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We present a new formulation of Maker fringes in parallel-surface films, using self-consistent boundary
conditions for reflections and allowing for any degree of refractive-index dispersion. This treatment of
the second-harmonic reflections and dispersion, unlike a number of previous derivations, leads correctly to
the expected form for the effective second-harmonic d coefficients. Complete expressions with physically
meaningful factors are given for the generated second-harmonic power for either absorbing or birefringent
films including reflections for the case of no pump depletion. A comparison with the isotropic approximation
is given, and practical considerations in the use of these expressions for the fitting of experimental data are
discussed.
1. INTRODUCTION

Since 1970 the determination of the nonlinear optical
(NLO) coefficients dij si ­ 1–3, j ­ 1–6) associated with
second-harmonic generation (SHG) has been performed
almost exclusively by the Maker fringe technique1 as de-
scribed in detail by Jerphagnon and Kurtz (hereafter,
JK).2 Over the years this technique has been applied
to inorganic and organic crystals and organic polymers.
However, some of the original assumptions made in the
derivations by JK, although they were applicable to the
transparent crystals of the day, are not uniformly appli-
cable to all material classes currently under investiga-
tion. Also, the theory presented by JK did not consider
absorbing materials or the general case of anisotropic
media. Many of the second-order NLO organic mate-
rials under investigation today, such as liquid crystals,
Langmuir–Blodgett films, poled polymers, and organic
crystals, are absorbing at the wavelength of the typical
SHG experiment and exhibit a fair degree of anisotropy.
Unfortunately, during the past 24 years the results of JK
were applied, by many workers, to systems that were ei-
ther anisotropic or absorbing, resulting in errors in the
determination of dij .

In solving the boundary value problem for SHG, JK
used approximate boundary conditions for the second-
harmonic (SH) waves by ignoring the SH wave reflected
from the second interface in the boundary conditions at
the first interface and assumed, in portions of their cal-
culations, that the nonlinear material had the same in-
dex of refraction at the fundamental frequency v as it
had at the second-harmonic frequency 2v. As a result,
their expression for psud, the angular projection factor for
the nonlinearity, is nonintuitive and difficult to calculate
in general. Furthermore, it is incorrect for materials for
which there is dispersion. These problems are not widely
realized in the literature and have continued to propa-
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gate, even recently.3–5 Some authors have realized the
problem with psud and have replaced it in the theory of
JK, ad hoc, with the correct term.6 As a result, a com-
bination of the JK theory with an ad hoc correction for
the projection factor is sometimes used to analyze SHG
experiments.

Ignoring reflections, expressions for the sum-frequency
fields generated by an isotropic transparent nonlin-
ear parallel slab were given three decades ago by
Bloembergen and Pershan.7 Subsequently to JK,
Chemla and Kupecek8 obtained Poynting vectors for
nonlinear wedges in air for anisotropic nonabsorbing
materials with 32-point symmetry and for absorbing
isotropic materials but, like JK, considered the boundary
conditions for the input and output faces of the nonlinear
material separately. More recently Okamoto et al.3

obtained expressions for Maker fringes in anisotropic
parallel slabs with C`v space symmetry, but, again, they
used the JK boundary-condition approach, leading to
complicated expressions that are not only difficult to
interpret physically but also incorrect if reflections are
kept and no assumptions are made about the dispersion.

In this paper we provide a new derivation of the Maker
fringes, using complete boundary conditions for the SH
waves. We also provide a general solution for birefrin-
gent media and a separate solution for materials with
nonzero absorption of the fundamental and SH waves.
This study is intended to provide a general framework for
analyzing SHG experiments by use of the Maker fringe
technique. Our theory, which includes the reflections of
the SH wave in the nonlinear material, is also an exten-
sion of an earlier work that neglected those reflections.9

The new theory predicts the same results as JK for trans-
parent, isotropic materials but exhibits significant dif-
ferences for materials with nonzero dispersion. These
differences have implications for experimentalists inves-
tigating the order in poled polymers by measuring the
1995 Optical Society of America
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Fig. 1. Three-layer slab geometry for SHG that is due to a
nonlinear layer in region II with the origin at the center of the
nonlinear film.

ratio d31yd33. We also show that the effect of neglecting
the birefringence in the analysis of Maker fringe data can
result in large errors in the determination of dij .

2. THEORY
In this section we present our general approach to the
boundary-value problem for SHG. A detailed exposition
is given in the appendixes. For simplicity we consider
the isotropic case with no absorption first. Briefly, we
show how including reflections of the SH wave makes
the result less ambiguous than JK do and simpler to
use in practice. We agree with the arguments concern-
ing Gaussian beams and multiple reflection of the funda-
mental beam given by JK and will not repeat them. The
major difference between the two approaches is that JK
neglected to consider the amplitude at the input bound-
ary of the SH wave reflected from the second interface
and we do not.

A. Isotropic Case
As the measurement of dij of a thin nonlinear film usually
requires that the film be supported upon a substrate, we
consider the three-layer system as shown in Fig. 1. We
assume that an electromagnetic wave of frequency v is
incident upon the structure from the bottom at an angle u

(the x–z plane is the plane of incidence). For a frequency
mv, the nonlinear layer of thickness L has an index nm

and the substrate has an index nms. For free-standing
films or crystal plates, setting the substrate index n2s

equal to 1 will suffice.
If we write the electric field of the incident fundamental

wave as

E1v ­ êvE1 expfisq1 ? r 2 vtdg , (1)

with êv ­ s0, 1, 0d or scos u, 0, 2sin ud for v ­ s or p,
respectively, and q1 ­ svycdssin u, 0, cos ud, then, for a
p-polarized input, the SH fields in the three regions shown
in Fig. 1 are given by
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where êr
s ­ s0, 1, 0d or êr

p ­ s2cos u, 0, 2sin ud is the po-
larization unit vector for the reflected SH field in air.
A and B are the complex amplitudes for the forward and
backward SH free waves in the nonlinear medium, respec-
tively, and T and R are the corresponding SH amplitudes
in the substrate and air, respectively. The polarization
unit vectors for the forward and backward SH waves
in the nonlinear medium are ê2s ­ s0, 1, 0d or ê2p ­
sc2, 0, 2s2d and êr

2s ­ s0, 1, 0d or êr
2p ­ s2c2, 0, 2s2d,

respectively. For the substrate, êsub
2s ­ s0, 1, 0d and

êsub
2p ­ sc2s, 0, 2s2sd. The wave vectors are (outside

the nonlinear slab) qr
2 ­ s2vycdssin u, 0, 2cos ud, (in-

side the slab) km ­ smvnmycdssm, 0, cmd and kr
m ­

smvnmycdssm, 0, 2cmd, and (in the substrate) ksub
2 ­

s2vn2sycdss2s, 0, c2sd, where sm ­ s1ynmdsin u and cm ­p
1 2 sm

2. The bound waves are given by
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In matching the tangential components of the fields be-
tween regions I and II, JK neglect the third terms on
the right-hand sides of Eqs. (3). They justify this ap-
proximation by assuming that the reflected free wave is
small. Because they do so, their solution for the trans-
mitted SH power contains a small term that does not
oscillate (which they neglect) and nonstandard Fresnel
transmission factors. Furthermore, their projection fac-
tor psud is incorrect because they obtain it by assuming
that n1 ø n2. Keeping those terms, however, is not diffi-
cult and results in an expression that includes the effects
of reflection of the SH wave in the nonlinear medium and
the correct, general expression for the projection factor
deff ­ ê2 ? d

$
:ê1ê1. As derived in Appendix A, the trans-

mitted SH power from a nonlinear isotropic slab in the
geometry depicted in Fig. 1, including reflections of the
SH and any degree of dispersion, is then
P
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Fig. 2. Maker fringe pattern predicted by JK and HH for a 300-mm-thick piece of X-cut quartz. Rotation is about the z axis.
where the t’s and the r’s are standard Fresnel trans-
mission and reflection coefficients, respectively, at the
air–film, film–substrate, and substrate–air interfaces
for the appropriate polarizations and frequencies and
where R ­ deff

rydeff , C ­ s2pLyldsn1c1 2 n2c2d, F ­
s2pLyldsn1c1 1 n2c2d, and f2 ­ s2pLyldsn2c2d. A com-
parison of the Maker fringe pattern for X-cut quartz
predicted by JK and the current (hereafter the HH)
method given by Eq. (6) is shown in Fig. 2. The high-
frequency oscillations on the HH curve are the result of
the reflections of the SH wave in the nonlinear medium.
The magnitude of the oscillations is related to the index
difference between the nonlinear medium and regions I
and III. Figure 2 supports the assertion of JK that
the effect of reflections is small. In addition, carefully
mapping out the high-frequency oscillations requires an
angular resolution far beyond that which is normally
attempted.

In terms of the ability to measure dij accurately, we
find that the difference between coefficients determined
by considering reflections and neglecting them (,2%) is
smaller than the typical experimental error in those mea-
surements (ø10–20%). Because of the small difference
predicted in the calculated dij we will henceforth neglect
the reflections by setting r

s2pd
af ø 0 in Eq. (6). This action

is different from the method used by JK to neglect reflec-
tions. JK’s approximation of no reflections in the bound-
ary conditions results in the necessity later to assume no
dispersion sn1 ø n2d and incident angles ui # py4 in order
to reduce the complexity of their result [see Eqs. (A36)
and (A38) of JK].

The consequences of these assumptions can be signifi-
cant for materials with even modest dispersion. Figure 3
shows the effect of dispersion on the measured dij in a
material with C`v symmetry. For Fig. 3 we calculated
the curves for the d33 ratios assuming that d33 ­ 3d31.
In practice, however, one usually measures d31 first and
then uses that value in the calculation for d33. This pro-
cedure is followed when one is trying to determine the
order parameter in a poled polymer achieved by means
of electric-field poling. By taking the ratios of the s ! p
and p ! p transmitted SH powers from the theories of JK
and HH, and assuming that d31 ­ d15 (Kleinman symme-
try), we have derived the following relation:

√
d31

d33

!
JK

­

242c1sn2c2 2 n1c1d
n1s1

2 1

√
d33

d31

!
HH

3521

. (7)

Figure 4 shows that, as the dispersion increases, the ra-
tio of d31yd33 calculated by the JK method decreases.
Because the standard rigid-gas model10 describing the
electric-field-induced orientation of dipoles predicts that
d31yd33 ­ 1y3 for low poling fields and ratios smaller
than 1y3 for high poling fields, measured SHG ratios of
d31yd33 , 1y3 are generally attributed to more order. In
these cases, however, our results indicate that if the JK
method is used to analyze SHG experiments in dispersive
media the implied high degree of order may be an arti-
fact caused by the inability of the JK method to account
properly for the effects that are due to dispersion.

B. Absorption
If the nonlinear material has nonzero absorption for either
the fundamental or the SH wave, Eq. (6) will not suffice.
In order to introduce the effects of absorption, we write
the index of refraction for the nonlinear film as a complex
quantity and solve the same boundary-value problem.
The effects of absorption have been considered to some
extent for electric-field-induced SHG11 and Maker fringes
with wedges8 and for poled polymer films.9 By writing
the complex index of refraction as ñm ­ nms1 1 ikmd,
where km is the extinction coefficient of the nonlinear
material at the frequency mv, we arrive at the follow-
ing expression for the transmitted SH power (neglecting
reflections) from an absorbing material:
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where x ­ d1 2 d2 ­ s2pLyldsn1k1yc1 2 n2k2yc2d. An
explanation for the form of di and a complete expres-
sion for the SH power including reflections are derived
in Appendix B. In general, the transmission factors in
Eq. (8) are complex, but for small extinction coefficients
they can be considered real.
C. Birefringence
In a uniaxial material the dielectric permittivity is a
second-rank tensor and can be represented as

ei
$ ­

264nio
2 0 0

0 nio
2 0

0 0 nie
2

375 , i ­ 1, 2 , (9)

where nio and nie are the ordinary and the extraordi-
nary indices of refraction at the fundamental si ­ 1d and
the SH si ­ 2d frequencies, respectively. As detailed in
Appendix A, the bound wave12 for the p ! p case is found
to be
Fig. 3. Ratio of the nonlinear coefficients as obtained by the JK and HH methods.

Fig. 4. Effect of dispersion on the ratio d31yd33 as calculated with the JK method. sd31yd33dHH is assumed to be 1y3.
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A relation for the bound wave similar to Eq. (10) was re-
cently found by Okamoto et al.3,13 To calculate PNL, and
hence deff , new polarization unit vectors that are func-
tions of the walk-off angle g (given in Appendix A) must
be used. Using these relations, we find that, neglecting
reflections, the transmitted SH power from a nonlinear
material displaying a uniaxial birefringence is
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where Cbi ­ s2pLyldfn1su1dc1 2 n2su2dc2g and the Fresnel
coefficients for birefringent media are given in Ap-
pendix A.
3. RESULTS
We showed above that the JK technique is a good ap-
proximation only for the case when n1 ø n2. But, as we
wish to include any degree of dispersion, when we ex-
amine the effects of absorption and birefringence in this
section we do so only in terms of the current (HH) theory.
We concentrate on those effects from the standpoint of
an experimentalist’s ability accurately to determine dij

by using the Maker fringe technique. Further, because
absorption and birefringence are nearly always present
when one is studying organic films and because of the
current interest in these materials, we use representa-
tive values found in the current literature to illustrate
the magnitude of the effects. The theory is not limited
to application to these materials, however.

Equation (8) takes the absorption of both the funda-
mental and the SH waves into effect; however, because
most experiments involve doubling from the infrared
(where absorption is low) into the visible, we assume no
absorption at the fundamental in the following analysis.
Although some aspects of absorption in SHG experiments
have been considered before, there are two additional
features that bear mentioning. The first has to do with
the shape of the Maker fringe curve itself for the case
of nonzero absorption of the second harmonic. Figure 5
shows the predicted patterns for various levels of absorp-
tion of the SH wave for a material with dispersion typical
of a side-chain NLO polymer such as Disperse Red 1
methyl methacrylate (DR1-MMA).14

The coherence length at a fundamental wavelength
of 1064 nm and at normal incidence for the polymer
represented in Figs. 5 and 6 is lcoh ­ ly4jn1 2 n2j ­
1.24 mm. This short coherence length gives rise to the
Maker fringes seen in the 9-mm-thick film of Fig. 5.
However, we see that an absorbance at 2v of a2 ­
2vn2k2yc ­ 0.4ymm causes the fringes to be washed out.
Fig. 5. Maker fringe patterns for a representative absorbing NLO poled polymer.
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Fig. 6. Effect of absorption on the determination of d33 in a NLO polymer. n1 ­ 1.566, n2 ­ 1.780, coherence length 1.24 mm.
Fig. 7. Ratio of the predicted d33 and of the predicted film thickness for the cases of absorption and no absorption. The results
are obtained from fits to Eq. (8) (with a2 ­ 0) for d33 and the thickness.
This is due to the dominance of the sinh2 x term in Eq. (8).
No matter what the thickness of the film or its coher-
ence length, a sufficiently high absorbance will completely
wash out the fringes and give a curve with one hump,
where the shape of the hump is not particularly sensitive
to the thickness. This feature of absorbance presents a
problem for experimentalists if the thickness and the unit
absorbance are not accurately known. The appearance of
one hump would normally indicate a film that was of the
order of one coherence length thick; hence the resulting
fits for dij would yield erroneous results if the thickness
were not accurately known from other means.

The second feature of interest concerning the effects
of absorption on Maker fringe experiments is shown in
Fig. 6. In this figure we compare the predicted values
of d33 obtained with and without consideration for the
effects of absorption. In addition to the expected general
trend of underestimation of d33 we see that, for any level
of absorption, a dramatic overestimation is possible if
the material thickness is near an even multiple of the
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coherence length. These results are found by comparison
of the SH intensities of the two cases at an angle of
incidence of 50±.

This plot emphasizes the need to perform the full angu-
lar scan and fit the results to the theory. By considering
data generated by Eq. (8) with a2 ­ 1ymm, we have cal-
culated the difference in the predicted values of the film
thickness and d33 for the two cases. Besides the fact that
the fitted parameters calculated by neglecting absorption
are very inaccurate, Fig. 7 shows that in order to fit the
data one must adjust the fitted thickness to successively
smaller values, while the fitted d33 settles on a value of
,50% of the true value for all film thicknesses .4 mm for
the chosen polymer parameters. As a result, one can see
that, if absorption is not taken into account, the fitted d33

is independent of thickness after the thickness increases
above a certain amount.

We start our discussion on the effect of birefringence by
examining the Maker fringe plot for each case for X-cut
quartz. Figure 8 shows only a slight difference between
the two cases. Calculation of d11 and the crystal thick-
ness for each case yields a difference of 2% and 2 mm,
respectively, for a 1000-mm-thick crystal. The close
agreement between the isotropic and birefringent treat-
Fig. 8. Maker fringe plots for 1000-mm-thick X-cut quartz.

Fig. 9. Effect of birefringence on the calculation of d33 in a poled polymer. Extraordinary indices were used for the isotropic case.
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Fig. 10. Ratio of the predicted d33 and film thickness for the isotropic and the birefringent cases. The results are obtained from fits
to Eq. (12) for d33 (crosses) and d33 and the thickness (filled diamonds and open boxes).
ments is due to the small birefringence of quartz. Quartz
has a birefringence sDni ; nie 2 nio ­ 3sid of 0.0088 and
0.0091 at 1.064 and 0.532 mm, respectively.

The standard definition of birefringence, Dn, can be
related to the poling-induced birefringence in polymers,
si, through the following relations:

nio ­ niu 2 si ,

nie ­ niu 1 2si , (13)

where i ­ 1, 2 and niu is the unpoled index at the fre-
quency iv. Equations (13) are generally valid for amor-
phous poled polymers. Recent data for poling-induced
birefringence in a polymer (bisphenol-A 4–amino-40-
nitrotolane, si ­ 0.020 ! 0.025) are given by Jungbauer
et al.15 In Fig. 9 we have calculated the ratio of d33

(birefringent)yd33 (isotropic) as a function of film thick-
ness and degree of birefringence for an incident angle
of 50±.

The use of the ordinary indices gives qualitative results
similar to those in Fig. 9, but the magnitude of the error
is worse than the result from use of the extraordinary in-
dices for a p ! p experiment. Figure 9 also shows us
that experiments that attempt to determine d33 while
making comparisons at only a single angle and ignoring
birefringence are subject to very large errors that depend
on the thickness of the film, regardless of the degree of
birefringence. We have also calculated d33 from isotropic
fits of complete angular test data generated with the full
birefringent theory. Figure 10 shows these results as a
function of film thickness when the index data ss ­ 0.013d
for a typical DR1-MMA side chain are used.14 We are
making two different comparisons in this plot. First we
assume that the thickness is accurately known and let d33

vary alone. This results in fairly significant differences
from the true values of d33. Next we allow the film thick-
ness to vary also. The ratio of the fitted thickness to the
true thickness is seen to be quite close to 1 for all thick-
nesses greater than approximately two coherence lengths.
In this range the fitted value of d33 is closer to the true
value than for the first case when the thickness was fixed,
but it is still appreciably different. For thicknesses less
than two coherence lengths there is a wide deviation from
the true values for both the thickness and d33. The use of
the full birefringent theory is clearly called for if accurate
determination of dij is sought.

4. CONCLUSIONS
In this paper we have presented new expressions for ana-
lyzing data from Maker fringe SHG experiments. These
expressions include the effects of reflections of the SH
wave in the nonlinear material and are valid for any angle
of incidence or degree of dispersion. We have shown that
neglecting the reflections after solving for the SH power is
preferred to doing so in the boundary conditions when set-
ting up the problem, because the results are more gener-
ally applicable to systems with dispersion. Furthermore,
we show that the use of the JK theory rather than the
HH theory can result in an underestimation of the ratio
d31yd33 in experiments in which dispersion is a factor.

We have also included the effects of absorption of
the fundamental and SH waves by the nonlinear media.
When dealing with an absorbing material, the best ad-
vice for experimentalists is to perform the experiment far
from the resonances of the nonlinear material. However,
this is not always possible, and for such a case our results
show that an accurate determination of the thickness and
absorption coefficient is required if one is to get meaning-
ful results.

We have also presented, for the first time to our knowl-
edge, an accurate extension of the Maker fringe technique
to birefringent materials. By applying that theory to rep-
resentative materials studied today, we have shown that
large discrepancies in the prediction of dij can result if
birefringence is neglected. There does not appear to be
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Fig. 11. Definition of the walk-off angle g in a birefringent
medium.

any reason to ignore the effects of birefringence, given the
simple nature and form of the theory that handles it.

The remaining task necessary for a complete theory for
use in analyzing Maker fringe experiments is to include
the combined effects of absorption and birefringence.

APPENDIX A: BIREFRINGENCE
Here we derive the expression for the SH power generated
in a birefringent nonlinear film. We assume no depletion
of the fundamental. Maxwell’s equations require that
the SH field E2 satisfy

= 3 = 3 E2 2

√
2v

c

!2

e2
$

? E2 ­

√
2v

c

!2

4pPNL exps2ik1 ? rd ,

(A1)

where use is made of the electric displacement vector
D2 ­ e2

$
? E2 1 4pPNL exps2ik1 ? rd, e

$ is the permittivity
tensor given in Eq. (9), and PNL is given in Eqs. (5). In
the linear media (air, substrate), PNL is zero and Eq. (A1)
is homogeneous.

In the nonlinear film (Region II of Fig. 1), the propa-
gation vectors that appear in Eqs. (3) for the p ! p case
take the forms
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with the angle-dependent refractive indices nmsumd given
in Eqs. (11). Although D2 is still perpendicular to k2,
the electric field deviates from the perpendicular by the
walk-off angle16 g, as shown in Fig. 11.

The unit vectors that describe the E-field polarization
are then given by
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lowing useful relations:
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Furthermore, because êm ? êm ­ 1, we have
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2 1 nme

2 2 nmsumd2g1/2
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The angles um in the birefringent film are obtained by use
of Eq. (11) in conjunction with Snell’s law, nmsumdsin um ­
sin u, to get

sin um ­
nme sin u

fsnmonmed2 1 snme
2 2 nmo

2dsin2 ug1/2
. (A7)

For the s ! p case the fundamental beam is s polarized,
so that g1 ­ 0 and

k1 ­ svycdn1oss1, 0, c1d ,

ê1 ­ s0, 1, 0d ,

sin u1 ­ sin uyn1o , (A8)

while Eqs. (A2)–(A8) remain valid for the SH wave
sm ­ 2d.

The bound wave, E2b, is a particular solution to the in-
homogeneous equation (A1) in the nonlinear material.17

Inserting E2b ­ eb expsikb ? rd, with kb ­ 2k1, into
Eq. (A1) gives the following equations for the bound wave
amplitude eb:

f2n1
2su1dc1

2 1 n2o
2gebx 1 n1

2su1ds1c1ebz ­ 24pP NL
x ,

n1
2su1dc1s1ebx 1 f2n1

2su1ds1
2 1 n2e

2gebx ­ 24pP NL
z . (A9)

On solving for ebx and ebz, one can conveniently write the
solution as in Eq. (10).

The total fields in each of the three regions are as given
in Eqs. (2)–(4), with the exception of H2 in Eq. (3), which
for birefringence is given by

H2 ­ hb expsi2k1 ? rd 1 n2su2dcos g2fAê2s expsik2 ? rd

1 Bêr
2s expsik2r ? rdg , (A10)

where hb ­ n1su1dk1 3 eb and the bound wave eb is given
in Eq. (10). The boundary conditions at the I–II inter-
face sz ­ 2Ly2d requiring the continuity of E2x and H2y

result in the equations

2cossudR ­ ebx exps2if1d 1 cossu2 2 g2d

3 fA exps2if2d 2 B expsif2dg , (A11)

R ­ hby exps2if1d 1 n2su2dcos g2

3 fA exps2if2d 1 B expsif2dg , (A12)

respectively. Continuity of these field components at the
II–III interface sz ­ Ly2d yields

c2sT ­ ebx expsif1d 1 cossu2 2 g2d

3 fA expsif2d 2 B exps2if2dg , (A13)

n2sT ­ hby expsif1d 1 n2su2dcos g2

3 fA expsif2d 1 B exps2if2dg , (A14)

where f1 ­ k1c1L and f2 ­ k2c2Ly2. Note that, in
the JK approach, B ­ 0 in Eqs. (A11)–(A14). Solving
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Eqs. (A11)–(A14) for A and B and inserting the results
into the equation for T, obtained by multiplying Eq. (A13)
by n2s and Eq. (A14) by c2s and adding, we obtain the
transmitted field

T ­ s1yDdf2u1
a v1 expsf1 2 2f2d 1 u2

a v2 expsf1 1 2f2d

1 2n2su2dcos g2 cossu2 2 g2dshby cos u 1 ebxd

3 exps2if1dg , (A15)

where

D ­ 2u1
a u1

s exps22if2d 1 u2
a u2

s exps2if2d , (A16)
u6
a ­ cossu2 2 g2d 6 n2su2dcos g2 cos u ,

u6
s ­ n2s cossu2 2 g2d 6 n2su2dc2s cos g2 ,

v6 ­ hby cossu2 2 g2d 6 n2su2debx cos g2 . (A17)

When the identities

exp isf1 6 2f2d ­ 2i sinsf1 6 f2dexps6if2d 1 exps2if1d

(A18)

are used in Eq. (A15), the terms proportional to exps2if1d
cancel out (unlike when JK-type boundary conditions are
used). Furthermore, from Eqs. (9) and (A12) we find that

v6 ­
4pn2su1d2

n1su1d2 2 n2su1d2

fn1su1dc1 6 n2su2dc2g
n2o

2

(
ê2 ? PNL

êr
2 ? PNL

,

(A19)

after considerable simplification requiring Eqs. (11), (A3),
and (A4). Thus, use of Eqs. (A18) and (A19) in Eq. (A15)
gives
T ­ 2
8pi

D

"
n2su1d

n2o

#2
1

n1su1d2 2 n2su2d2

3 hu1
a fn1su1dc1 1 n2su2dc2gê2 ? PNL sinsf1 2 f2d

3 exps2if2d 1 u2
a fn1su1dc1 2 n2su2dc2gêr

2 ? PNL

3 sinsf1 1 f2dexpsif2dj . (A20)

The p-polarized reflection coefficients at the air–film and
film–substrate interfaces for the SH wave are
r
s2pd
af ­ 2u2

a yu1
a , r

s2pd
fs ­ u2

s yu1
s , (A21)

whereas the transmission coefficient for the SH wave at
the film–substrate interface is

t
s2pd
fs ­

2n2su2dcos g2 cossu2 2 g2d
u1

s

. (A22)

Then the use of Eqs. (A21), (A22), and (A16) in Eq. (A20),
together with

n1su1d2 2 n2su2d2 ­ fn1su1dc1 1 n2su2dc2g

3 fn1su1dc1 2 n2su2dc2g , (A23)

which holds because of Snell’s law, gives
T ­
4pit

s2pd
fs

n2su2dcos g2 cossu2 2 g2d

√
2pL

l

!"
n2su1d

n2o

#2"
n1su1d2 2 n2su2d2

n1su1d2 2 n2su1d2

#

3

"
ê2 ? PNL sin Cbi

Cbi
exps2if2d 2 r

s2pd
af êr

2 ? PNL sin Fbi

Fbi
expsif2d

#
fexps22if2d 1 r

s2pd
af r

s2pd
fs exps2if2dg

, sA24d
where

Cbi ­ f1 2 f2 ­
2pL

l
fn1su1dc1 2 n2su2dc2g ,

Fbi ­ f1 1 f2 ­
2pL

l
fn1su1dc1 1 n2su2dc2g . (A25)

The components of PNL along the SH E fields are given by

ê2 ? PNL ­ 2
8p

c
deffI1fts1gd

af g2 ,

êr
2 ? PNL ­ 2

8p

c
dr

effI1fts1gd
af g2 , (A26)

where I1 is the intensity of the incident fundamental
wave, t

s1gd
af is the transmission coefficient for the funda-

mental at the air–film interface,

t
s1gd
af ­

8>>>><>>>>:
2 cos u

cossu1 2 g1d 1 n1 su1dcos g1 cos u
, g ­ p

2 cos u

cos u1 1 n1o cos u
,

g ­ s

,

(A27)
and the effective d coefficients for C`v space symmetry are
deff ­ 2ê2 ? d
$

: ê1ê1 ­

8<: d14 cossu2 2 g2dsin 2su1 2 g1d 1 sinsu2 2 g2dfd31 cos2su1 2 g1d 1 d33 sin2su1 2 g1dg p ! p

d31 sinsu2 2 g2d , s ! p
,

dr
eff ­ 2êr

2 ? d
$

:ê1ê1 ­

8<: 2d15 cossu2 2 g2dsin 2su1 2 g1d 1 sinsu2 2 g2dfd31 cos2su1 2 g1d 1 d33 sin2su1 2 g1dg , p ! p
d31 sinsu2 2 g2d , s ! p

.

sA28d
The SH power transmitted through the substrate into
air is then given by cy8pfts2pd

sa g2jT j2A, where A is the
cross-sectional area of the fundamental beam, and the
transmission coefficient for the p-polarized SH wave from
the substrate into air is

ts2pd
sa ­

2n2sc2s

n2s cos u 1 c2s

. (A29)

Thus we get
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P
g!p
2v ­

128p3

cA
fts2pd

sa g2fts2pd
fs g2fts1gd

af g4P 2
v

n2su2d2 cos2 g2 cos2su2 2 g2d

√
2pL

l

!2"
n2su1d

n2o

#4"
n1su1d2 2 n2su2d2

n1su1d2 2 n2su1d2

#2

3 deff
2

8<:sin2 Cbi

C
2
bi

1 frs2pd
af g2R2 sin2 Fbi

F
2
bi

2 2r
s2pd
af R

sin Cbi

Cbi

sin Fbi

Fbi
cos 2f2

9=;
h1 1 frs2pd

af r
s2pd
fs g2 1 2r

s2pd
af r

s2pd
fs cos 4f2j

, sA30d
where R is the ratio deff
rydeff . For the case of s ! p

generation, the bound waves eb and hb are given by
Eqs. (10) and (A10) with the substitution n1su1d ! n1o.
This substitution in Eq. (A30) gives the corresponding
SH power. We obtain the isotropic result, Eq. (6), from
Eq. (A30) by letting n1e ­ n1o ! n1 and n2e ­ n2o ! n2.

APPENDIX B. ABSORPTION
For an isotropic, absorbing nonlinear material, the fields
in the three regions are given by Eqs. (2)–(5) but with
complex refractive indices18 ñm ­ nms1 1 ikmd. Snell’s
law for a transparent medium (n) to an absorbing
medium sñd, ñ sin ũ ­ n sin u, then implies complex
angles of refraction, ũ ­ ur 1 iui. We can separate
Snell’s law into real and imaginary parts in order to
solve for ur and ui. We obtain

tanh ui ­ 2k tan ur , (B1)

cos2 ur ­
scos2 uR 1 k2d 1 fscos2 uR 2 k2d2 1 4k2g1/2

2s1 1 k2d
,

(B2)

where uR is the angle of refraction in the limit k ! 0, viz.,
sin uR ­ n sin uynm. We also need the product ñ cos ũ.
Expansion of this product into real and imaginary parts
and subsequent use of Eq. (B1) gives

ñ cos ũ ­
n cos ur

cosh ui
1 i

nk

cos ur
cosh ui . (B3)

For small k, ur is only slightly larger than uR . For ex-
ample, for n ­ 1.6, k ­ 0.06, and at a large incident
angle of 80± we calculate uR ­ sin21ssin 80y1.6d ­ 38.0±,
ur ­ 38.2± [from Eq. (B2)], and cosh ui ­ 1.001 [from
Eq. (B2)]. Then, as cosh ui ø 1 and ur ø uR , Eq. (B3)
can be written as

ñ cos ũ ø n cos uR 1 inkycos uR . (B4)

We shall subsequently use this approximation in terms
involving phase and assume real angles in transmission
and reflection coefficients. Applying the same boundary
conditions as in Appendix A, we obtain
T ­
4pit

s2pd
fs

n2c2

√
2pL

l

!
24ê2 ? PNL sin C̃

C̃
exps2if̃2d 2 r

s2pd
af êr

2 ? PNL sin F̃

F̃
expsif̃2d

35
fexps22if̃2d 1 r

s2pd
af r

s2pd
fs exps2if̃2dg

, sB5d
where, with the aid of Eq. (B4),

f̃m ­
2pL

l
ñmc̃m ­ fm 1 idm , dm ­

2pL
l

nmkm

cm

,

(B6)

C̃ ­ f̃1 2 f̃2 ­ C 1 ix , x ­
2pL

l

√
n1k1

c1
2

n2k2

c2

!
,

(B7)

F̃ ­ f̃1 1 f̃2 ­ F 1 iG , G ­
2pL

l

√
n1k1

c1
1

n2k2

c2

!
,

(B8)

and the transmission and reflection coefficients are

t
s2pd
fs ­

2n2c2

n2sc2 1 n2c2s

,

r
s2pd
af ­

n2 cos u 2 c2

n2 cos u 1 c2

,

r
s2pd
fs ­

n2sc2 2 n2c2s

n2sc2 1 n2c2s

. (B9)

For the case of absorption, eb in Eqs. (3) is the value of the
bound wave amplitude at the middle of the film. Conse-
quently, PNL in Eqs. (5) depends on the fundamental wave
amplitude at the center of the film, viz.,

PNL ­ jE1j2d
$

: fê1 exps2d1y2dgfê1 exps2d1y2dg , (B10)

where E1 is the magnitude of the fundamental wave in
air. Using Eq. (B10) in P2v ­ scy8pdfts2pd

sa g2jT j2A, with T
given by Eq. (B5), we obtain
P
sg!pd
2v ­

128p3

cA
fts2pd

sa g2fts2pd
fs g2fts1gd

af g4P2
v

n2
2c2

2

√
2pL

l

!2

deff
2 expf22sd1 1 d2dg

3

Ω
jsin C̃yC̃j2 1 frs2pd

af g2R2 exps24d2djsin F̃yF̃j2 2 2r
s2pd
af R exps22d2djsin C̃yC̃j jsin F̃yF̃jcoss2f2 2 ux 1 uyd

æ
h1 1 frs2pd

af r
s2pd
fs g2 exps28d2d 1 2r

s2pd
af r

s2pd
fs cos 4f2 exps24d2dj

, sB11d
where

jsin C̃yC̃j2 ­ ssin2 C 1 sinh2 xdysC2 1 x2d ,

jsin F̃yF̃j2 ­ ssin2 F 1 sinh2 GdysF2 1 G2d ,

tan ux ­
C tanh x 2 x tan C

C tan C 1 x tanh x
,

tan uy ­
F tanh G 2 G tan F

F tan F 1 G tanh G
, (B12)
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and R ­ dr
effydeff with deff and dr

eff given as in Eq. (A28)
but with g1 ­ g2 ­ 0.
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Note added in proof: We do not include the effects
of multiple reflections of the fundamental here, although
Neher et al.19 has included them for the case of third-
harmonic generation. They found that, for the case in
which the nonlinear film is on the side of the substrate
facing the incident beam (as in this paper), the effect of
neglecting the multiple reflections of the fundamental is
small.
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