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AlN/GaN single heterojunction MOS-HEMTs grown by molecular
beam epitaxy have been fabricated utilising HfO2 high-K dielectrics
deposited by atomic layer deposition. Typical DC transfer character-
istics of 1.3 mm gate length devices show a maximum drain current
of 950 mA/mm and a transconductance of 210 mS/mm with gate
currents of 5 mA/mm in pinch-off. Unity gain cutoff frequencies, ft
and fmax, were measured to be 9 and 32 GHz, respectively.

Introduction: The AlN/GaN high electron mobility transistor (HEMT)
is an attractive structure for extending the frequency performance of III-
N based transistors. This stems from the very thin AlN barrier layer that
is utilised, which permits a significant reduction in gate length while
maintaining an appropriate gate-to-channel aspect ratio to mitigate
short channel effects. Recently, the AlN/GaN HEMT has shown its
potential by demonstrating some of the highest current densities and
transconductances in a single heterostructure with appreciable cutoff fre-
quencies [1–3]. However, a major issue in such structures is high
Schottky gate currents due to tunnelling through the thin AlN cap,
which necessitates the insertion of a gate insulator. High-K dielectrics
have matured to where they are now of interest in application to
MOS-gated devices [4]. In this Letter, the first demonstration of an
ALD deposited HfO2 gate-dielectric AlN/GaN MOS-HEMT is pre-
sented. Owing to the insertion of a 3.6 nm HfO2 layer, the gate
current in these devices was extremely low, typically 5 mA/mm. This
is particularly noteworthy since this result was achieved in a structure
with a thin 4.5 nm AlN barrier layer. In this Letter, we report on DC,
RF and power performance of the AlN/GaN HEMT.

Device growth and fabrication: The AlN/GaN heterojunctions were
grown by plasma assisted MBE on 2 inch diameter semi-insulating
4H-SiC substrates. The procedures for SiC substrate preparation are
similar to those we have described elsewhere [5, 6]. The 60 nm-thick
AlN nucleation layer was grown, followed by subsequent
unintentionally doped (UID) GaN buffer and AlN barrier layers with
thicknesses of 1 mm and 4.5 nm, respectively. The AlN barrier thickness
was chosen on the basis of work by Cao et al. who showed a minimum
sheet resistance in single heterojunction AlN/GaN HEMTs with AlN
thicknesses between 3–5 nm [7]. The GaN growth rate was determined
to be 1.2 Å/s from optical reflectance measurements. All epitaxial layers
were grown without interruptions.

Contactless resistance measurements on the unprocessed sample
showed sheet resistances in the range 600–800 V/A, which we specu-
late is due to an AlN cap layer thickness variation across the wafer
surface. Device fabrication was initiated by e-beam evaporation of
Ti/Al/Ni/Au contact metallisation, which were annealed at 8008C for
30 s to form ohmic contacts. Contact resistances were found to be in
the range 0.8–1.1 V mm, determined by circular transfer length
method measurements. Mesa isolation was achieved via a BCl3/Cl2
plasma etch.

HfO2 films were deposited from tetrakis (ethylmethyl) amino hafnium
(TEM AHf) and water at 2508C using a hot wall stainless steel flow tube
atomic layer deposition (ALD) reactor. The fixed volume approach as
described elsewhere was used for the delivery of both reagents [8, 9].
The Ni/Au gate metallisation was then defined and deposited through
standard photolithography and e-beam evaporation. A BCl3/Cl2
plasma etch was applied to open windows in the HfO2 to access the
ohmic metal for the final overlay metallisation. This was followed by
the deposition of a 100 nm-thick PECVD SiN film and a subsequent
photolithographic patterning and SF6 plasma etch to open windows to
the overlay metal contacts for probing.

Device characterisation: Hall effect measurements were performed
both prior to HfO2 deposition and after gate metallisation. Rsh decreased
on average by 12% through an increase in sheet density, suggesting the
partial passivation of surface states. Room temperature 2DEG density
and mobility after HfO2 deposition was found to be 1.48 � 1013 cm22

and 620 cm2/Vs, respectively. No change in mobility was observed,
which indicates the ALD HfO2 is a low damage process. Fig. 1 shows
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two-terminal diode current density for both Ni/Au-AlN and Ni/Au-
HfO2 Schottky diodes with 150, 100 and 50 mm diameter diode dot
sizes. A 7 to 8 order of magnitude reduction in diode current down to
approximately 1 mA/cm2 was observed in the sample with the 3.6 nm
HfO2 dielectric compared to the sample without the dielectric layer, indi-
cating excellent gate-current suppression due to the dense ALD dielec-
tric. It should be noted that, owing to high reverse bias Schottky diode
current for the uninsulated Ni/Au-AlN diodes, output characteristics of
HEMTs with such gates could not be taken and therefore are not com-
pared. This is consistent with other reports in literature [1–3].

10–9

–10 –8 –6 –4 –2 0 2 4 6 8 10

Ni/Au on AIN(4.5 nm)/GaN

SiN

UID GaN

SiN

AIN
ALD HfO2

Ni/Au on HfO2 (3.6 nm)/AIN/GaN

reverse bias

10–7

10–8

10–6

10–5

10–4

10–3

10–2

I di
od

e,
 A

/c
m

2

Vapplied, V

10–1

100

101

102

103

104

50 m

100 m

150 m

Fig. 1 Current density comparison of Ni/Au Schottky on AlN/GaN (above)
and HfO2/AlN/GaN (below) diodes

Each curve set demonstrates typical values for 150, 100 and 50 mm diameter dots
Inset: Insulated gate structure

Representative drain characteristics for 1.3 mm gate length (LG),
150 mm gate width (WG), and 5 mm source–drain spacing MOS-
HEMT are shown in Fig. 2. As seen in the Figure, a current density
of �800 mA/mm at VGS ¼ 0 V was measured. A maximum drain–
source current of 950 mA/mm at VGS ¼ þ4 V and transconductance
of 210 mS/mm at VDS ¼ þ10 V was measured despite the high sheet
and contact resistances (not shown). Analysis of capacitance–voltage
characteristics of the HfO2/AlN stacked capacitor confirmed the dielec-
tric constant of the HfO2 to be �20, which is typical of ALD HfO2. As
shown in Fig. 2a, the MOS-HEMTs have excellent pinch-off character-
istics, demonstrating that leakage current through the AlN barrier is dra-
matically suppressed by the ALD HfO2 gate insulator. The threshold
voltage is 24.1 V. In deep pinch-off (VGS ¼ 27 V, VDS ¼ 10 V,
IDS ¼ 7 mA/mm) the gate leakage current was measured to be 5 mA/
mm (not shown). The off-state breakdown voltage was .25 V with
the criterion of IDS ¼ 1 mA/mm under pinch-off conditions. S-
parameter measurements at a quiescent bias of VDS ¼ 15 V and VGS ¼

21.5 V yield a current gain cutoff frequency, ft, of 9 GHz and a
power gain cutoff frequency, fmax, of 32 GHz, as shown in Fig. 2b. A
Focus Microwaves load-pull system was used to measure the output
power at 2 GHz. An output power of 2.6 W/mm and a PAE of 33%
was measured.
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Fig. 2 IV drain characteristics

a Lg ¼ 1.3 mm, Wg ¼ 150 mm. Threshold voltage occurs at VGS ¼ 24.1 V
b Small-signal measurements

Conclusions: An AlN/GaN MOS-HEMT employing a 3.6 nm ALD
HfO2 gate dielectric has been demonstrated. Despite higher sheet and
contact resistances, 1.3 mm gate lengths and a non-optimised growth,
these devices showed maximum drain currents of 950 mA/mm and
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210 mS/mm transconductance. Unity gain cutoff frequencies, ft and fmax

were measured to be 9 and 32 GHz for 1.3 mm long gates, respectively.
Most notable was the reduction in gate current to 5 mA/mm in deep
pinch off conditions (VGS ¼ 27 V, VDS ¼ 10 V) in a structure with an
overall barrier thickness of 8 nm. Such performance exemplifies the
potential for ultrathin AlN/GaN heterostructures in conjunction with
ALD HfO2 dielectric layers for the application to high-speed, high-
power III-N technology.
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