposed hybrid learning algo-
rithm on imbalanced data streams. The evaluation is based
on efficiency and effectiveness measurement using two real
datasets in addition to synthetic data. For each dataset, we
run our proposed hybrid algorithm along with resampling
based approach and cost sensitive oriented method. Bound-
ary Definition (BD) that discussed in Section III is served
as the representative of resampling based approach. To our
best knowledge, we have not seen cost sensitive work in
imbalanced streaming data setting, so we apply our framework
without involving the resampling component as comparison,
referred as CostSensitive.

A. Description of Datasets

In our experiment, we evaluate the effectiveness and ef-
ficiency of our proposed framework using two real-word

datasets in addition to synthetic data which simulate three
possible concept drift occurrences. We select two benchmark
datasets, which are publicly available and have been used by
existing works for data stream classification [7], [14], [17].
The first dataset, the electricity dataset, is described in detail
by I. Žliobaitė [20]. Briefly, this data was collected from
the Australian New South Wales Electricity Market; there
are 45,312 instances. The task is to identify the change of
the unfixed price relative to a moving average of the last 24
hours. The second dataset, the airline dataset, contains flight
arrival and departure details for the commercial flights within
the USA [17]; there are 539,383 instances. The class label
identifies whether a given flight will be delayed, given the
information of the scheduled departure. Existing works address
these two datasets from streaming learning perspective and
ignores imbalance issue as datasets are inherently unskewed
distributed. We render them as imbalanced data streams by
removing certain number of instances from designated classes
arbitrarily, then randomizing the order of the remaining in-
stances and processing them in sequence. As one of the data
preprocessing steps, the numeric attributes of the electricity
dataset are centralized as the computation of normalization
in order to compensate for technical difference in collecting
data and enable informative comparisons between different
instances. Characteristics of these two processed datasets are
shown in Table I.

In addition to the two real-world datasets, simulation data
are also used in our experiments. Simulation imitates a real-
world process without the need to carry out a pilot test
while permitting a sufficient understanding of the process by
synthetizing dataset with desired characteristics. We design a
data generation algorithm to specifically address imbalanced
streaming data. In particular, we use Random RBF (Radial
Basis Function), Rotating Hyperplane, and Random RBF
along with Rotating Hyperplane generators to generate three
possible concept drift occurrences, gradual drift, abrupt drift
and reoccurring drift, respectively [24]. The characteristics of
simulation data are also available in Table I.

TABLE I: Characteristics of Experimental Datasets.
Dataset No. of Instances No. of Attributes Imbalance
Name All Minority Nom Num Original Now
Airline 397,531 98,412 4 3 1.25:1 4:1

Electricity 26,075 5,210 1 7 1.4:1 5:1
Gradual Drift 100,000 23,464 0 20 N/A 4.2:1
Abrupt Drift 100,000 24,557 0 20 N/A 4.2:1

Reoccurring Drift 100,000 23,952 0 20 N/A 4.2:1

B. Experiments on Effectiveness

As the increased research attention focuses on imbalanced
learning, a number of evaluation metrics have been used to
properly assess the effectiveness of classification with skewed
distribution [5]. Among them, accuracy and recall are two fun-
damental measures for evaluating the performance of a clas-
sifier. A variety of evaluation metrics, for example G-mean,
have evolved based on these two measures from different



Fig. 2: Comparison of minority accuracy from Resampling,
Hybrid and CostSensitive applied to five datasets.

perspectives. Although there is no measurement that specif-
ically designed for imbalanced stream classification settings
due to its relative paucity of research, the evaluation metrics
of imbalanced learning can shed light on the performances
of such methods. We therefore assess the effectiveness of our
proposed framework using all the standardized evaluation met-
rics from imbalanced learning community, but only accuracy
of minority, recall of minority as well as overall precision
are shown for space efficiency consideration. As mentioned
previously, although the rareness of minority class, it is usually
the case under consideration on the study as it may carry
important and useful knowledge, the accuracy and recall of
minority provide evidence on the minority retrieval capabilities
of a classifier. The overall accuracy helps us understand
whether adjusting the learning bias from the majority towards
the minority jeopardizes the accuracy of the majority class and
to what degree.

For the parameter in resampling component, the stopping
condition for resampling is set as the imbalance rate larger
than 0.5, the performance threshold for updating component
is also 0.5. In addition, the sizes of minority window and
ensembled cost-sensitive classifier window are 100 and 10,
respectively. The obtained results are shown from Figure 2 to
Figure 4.

The comparisons of minority accuracy shown in Figure 2
indicate on most of datasets, CostSensitive is able to identify
minority instances with higher accuracy (grey lines tend to
be above blue and orange lines in each dataset). It yields
the highest minority accuracy of 0.95 on gradual drift dataset
when the window size is 100. However, compared with Hybrid
and Resampling, CostSensitive is inferior with respect to the
recall of minority class (grey lines tend to be below blue and
orange lines in each dataset). The worst recall 0.38 is also
obtained by CostSensitive for the airline dataset, the window
size is again 100. CostSensitive incorporates a high penalty for

Fig. 3: Comparison of minority recall from Resampling,
Hybrid and CostSensitive applied to five datasets.

Fig. 4: Comparison of overall precision from Resampling,
Hybrid and CostSensitive applied to five datasets.

underrepresented set of instances. This makes classifiers pay
more attention to minority class and can incur reluctance in
predicting underrepresented instances due to their high penalty.
On the contrary, Hybrid pre-reduces imbalance rate, the whole
retrieval process is merit with exactness and completeness.
What’s more, in Figure 3 and Figure 4, Hybrid (blue lines) are
most likely above Resampling (orange lines) in terms of each
dataset, this verifies Hybrid’s effectiveness, which allows it to
be applicable in imbalanced stream classification application.

As shown in Figure 4, except for airline dataset, all pre-
dictors achieve good accuracy results in imbalance streaming
classification settings. One possible reason for the not as good
performance of airline dataset is the overfit results from its
nominal attributes with a large number of classes [23] (e.g.,
the feature AirportFrom contains 293 distinct classes, etc.).
Hybrid has the best overall accuracy for dataset gradual drift
when window size is 1,500, with an accuracy held at 0.93.
The results depict Hybrid manages the trade-off performance
on minority class and majority class. All predictors require
a certain size of sliding window in order to arrive at the
best overall prediction. One possible reason for this is if the
number of instances in the current sliding window is limited,



Fig. 5: Execution time in seconds for processing window size
from 100 to 2000 applied to Airline dataset.

the information they contain is insufficient in return. However,
the optimal window size differs in terms of different datasets
and classifiers.

C. Experiments on Execution Efficiency

In addition to effectiveness, data stream frameworks are
often employed in time-critical or resource constrained situa-
tions, research like that in [21] even explores the topic specif-
ically. We gauge the efficiency of our proposed framework
with the time required for processing each data stream with
different window sizes.

Figure 5 to Figure 8 show the execution times reported in
seconds on each dataset for Resampling, Hybrid and CostSen-
sitive, and it is clear that Hybrid runs faster than Resampling
and CostSensitive for most scenarios (the execution times of
different datasets are shown in separate figures due to their
varying time scale). When the size of sliding window is
fixed, running time mainly dominant by the time for training
and classifying. While classification time is generally equal,
training time is responsible for the main execution time differ-
ence. The training process of CostSensitive involves relabeling
each training example with the estimated optimal class, which
is estimated from the ensemble classifier that learned from
multiple bootstrap replicates of the training set. This incurs
a relatively high cost in streaming data settings. In contrast,
Resampling only considers the misclassified instance through
time, which is available from the previous classification step.
Hybrid applies CostSensitive to produce more efficient re-
sults after resampling. This is meaningful as aside from any
performance requirement or resource constrains, data stream
framework has an essential prerequisite that the classification
task have a throughput at least equal to the rate at which
instances or batches arrive.

VI. CONCLUSIONS

Although a number of studies have developed approaches
to confront with non-stationary learning problem or class
imbalance issue independently, the combined research of ad-
dressing these two problems concurrently has been underex-
plored. In this paper, we propose a learning framework that

Fig. 6: Execution time in seconds for processing window size
from 100 to 2000 applied to Electricity dataset.

Fig. 7: Execution time in seconds for processing window size
from 100 to 2000 applied to simulated Gradual Concept drift
dataset.

Fig. 8: Execution time in seconds for processing window size
from 100 to 2000 applied to simulated Reoccuring Concept
Drift and Abrupt Concept Drift datasets.

simultaneously deals with class imbalance and concept drift in
imbalanced data streams, which have roots in a wide spectrum
of real-world applications. The framework further incorporates
cost sensitive solution according to the reduced imbalance
rate. As the first work that introduces cost sensitive method



in streaming data settings, we believe that the efficiency
indicated by experimental results herein shows resampling in
conjunction with cost sensitive is an excellent way to ensure a
throughput for data stream framework. The results of the real-
world dataset and synthetic datasets also suggest our proposed
framework is an effective predictor of data streams. In the
future, we plan to extend our work in a parallel manner for a
better computation complexity reduction.
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