Numerical Methods for
Hyperbolic and Parabolic Conservation Laws
Linear System Solver
Part I: Conjugate Gradients Method

Andreas Meister

UMBC, Department of Mathematics and Statistics
Outline

- Methods for symmetric, positive definite Matrices
 - Method of steepest descent
 - Method of conjugate directions
 - CG-scheme

- Methods for non-singular Matrices
 - GMRES
 - BiCG, CGS and BiCGSTAB

- Preconditioning
 - ILU, IC, GS, SGS, ...
We consider

\[Ax = b \]

with given data \(A \in \mathbb{R}^{n \times n} \), \(b \in \mathbb{R}^n \).

Splitting methods

- Looking for approximations
 \[x_m \in \mathbb{R}^n \]

Projection methods

- Looking for approximations
 \[x_m \in x_0 + K_m \subset \mathbb{R}^n \]
 \[\dim K_m = m \leq n \]

Numerical algorithm

- Numerical algorithm (orthogonality constraint)
 \[x_{m+1} = Mx_m + Nb \]
 \[b - Ax_m \perp L_m \subset \mathbb{R}^n \]
 \[\dim L_m = m \leq n \]
Projection method & Krylov subspace approach

Example

\[A = I \in \mathbb{R}^{2\times2}, \quad x_0 = 0 \in \mathbb{R}^2 \]

- \(K_1 = L_1 \) (Orthogonal projection method)
Projection method & Krylov subspace approach

Example

\(A = I \in \mathbb{R}^{2\times2} \), \(x_0 = 0 \in \mathbb{R}^2 \)

- \(K_1 = L_1 \) (Orthogonal projection method)
- \(K_1 \neq L_1 \) (Skew projection method)
Krylov subspace approach:

Projection method based on

\[K_m = K_m(A, r_0) = \text{span}\{r_0, Ar_0, \ldots, A^{m-1}r_0\}, \]

with \(r_0 = b - Ax_0 \) is called Krylov subspace method.
Methods for symmetric, positive definite matrices

Basic idea:
Minimize the function

$$F(x) = \frac{1}{2} (Ax, x) - (b, x)$$

with respect to specific search directions

$$p_0, p_1, \ldots \in \mathbb{R}^n \setminus \{0\}.$$

Procedure:

- Choose $$x_0 \in \mathbb{R}^n$$ and $$p_0, p_1, \ldots \in \mathbb{R}^n \setminus \{0\}.$$
- For $$m = 0, 1, \ldots$$ we calculate $$x_{m+1}$$ such that
 $$F(x_{m+1}) \leq F(y) \quad \forall y \in x_m + \text{span}\{p_m\}$$
 $$\implies x_{m+1} = \arg \min_{\lambda \in \mathbb{R}} F(x_m + \lambda p_m)$$
 $$= f_{x_m,p_m}(\lambda)$$

Andreas Meister (UMBC) Methods for Conservation Laws Fall 2013 7 / 43
Methods for symmetric, positive definite matrices

Questions:

1. Does \(x^* = A^{-1}b \) represent the global minimum of \(F \)? Yes

2. How do we calculate \(\lambda \in \mathbb{R} \)?

Concerning 1)

\[
F(x) = \frac{1}{2}(Ax, x) - (b, x)
\]

\[
\nabla F(x) = \frac{1}{2}(A + A^T)x - b
\]

A symm. \(\Rightarrow \)

\[
Ax - b
\]

\[
\nabla^2 F(x) = A \quad \text{A pos.def.} \quad \text{F is a convex mapping}
\]

\[
\nabla F(x) = 0 \iff x = A^{-1}b
\]
Questions:

1. Does $x^* = A^{-1} b$ represent the global minimum of F? Yes
2. How do we calculate $\lambda \in \mathbb{R}$?

Concerning 1)

\[
F(x) = \frac{1}{2} (Ax, x) - (b, x)
\]

\[
\nabla F(x) = \frac{1}{2} (A + A^T)x - b
\]

A symm. \quad \Rightarrow \quad Ax - b$

\[
\nabla^2 F(x) = A \quad \text{A pos.def.} \quad \Rightarrow \quad F \text{ is a convex mapping}
\]

\[
\nabla F(x) = 0 \quad \iff \quad x = A^{-1} b
\]
Methods for symmetric, positive definite matrices

Questions:

1. Does \(x^* = A^{-1}b \) represent the global minimum of \(F \)? Yes

2. How do we calculate \(\lambda \in \mathbb{R} \)?

Concerning 1)

\[
F(x) = \frac{1}{2} (Ax, x) - (b, x)
\]

\[\Rightarrow \nabla F(x) = \frac{1}{2}(A + A^T)x - b\]

A symm. \[\Rightarrow Ax - b\]

\[
\nabla^2 F(x) = A \quad \text{A pos.def.} \quad F \text{ is a convex mapping}
\]

\[
\nabla F(x) = 0 \quad \iff \quad x = A^{-1}b
\]

Andreas Meister (UMBC)
Methods for symmetric, positive definite matrices

Questions:
1. Does \(x^* = A^{-1}b\) represent the global minimum of \(F\)? Yes
2. How do we calculate \(\lambda \in \mathbb{R}\) ?

Conc. 2)
\[
f_{x,p}(\lambda) = \frac{1}{2}(Ax + \lambda p, x + \lambda p) - (b, x + \lambda p)
\]
\[
= F(x) + \lambda(Ax - b, p) + \frac{1}{2}\lambda^2(Ap, p)
\]
\[
f'_{x,p}(\lambda) = (Ax - b, p) + \lambda(Ap, p)
\]
\[
f''_{x,p}(\lambda) = (Ap, p) > 0 \quad \text{für} \quad p \neq 0
\]

Thus, \(f_{x,p}\) is convex and the optimal \(\lambda\) is given in the form
\[
f'_{x,p}(\lambda) = 0 \iff \lambda = \frac{(b - Ax, p)}{(Ap, p)}.
\]
Methods for symmetric, positive definite matrices

Questions:

1. Does $x^* = A^{-1}b$ represent the global minimum of F? Yes

2. How do we calculate $\lambda \in \mathbb{R}$?

$$\lambda = \frac{(b - Ax_m, p_m)}{(Ap_m, p_m)}$$

Conc. 2)

$$f_{x,p}(\lambda) = \frac{1}{2}(A(x + \lambda p), x + \lambda p) - (b, x + \lambda p)$$

$$= F(x) + \lambda(Ax - b, p) + \frac{1}{2}\lambda^2(Ap, p)$$

$$f'_{x,p}(\lambda) = (Ax - b, p) + \lambda(Ap, p)$$

$$f''_{x,p}(\lambda) = (Ap, p) > 0 \text{ für } p \neq 0$$

Thus, $f_{x,p}$ is convex and the optimal λ is given in the form

$$f'_{x,p}(\lambda) = 0 \iff \lambda = \frac{(b - Ax, p)}{(Ap, p)}.$$
Questions:

1. Does \(x^* = A^{-1} b \) represent the global minimum of \(F \)? Yes

2. How do we calculate \(\lambda \in \mathbb{R} \)?

\[
\lambda = \frac{(b - Ax_m, p_m)}{(Ap_m, p_m)}
\]

Conc. 2)

\[
f_{x, p}(\lambda) = \frac{1}{2}(A(x + \lambda p), x + \lambda p) - (b, x + \lambda p)
\]

\[
= F(x) + \lambda(Ax - b, p) + \frac{1}{2} \lambda^2(Ap, p)
\]

\[
f'_{x, p}(\lambda) = (Ax - b, p) + \lambda(Ap, p)
\]

\[
f''_{x, p}(\lambda) = (Ap, p) > 0 \quad \text{für} \quad p \neq 0
\]

Thus, \(f_{x, p} \) is convex and the optimal \(\lambda \) is given in the form

\[
f'_{x, p}(\lambda) = 0 \iff \lambda = \frac{(b - Ax, p)}{(Ap, p)}.
\]
Residual

The vector \(r = b - Ax \) is called residual (vector).

Algorithm:
- Choose \(x_0 \in \mathbb{R}^n \) and \(p_0, p_1, \ldots \in \mathbb{R}^n \setminus \{0\} \)
- For \(m = 0, 1, \ldots \)
 \[
 r_m = b - Ax_m \\
 \lambda_m = \frac{(r_m, p_m)}{(Ap_m, p_m)} \\
 x_{m+1} = x_m + \lambda_m p_m
 \]

Problem:
- Specification of the search direction \(p_0, p_1, \ldots \)
Method of steepest descent

Basic idea:
Choose the **optimal** search direction in the **local** sense

\[\tilde{\mathbf{p}}_m = -\nabla F(x_m) = -(A\mathbf{x}_m - \mathbf{b}) = r_m \]

Normalizing the search direction:

\[\mathbf{p}_m = \frac{\tilde{\mathbf{p}}_m}{\|\tilde{\mathbf{p}}_m\|_2} = \frac{r_m}{\|r_m\|_2} \]

Stopping criterion: \(r_m = 0 \)
Method of steepest descent

Algorithm:

- Choose $x_0 \in \mathbb{R}^n$
- For $m = 0, 1, \ldots$

 \[r_m = b - Ax_m \]

 If $r_m \neq 0$

 \[\lambda_m = \frac{\|r_m\|_2^2}{(Ar_m, r_m)} \]

 \[x_{m+1} = x_m + \lambda_m r_m \]

Example

\[A = \begin{pmatrix} 2 & 0 \\ 0 & 10 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad x_0 = \begin{pmatrix} 4 \\ \sqrt{1.8} \end{pmatrix} \]
Method of steepest descent

<table>
<thead>
<tr>
<th>m</th>
<th>$x_{m,1}$</th>
<th>$x_{m,2}$</th>
<th>$\varepsilon_m := | x_m - x^* |_A$</th>
<th>$\varepsilon_m / \varepsilon_{m-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.000000e+00</td>
<td>1.341641e+00</td>
<td>7.071068e+00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.987552e+00</td>
<td>-3.562863e-01</td>
<td>4.372680e+00</td>
<td>6.183904e-01</td>
</tr>
<tr>
<td>2</td>
<td>1.529627e+00</td>
<td>5.130523e-01</td>
<td>2.704023e+00</td>
<td>6.183904e-01</td>
</tr>
<tr>
<td>3</td>
<td>1.142460e+00</td>
<td>-1.362463e-01</td>
<td>1.672142e+00</td>
<td>6.183904e-01</td>
</tr>
<tr>
<td>4</td>
<td>5.849394e-01</td>
<td>1.961946e-01</td>
<td>1.034036e+00</td>
<td>6.183904e-01</td>
</tr>
<tr>
<td>5</td>
<td>4.368842e-01</td>
<td>-5.210148e-02</td>
<td>6.394382e-01</td>
<td>6.183904e-01</td>
</tr>
<tr>
<td>6</td>
<td>2.236847e-01</td>
<td>7.502613e-02</td>
<td>3.954224e-01</td>
<td>6.183904e-01</td>
</tr>
<tr>
<td>7</td>
<td>1.670674e-01</td>
<td>-1.992395e-02</td>
<td>2.445254e-01</td>
<td>6.183904e-01</td>
</tr>
<tr>
<td>8</td>
<td>8.553851e-02</td>
<td>2.869049e-02</td>
<td>1.512122e-01</td>
<td>6.183904e-01</td>
</tr>
<tr>
<td>9</td>
<td>6.388768e-02</td>
<td>-7.619051e-03</td>
<td>9.350814e-02</td>
<td>6.183904e-01</td>
</tr>
<tr>
<td>10</td>
<td>3.271049e-02</td>
<td>1.097143e-02</td>
<td>5.782453e-02</td>
<td>6.183904e-01</td>
</tr>
<tr>
<td>20</td>
<td>2.674941e-04</td>
<td>8.972025e-05</td>
<td>4.728673e-04</td>
<td>6.183904e-01</td>
</tr>
<tr>
<td>30</td>
<td>2.187466e-06</td>
<td>7.336985e-07</td>
<td>3.866930e-06</td>
<td>6.183904e-01</td>
</tr>
<tr>
<td>40</td>
<td>1.788827e-08</td>
<td>5.999910e-09</td>
<td>3.162230e-08</td>
<td>6.183904e-01</td>
</tr>
<tr>
<td>50</td>
<td>1.462836e-10</td>
<td>4.906500e-11</td>
<td>2.585953e-10</td>
<td>6.183904e-01</td>
</tr>
<tr>
<td>60</td>
<td>1.196252e-12</td>
<td>4.012351e-13</td>
<td>2.114695e-12</td>
<td>6.183904e-01</td>
</tr>
</tbody>
</table>
Contour lines (level curves) of $F(x) = \frac{1}{2}(Ax, x) - (b, x)$ w.r.t. the example

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 10 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

are determined by $F(x) = \frac{1}{2}(Ax, x) - (b, x) = x_1^2 + 5x_2^2$.
Method of steepest descent

Problem:

Forgetfulness

- During the calculation of the new search direction p_m we do not take into account any old search direction p_0, \ldots, p_{m-1}.

Aim:

- Choose linear independent $p_0, p_1, \ldots \in \mathbb{R}^n$
- Search into the direction p_m and find the optimal approximation $x_{m+1} \in \mathbb{R}^n \text{ w.r.t. } x_0 + \text{span}\{p_0, \ldots, p_m\}$

Effect:

- At least for $m = n$ we obtain $x_m = A^{-1}b$
Method of steepest descent

Problem:

Forgetfulness

- During the calculation of the new search direction p_m we do not take into account any old search direction p_0, \ldots, p_{m-1}.

Aim:

- Choose linear independent $p_0, p_1, \ldots \in \mathbb{R}^n$
- Search into the direction p_m and find the optimal approximation $x_{m+1} \in \mathbb{R}^n$ w.r.t. $x_0 + \text{span}\{p_0, \ldots, p_m\}$

Effect:

- At least for $m = n$ we obtain $x_m = A^{-1}b$
Method of steepest descent

Problem:

Forgetfulness

- During the calculation of the new search direction p_m we do not take into account any old search direction p_0, \ldots, p_{m-1}.

Aim:

- Choose linear independent $p_0, p_1, \ldots \in \mathbb{R}^n$
- Search into the direction p_m and find the optimal approximation $x_{m+1} \in \mathbb{R}^n$ w.r.t. $x_0 + \text{span}\{p_0, \ldots, p_m\}$

Effect:

- At least for $m = n$ we obtain $x_m = A^{-1}b$
Method of steepest descent

Optimality:

Let $F : \mathbb{R}^n \rightarrow \mathbb{R}$. A vector $x \in \mathbb{R}^n$ is called

1. optimal w.r.t. $p \in \mathbb{R}^n \setminus \{0\}$, if

$$F(x) \leq F(x + \lambda p) \quad \forall \lambda \in \mathbb{R}.$$

2. optimal w.r.t. $U \subset \mathbb{R}^n$, if

$$F(x) \leq F(x + \xi) \quad \forall \xi \in U.$$
Method of steepest descent

How to investigate the optimality of \(x \in \mathbb{R}^n \) w.r.t. \(U \subset \mathbb{R}^n \)?

Consider

\[
\begin{align*}
 f_{x,\xi}(\lambda) &= F(x + \lambda \xi) \\
 f'_{x,\xi}(\lambda) &= (Ax - b, \xi) + \lambda (A\xi, \xi)
\end{align*}
\]

\(x \) is optimal w.r.t. \(U \ni \xi \neq 0 \)

\[\iff f'_{x,\xi}(0) = 0 \iff (Ax - b, \xi) = 0 \iff r \perp U \]
Method of steepest descent

How to maintain optimality?

Let $x_m \in x_0 + \text{span}\{p_0, \ldots, p_{m-1}\}$.

$U_m :=$

If x_m is optimal w.r.t. U_m and

$x_{m+1} = x_m + \lambda_m p_m \quad , \quad \xi \in U_m$

$\implies \quad (b - Ax_{m+1}, \xi) = (b - Ax_m, \xi) - \lambda_m (Ap_m, \xi) = 0$

Condition:

$(Ap_m, p_i) = 0 \quad \text{für} \ i = 0, \ldots, m - 1$
Conjugate vectors

The vectors $p_0, \ldots, p_m \in \mathbb{R}^n \setminus \{0\}$ are called pairwise conjugated or A-orthogonal, if

$$(Ap_j, p_i) = 0 \text{ for all } i \neq j.$$
Method of steepest descent

How to obtain optimality w.r.t. U_{m+1}?

Optimality w.r.t. U_m:

$$(Ap_m, p_i) = 0, \quad i = 0, \ldots, m - 1$$

Optimality w.r.t. p_m:

$$U_{m+1} = \{U_m, p_m\} := \text{span}\{p_0, \ldots, p_{m-1}, p_m\}$$

$$0 = (b - Ax_{m+1}, p_m) = (b - Ax_m, p_m) - \lambda_m (Ap_m, p_m)$$

$$\implies \lambda_m = \frac{(b - Ax_m, p_m)}{(Ap_m, p_m)}$$
Method of steepest descent

Eastern and Christmas simultaneously?

or in other words

Are pairwise conjugated vectors always linear independent?

Proof by contradiction: Assume:
\[p_0, \ldots, p_m \in \mathbb{R}^n \setminus \{0\} \text{ pairwise conjugated, } p_m \in \text{span}\{p_0, \ldots, p_{m-1}\} \]

\[\implies p_m = \sum_{j=0}^{m-1} \alpha_j p_j \]

\[\implies 0 = (A p_m, p_i) = \left(A \sum_{j=0}^{m-1} \alpha_j p_j, p_i \right) = \sum_{j=0}^{m-1} \alpha_j (A p_j, p_i) = \alpha_i (A p_i, p_i) \neq 0 \]

holds for \(i = 0, \ldots, m-1 \) \(\implies p_m = 0 \) Contradiction!!!

Answer: Yes, in the case that the matrix \(A \) is positive definite!
Method of steepest descent

Eastern and Christmas simultaneously?

or in other words

Are pairwise conjugated vectors always linear independent?

Proof by contradiction: Assume:

\(p_0, \ldots, p_m \in \mathbb{R}^n \setminus \{0\} \) pairw. conjugated, \(p_m \in \text{span}\{p_0, \ldots, p_{m-1}\} \)

\[\implies p_m = \sum_{j=0}^{m-1} \alpha_j p_j \]

\[\implies 0 = (Ap_m, p_i) = \left(A \sum_{j=0}^{m-1} \alpha_j p_j, p_i \right) = \sum_{j=0}^{m-1} \alpha_j (Ap_j, p_i) = \alpha_i (Ap_i, p_i) \]

holds for \(i = 0, \ldots, m-1 \) \(\implies p_m = 0 \) Contradiction!!

Answer: Yes, in the case that the matrix \(A \) is positive definite!
Method of steepest descent

Eastern and Christmas simultaneously?

or in other words

Are pairwise conjugated vectors always linear independent?

Proof by contradiction: Assume:
\[p_0, \ldots, p_m \in \mathbb{R}^n \setminus \{0\} \text{ pairw. conjugated, } p_m \in \text{span}\{p_0, \ldots, p_{m-1}\} \]

\[\implies p_m = \sum_{j=0}^{m-1} \alpha_j p_j \]

\[\implies 0 = (Ap_m, p_i) = \left(A \sum_{j=0}^{m-1} \alpha_j p_j, p_i \right) = \sum_{j=0}^{m-1} \alpha_j (Ap_j, p_i) = \alpha_i (Ap_i, p_i) \]

holds for \(i=0, \ldots, m-1 \implies p_m = 0 \quad \text{Contradiction!!} \)

Answer: Yes, in the case that the matrix \(A \) is positive definite!
Summary:

- Choose **pairwise conjugated** search directions p_0, \ldots, p_{n-1}
- Calculate

\[
\lambda_m = \frac{(b - Ax_m, p_m)}{(Ap_m, p_m)} \quad m = 0, \ldots, n - 1
\]

⇒ Hence, one obtains at least $x_n = A^{-1}b$.

Andreas Meister (UMBC)
Methods for Conservation Laws
Fall 2013 22 / 43
Method of conjugate directions

Algorithm (Method of conjugate directions)

- Choose $x_0 \in \mathbb{R}^n$ and p_0, \ldots, p_{n-1} pairwise conjugated
- $r_0 = b - Ax_0$
- For $m = 0, \ldots, n - 1$

\[
\lambda_m = \frac{(r_m, p_m)}{(Ap_m, p_m)}
\]

\[
x_{m+1} = x_m + \lambda_m p_m
\]

\[
r_{m+1} = r_m - \lambda_m Ap_m
\]

Problems

- Calculation of p_0, \ldots, p_{n-1}
- error reduction (convergence history)
Method of conjugate directions

Algorithm (Method of conjugate directions)

- Choose $x_0 \in \mathbb{R}^n$ and p_0, \ldots, p_{n-1} pairwise conjugated
- $r_0 = b - Ax_0$
- For $m = 0, \ldots, n - 1$

$$
\lambda_m = \frac{(r_m, p_m)}{(Ap_m, p_m)}
$$

$$
x_{m+1} = x_m + \lambda_m p_m
$$

$$
r_{m+1} = r_m - \lambda_m Ap_m
$$

Problems

- Calculation of p_0, \ldots, p_{n-1}
- error reduction (convergence history)
Method of conjugate gradients (CG)

<table>
<thead>
<tr>
<th>Method of steepest descent</th>
<th>Method of conjugate directions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis: Gradients as search directions</td>
<td>Basis: Search directions are conjugated</td>
</tr>
<tr>
<td>Advantage: Associated w.t. problem</td>
<td>Advantage: Optimality</td>
</tr>
<tr>
<td>Disadvant.: Forgetfulness</td>
<td>Disadvant.: Convergence history</td>
</tr>
</tbody>
</table>

Method of conjugate gradients

| Basis: Use gradients for the calculation of conjugated search directions | Advantage: Associated with the problem Optimality |
Method of conjugate gradients (CG)

Ansatz:

\[p_0 = r_0 \]

\[p_m = r_m + \sum_{j=0}^{m-1} \alpha_j p_j \quad , \quad m = 1, \ldots, n-1 \]

- \(m \) degrees of freedom
- Calculation of \(\alpha_0, \ldots, \alpha_{m-1} \)

\[0 = (Ap_m, p_i) = (Ar_m, p_i) + \sum_{j=0}^{m-1} \alpha_j (Ap_j, p_i) \]

\[\alpha_j = -\frac{(Ar_m, p_i)}{(Ap_i, p_i)} \quad , \quad i = 0, \ldots, m - 1 \]
Method of conjugate gradients (CG)

Algorithm

Choose $x_0 \in \mathbb{R}^n$ and define $p_0 = r_0 = b - Ax_0$

For $m = 0, \ldots, n - 1$

$$
\lambda_m = \frac{(r_m, p_m)}{(Ap_m, p_m)}
$$

$$
x_{m+1} = x_m + \lambda_m p_m
$$

$$
r_{m+1} = r_m - \lambda_m Ap_m
$$

$$
p_{m+1} = r_{m+1} - \sum_{j=0}^{m} \frac{(Ar_{m+1}, p_j)}{(Ap_j, p_j)} p_j
$$

Disadvantages

- Break down for $p_m = 0$
- Inapplicable in the case of large, sparse matrices
- Computational effort increasing from iteration step to iteration step
Method of conjugate gradients (CG)

Algorithm

- Choose $x_0 \in \mathbb{R}^n$ and define $p_0 = r_0 = b - Ax_0$
- For $m = 0, \ldots, n - 1$

\[
\lambda_m = \frac{(r_m, p_m)}{(Ap_m, p_m)}
\]
\[
x_{m+1} = x_m + \lambda_m p_m
\]
\[
r_{m+1} = r_m - \lambda_m Ap_m
\]
\[
p_{m+1} = r_{m+1} - \sum_{j=0}^{m} \frac{(Ar_{m+1}, p_j)}{(Ap_j, p_j)} p_j
\]

Disadvantages

- Break down for $p_m = 0$
- Inapplicable in the case of large, sparse matrices
- Computational effort increasing from iteration step to iteration step
Method of conjugate gradients (CG)

Algorithm

- Choose $x_0 \in \mathbb{R}^n$ and define $p_0 = r_0 = b - Ax_0$
- For $m = 0, \ldots, n - 1$

 $$\lambda_m = \frac{(r_m, p_m)}{(Ap_m, p_m)}$$

 $$x_{m+1} = x_m + \lambda_m p_m$$

 $$r_{m+1} = r_m - \lambda_m Ap_m$$

 $$p_{m+1} = r_{m+1} - \sum_{j=0}^{m} \frac{(Ar_{m+1}, p_j)}{(Ap_j, p_j)} p_j$$

Disadvantages

- Break down for $p_m = 0$
- Inapplicable in the case of large, sparse matrices
- Computational effort increasing from iteration step to iteration step
Method of conjugate gradients (CG)

Algorithm

- Choose $x_0 \in \mathbb{R}^n$ and define $p_0 = r_0 = b - Ax_0$
- For $m = 0, \ldots, n - 1$

 $\lambda_m = \frac{(r_m, p_m)}{(Ap_m, p_m)}$

 $x_{m+1} = x_m + \lambda_m p_m$

 $r_{m+1} = r_m - \lambda_m Ap_m$

 $p_{m+1} = r_{m+1} - \sum_{j=0}^{m} \frac{(Ar_{m+1}, p_j)}{(Ap_j, p_j)} p_j$

Disadvantages

- Break down for $p_m = 0$
- Inapplicable in the case of large, sparse matrices
- Computational effort increasing from iteration step to iteration step
Method of conjugate gradients (CG)

Algorithm

- Choose $x_0 \in \mathbb{R}^n$ and define $p_0 = r_0 = b - Ax_0$
- For $m = 0, \ldots, n - 1$
 \[
 \lambda_m = \frac{(r_m, p_m)}{(Ap_m, p_m)}
 \]
 \[
 x_{m+1} = x_m + \lambda_m p_m
 \]
 \[
 r_{m+1} = r_m - \lambda_m Ap_m
 \]
 \[
 p_{m+1} = r_{m+1} - \sum_{j=0}^{m} \frac{(Ar_{m+1}, p_j)}{(Ap_j, p_j)} p_j
 \]

Disadvantages

- Break down for $p_m = 0$
- Inapplicable in the case of large, sparse matrices
- Computational effort increasing from iteration step to iteration step
Properties and consequences

1. \(U_m := \text{span}\{p_0, \ldots, p_{m-1}\} = \text{span}\{r_0, Ar_0, \ldots, A^{m-1}r_0\} \)

\[
x_m = x_{m-1} + \lambda_{m-1}p_{m-1} = \ldots = x_0 + \sum_{j=0}^{m-1} \lambda_j p_j
\]

\(\implies x_m \in x_0 + U_m = x_0 + K_m \)

2. \(r_m \perp U_m \)

\[
r_m = b - Ax_m \perp U_m = K_m
\]

\(\implies \text{Orthogonal Krylov subspace method} \)
Method of conjugate gradients (CG)

Properties and consequences

1. \(x_m = A^{-1} b \iff r_m = 0 \iff p_m = 0 \)
 - \(p_m = 0 \iff \) Stopping criterion

2. \((A r_{m+1}, p_j) = 0 \), \(j = 0, \ldots, m - 1 \)
 - \(p_{m+1} = r_{m+1} - \sum_{j=0}^{m} \frac{(A r_{m+1}, p_j)}{(A p_j, p_j)} p_j \)
 - \(= r_{m+1} - \frac{(A r_{m+1}, p_m)}{(A p_m, p_m)} p_m \)
 - Applicable for large sparse systems
 - Low computational effort
Method of conjugate gradients (CG)

Algorithm

- Choose $x_0 \in \mathbb{R}^n$ and define $p_0 = r_0 = b - Ax_0$
- For $m = 0, \ldots, n - 1$

 If $p_m \neq 0$ then

 $$
 \lambda_m = \frac{(r_m, p_m)}{(Ap_m, p_m)}
 $$

 $$
 x_{m+1} = x_m + \lambda_m p_m
 $$

 $$
 r_{m+1} = r_m - \lambda_m Ap_m
 $$

 $$
 p_{m+1} = r_{m+1} - \frac{(Ar_{m+1}, p_m)}{(Ap_m, p_m)} p_m
 $$

 else STOP
Method of conjugate gradients (CG)

Example: 1-D Poisson-Equation \(x'' = b \)

\[D = [0, 1] \quad , \quad h = 1/8 \quad , \quad N = 7 \]

\[\mathbb{R}^{7 \times 7} \ni A = \text{tridiag} \{-64, 128, -64\} \]

\[\mathbb{R}^{7} \ni b = (128, -448, 704, -832, 512, 128, 320)^T, \quad x_0 = 0 \]

<table>
<thead>
<tr>
<th>(m)</th>
<th>(x_{m,1})</th>
<th>(x_{m,2})</th>
<th>(x_{m,3})</th>
<th>(x_{m,4})</th>
<th>(x_{m,5})</th>
<th>(x_{m,6})</th>
<th>(x_{m,7})</th>
<th>(|\vec{r}_m|_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1336.36</td>
</tr>
<tr>
<td>1</td>
<td>0.58</td>
<td>-2.04</td>
<td>3.21</td>
<td>-3.79</td>
<td>2.33</td>
<td>0.58</td>
<td>1.46</td>
<td>363.57</td>
</tr>
<tr>
<td>2</td>
<td>-0.39</td>
<td>-1.72</td>
<td>2.81</td>
<td>-4.57</td>
<td>3.00</td>
<td>4.99</td>
<td>4.26</td>
<td>252.76</td>
</tr>
<tr>
<td>3</td>
<td>-0.01</td>
<td>-2.38</td>
<td>2.06</td>
<td>-3.53</td>
<td>4.87</td>
<td>6.07</td>
<td>6.25</td>
<td>153.30</td>
</tr>
<tr>
<td>4</td>
<td>-0.14</td>
<td>-2.88</td>
<td>2.57</td>
<td>-2.13</td>
<td>6.50</td>
<td>7.48</td>
<td>5.93</td>
<td>117.64</td>
</tr>
<tr>
<td>5</td>
<td>-0.70</td>
<td>-2.18</td>
<td>3.53</td>
<td>-1.12</td>
<td>7.65</td>
<td>7.81</td>
<td>6.27</td>
<td>103.52</td>
</tr>
<tr>
<td>6</td>
<td>0.13</td>
<td>-1.14</td>
<td>5.40</td>
<td>0.54</td>
<td>8.23</td>
<td>8.54</td>
<td>6.98</td>
<td>89.70</td>
</tr>
<tr>
<td>7</td>
<td>1.00</td>
<td>0.00</td>
<td>6.00</td>
<td>1.00</td>
<td>9.00</td>
<td>9.00</td>
<td>7.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Convection-Diffusion Equation

Governing Equation

\[\beta \cdot \nabla u(x, y) - \epsilon \Delta u(x, y) = 0 \quad \text{on} \quad D = (0, 1) \times (0, 1) \]

with

\[\beta = \alpha \begin{pmatrix} \cos \frac{\pi}{4} \\ \sin \frac{\pi}{4} \end{pmatrix} \quad \alpha, \epsilon \in \mathbb{R}_0^+ \]

Boundary Conditions

\[u(x, y) = x^2 + y^2 \quad \text{for} \quad (x, y) \in \partial D \]

Mesh

\[x_i = i \cdot h \quad \text{and} \quad y_j = j \cdot h \quad \text{for} \quad j = 0, \ldots, N + 1, \quad h = \frac{1}{N + 1} \]
Convection-Diffusion Equation

Discretization of Laplacian (Central Difference)

\[
\frac{\partial^2 u}{\partial x^2}(x_i, y_j) \approx \frac{1}{h^2}(u_{i+1,j} - 2u_{ij} + u_{i-1,j}) \\
\frac{\partial^2 u}{\partial y^2}(x_i, y_j) \approx \frac{1}{h^2}(u_{i,j+1} - 2u_{ij} + u_{i,j-1})
\]

Discretization of convective part (Backward Difference)

\[
\frac{\partial u}{\partial x}(x_i, y_j) \approx \frac{1}{h}(u_{i,j} - u_{i-1,j}) \\
\frac{\partial u}{\partial y}(x_i, y_j) \approx \frac{1}{h}(u_{i,j} - u_{i,j-1})
\]
Testcases

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>ϵ</th>
<th>Matrix properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1</td>
<td>0</td>
<td>1</td>
<td>Symmetric, positive definite</td>
</tr>
<tr>
<td>Test 2</td>
<td>0.1</td>
<td>1</td>
<td>Non-symmetric, non-singular</td>
</tr>
<tr>
<td>Test 3</td>
<td>1</td>
<td>0.1</td>
<td>Non-symmetric, non-singular</td>
</tr>
</tbody>
</table>

- **Number of unknowns:** $100 \times 100 = 10000$ $(N = 100)$
- **Stopping criterion:** $\|r_j\|_2 < 10^{-12}\|b\|$
Convection-Diffusion Equation

Numerical Solution of Test 3
Steepest Descent vs. Conjugate Gradient method

Test 1: Pure Diffusion (\(\alpha = 0, \epsilon = 1\))

<table>
<thead>
<tr>
<th></th>
<th>Number of Iterations</th>
<th>CPU Time (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steepest Descent</td>
<td>47300</td>
<td>12506</td>
</tr>
<tr>
<td>Conjugate Gradient</td>
<td>344</td>
<td>100</td>
</tr>
</tbody>
</table>

![Graph showing the comparison between Steepest descent and Conjugate Gradient methods showing the convergence of the residual norm squared over the number of iterations](image.png)
Conjugate Gradients for Non-SPD Systems

Comparison of CG method for all three test case

<table>
<thead>
<tr>
<th>Test</th>
<th>α</th>
<th>ϵ</th>
<th>Number of Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1</td>
<td>0</td>
<td>1</td>
<td>344</td>
</tr>
<tr>
<td>Test 2</td>
<td>0.1</td>
<td>1</td>
<td>631</td>
</tr>
<tr>
<td>Test 3</td>
<td>1</td>
<td>0.1</td>
<td>Convergence failed</td>
</tr>
</tbody>
</table>

Andreas Meister (UMBC)
Theorem

Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite. Then the error estimate

$$\|e_m\|_A \leq 2 \left(\frac{\sqrt{\text{cond}_2(A)} - 1}{\sqrt{\text{cond}_2(A)} + 1} \right)^m \|e_0\|_A,$$

holds with $e_m = x_m - A^{-1}b$, $x_m =$ approximate solution.

Properties: (A symm., positive definite)

1. **Eigenvalues:** $\lambda_n \geq \ldots \geq \lambda_1 > 0$,
 Eigenvectors: $\{v_1, \ldots, v_n\}$ ONB of \mathbb{R}^n

2. **Condition number:** $c := \text{cond}_2(A) = \|A\|_2 \|A^{-1}\|_2 = \frac{\lambda_n}{\lambda_1}$

3. **Weighted vector norm (energy norm):**

$$\|x\|_A = \sqrt{(Ax, x)}$$
Convergence properties of the CG-method

Relation between error- and residual vector:

Due to the relation

\[r_m = b - Ax_m = -A(x_m - A^{-1}b) = -Ae_m \]

one obtains

\[K_m = \text{span}\{r_0, Ar_0, \ldots, A^{m-1}r_0\} = \text{span}\{Ae_0, \ldots, A^me_0\}, \]

such that the approximate solution \(x_m \in x_0 + K_m \) reads

\[x_m = x_0 + \sum_{i=1}^{m} c_i A^i e_0. \]
Convergence properties of the CG-method

Formulation of the error vector

\[e_m = x_m - A^{-1}b = x_0 - A^{-1}b + \sum_{i=1}^{m} c_i A^i e_0 = p_m(A) e_0 \]

with \(p_m \in P_m^1 = \{ p \in P_m | p(O) = I \} \)

Equivalence to the minimization of the functional:

\[
F(x) = \frac{1}{2} (Ax, x) - (b, x) = \frac{1}{2} (Ax - b, x - A^{-1}b) - \frac{1}{2} (b, A^{-1}b) = A e - e + const.
\]

\[
= \frac{1}{2} ||e||_A^2 + const
\]

\[
x_m = \arg \min_{x \in x_0 + K_m} F(x) \iff ||e_m||_A = \min_{p \in P_m} ||p(A)e_0||_A
\]
Convergence properties of the CG-method

Error estimate:
\[e_0 = \sum_{i=1}^{n} \alpha_i v_i \text{ with the ONB } v_1, \ldots, v_n \]

1. \[\|e_0\|_A^2 = (Ae_0, e_0) = \left(\sum_{i=1}^{n} \lambda_i \alpha_i v_i, \sum_{i=1}^{n} \alpha_i v_i \right) = \sum_{i=1}^{n} \alpha_i^2 \lambda_i \]

2. \[\|p(A)e_0\|_A^2 = \left(\sum_{i=1}^{n} p(\lambda_i)^2 \alpha_i^2 \lambda_i \right) \]

3. \[\|e_m\|_A = \min_{p \in P_m^1} \left(\sum_{i=1}^{n} p(\lambda_i)^2 \alpha_i^2 \lambda_i \right)^{\frac{1}{2}} \leq \min_{p \in P_m^1} \max_{\lambda \in \{\lambda_1 \ldots \lambda_n\}} |p(\lambda)| \left(\sum_{i=1}^{n} \alpha_i^2 \lambda_i \right)^{\frac{1}{2}} \leq \min_{p \in P_m^1} \max_{\lambda \in [\lambda_1, \lambda_n]} |p(\lambda)| \|e_0\|_A \]
Convergence properties of the CG-method

Consideration of a suitable polynomial:

\[\|e_m\|_A \leq \min_{p \in P_m^1} \max_{\lambda \in [\lambda_1, \lambda_n]} |p(\lambda)| \|e_0\|_A \]

Case 1: \(\lambda_1 \neq \lambda_n \)
Tschebyscheff-Polynomials

\[T_m(\lambda) = \cos(m \arccos \lambda), \ m \in \mathbb{N}_0 \quad (\lambda \in [-1, 1]) \]

1. \(|T_m(\lambda)| \leq 1 \)
2. \[T_m(\lambda) = 2\lambda T_{m-1}(\lambda) + T_{m-2}(\lambda), \quad T_0(\lambda) = 1 \implies T_m \in P_m \]
3. \[T_m \left(\frac{1}{2} \left(\lambda + \frac{1}{\lambda} \right) \right) = \left(\frac{1}{2} \left(\lambda^m + \frac{1}{\lambda^m} \right) \right) \]

\[p_m(\lambda) := \frac{T_m \left(\frac{2\lambda - (\lambda_n + \lambda_1)}{\lambda_1 - \lambda_n} \right)}{T_m \left(\frac{\lambda_n + \lambda_1}{\lambda_n - \lambda_1} \right)} \quad (\text{2}) \in P_m^1 \]
Convergence properties of the CG-method

Utilizing

\[
\frac{\lambda_n + \lambda_1}{\lambda_n - \lambda_1} = \frac{\lambda_n}{\lambda_1} + 1 = \frac{c + 1}{c - 1} = \frac{1}{2} \left(\frac{\sqrt{c} + 1}{\sqrt{c} - 1} + \frac{\sqrt{c} - 1}{\sqrt{c} + 1} \right)
\]

one gets

\[
\frac{\|e_m\|_A}{\|e_0\|_A} \leq \max_{\lambda \in [\lambda_1, \lambda_n]} |p_m(\lambda)| \overset{(1)}{\leq} \max_{\lambda \in [\lambda_1, \lambda_n]} \left| \frac{1}{T_m\left(\frac{\lambda_n + \lambda_1}{\lambda_n - \lambda_1}\right)} \right|
\]

\[
= \left| T_m\left(\frac{\lambda_n + \lambda_1}{\lambda_n - \lambda_1}\right) \right|^{-1} \overset{(3)}{=} \left| 2 \left(\frac{\sqrt{c} - 1}{\sqrt{c} + 1} \right)^m \right|
\]

\[
\leq 2 \left(\frac{\sqrt{c} - 1}{\sqrt{c} + 1} \right)^m
\]
Consideration of a suitable polynomial:

\[\|e_m\|_A \leq \min_{p \in P_m^1} \max_{\lambda \in [\lambda_1, \lambda_n]} |p(\lambda)| \|e_0\|_A \]

Case 2: \(\lambda_1 = \lambda_n \)

Taking account of

\[c = \frac{\lambda_n}{\lambda_1} = 1. \]

we simply define

\[p_m(\lambda) = 1 - \frac{\lambda}{\lambda_n} \in P_m^1. \]

Thus,

\[\frac{\|e_m\|_A}{\|e_0\|_A} \leq \max_{\lambda \in [\lambda_1, \lambda_n]} |p_m(\lambda)| = 0 = 2 \left(\frac{\sqrt{c} - 1}{\sqrt{c} + 1} \right)^m \]