Building An Applied and Computational Math Degree Program from the Ground Up

Jeffrey Humpherys
Brigham Young University

NSF Grant Nos.
DMS-CSUMS-0639328
CAREER-0847074
Engage to Excel

- Whitehouse (PCAST) initiative to produce 1M additional STEM graduates in the next 10 years
- This is a 34% increase
- SMART Grants were discontinued...need to find better ways of attracting and retaining students into STEM fields.
- Math/Science is “important, but not for me”
- Math is a major obstacle for why students avoid STEM
- SIAM Community has an opportunity to lead—applied and computational math will scale better than other disciplines
Problems of the 21st Century (rethinking the curriculum)

- A need for better modeling and simulation methods and technologies
- A workforce more capable of interdisciplinary design.
- Better tools and understanding for analyzing uncertainty and risk
- Greater capabilities for dealing with large data sets.
- New methods for coping with complex systems.
- Improved capabilities for predicting and understanding market behavior.
Problem: Lack of Household Participation in Math & Science
Problem: Mathematicians usually don’t play well with others.
Disconnected Disciplines

- When math sciences is disconnected from the scientific community
 - Jargon-laden communities form
 - Disciplines develop their own specialized in-house expertise
 - Reinvention of the wheel
 - Progress suffers
Observation: Need New Models for STEM Research and Education
NSF-CSUMS: Computational Science Training for Undergraduates in the Mathematical Sciences

- Seeking new models for research and education in math sciences with integrated strengths in computation.
- Cohort structure of 6 or more students
- Year long research experience
- Roughly 10k/student
- Cohort-level activities, seminars, etc.
- Strengthen research infrastructure, capacity
Program Outline

- **Summer Bootcamp (8 weeks)**
 - Learn advanced linear algebra, optimization, signal processing, dynamical systems, control theory, statistics…
 - Long days, ask students to put in a minimum of 60 hours/week
 - Computer labs integrate with instruction.

- **School Year**
 - Break out into research groups
 - Weekly meetings
 - Local MAA conference in March

- **Spring Wrap-up**
 - Work on finished product
Progress To Date

- Over 55 participants
- Roughly 1/3 from under-represented groups
- Several papers, conference talks, and posters
- Excellent graduate school placements
- 3 NSF Graduate Fellowships
- Great collaborations and friends across campus
- Currently funded by private industry
- Blueprints for a new degree program
Let’s Design a new major in Applied and Computational Mathematics

Could also be used for an integrated MS program
Attract and Retain Students into the Mathematical Sciences through:

- **Interdisciplinary Research**
 - Attracts students with diverse interests into math
 - Connects with faculty in different departments

- **Modernized Curriculum**
 - Cuts through jargon, eliminates barriers, reduces redundancy
 - Makes mathematics, statistics, and computation the common core in pure and applied science

- **Socialization and Team Building**
 - Vertically and horizontally integrated research groups
 - Socialization provides a safety net, reduces attrition

- **Industrial Cooperation**
 - Interesting problems, data, additional funding.
 - Provides opportunities for internships, employment, entrepreneurship
A Few Big Ideas: Accessible to Undergrads

- Orthonormal Sets
- Spectral Theory
- Matrix Decompositions and Special Matrices
- Fixed-Point Theorems
- Convexity
- Central Limit Theorem
- Other?
Orthonormal Sets

- Orthogonal Projections, Least Squares
- Regression, Curve Fitting, Estimation (BLUE/Gauss-Markov)
- Fourier Coefficients
- Fourier Series
- Fourier Transforms
- Gram Schmidt, QR
- Orthogonal Polynomials
- Wavelets
Spectral Theory

- Decomposition of Matrices & Operators
- Spectral Theorem for Self-Adjoint & Normal Matrices
- Jordan Form
- Cayley Hamilton Theorem
- Peron Frobenius Theorem
- Differential Equations
 - Linear Theory
 - Quantum Mechanics
 - Sturm-Liouville
Matrix Decompositions and Special Matrices

- SVD
 - Polar Decompositions
 - Generalized Inverse
 - PCA and friends
 - Low rank approximations

- QR, LU, QZ
 - Hessenberg
 - Toeplitz
 - Hankel
Fixed-Point Theorems

- Contraction Mapping Principle
 - Newton’s Method(s)
 - Inverse and Implicit Function Theorems
 - Optimization: BFGS, Interior-Point, etc.
 - Continuation Methods
 - Kalman Filtering, State Estimation
 - Algorithms to Solve Many/Most Inverse Problems
 - Small Gain Theorem

- Brouwer’s Fixed Point Theorem
 - Perron’s Theorem
 - Hartman-Grobman
 - Equilibrium proofs in Game Theory, Economics.
Convexity

- Jensen’s Inequality
 - Most inequalities (Young, AGM, Holder, etc.)
 - Information Theory (Gibbs inequality)
 - Probability (Transforms, Expectation)
 - Statistics (Rao-Blackwell)

- Separation Theorems
 - Hahn-Banach Theorem
 - Important in Finance, Economics, etc.

- Convex Optimization
 - Important class of problems
 - Curve fitting, regression, estimation, etc.
Central Limit Theorem(s)

- Obvious Importance in Probability & Statistics
 - The basis of sampling, inference
 - The core of filtering, noise canceling
 - Brownian motion, stochastic processes

- High-Dimensional Algorithms
 - Monte Carlo Methods
 - High-Dimensional Integration
 - Johnson Lindenstrauss Theorem
 - Compressed Sensing
Other “Undergraduate” Ideas

- Bayes Theorem
- Chinese Remainder Theorem
- Interpolation & Splines
- Cauchy Integral Formula
- Maximum Modulus Theorem
- Lie Groups Symmetries
- Fundamental Theorem of Algebra, Liouville’s Theorem
- Stability
- Conditioning
- Variation of Constants Formula
- Euler-Lagrange Equation
- Numerical Range (Field of Values)
- Pseudospectra
- Sylvester and Riccati Equations
- Euler Characteristic
Degree Requirements

Pre Core
- Calculus I, II, & III
- ODEs & Linear Algebra
- Intro Proof Class
- Single Variable Real Analysis
- Intro C++

26 Credits

Core
- Computation & Optimization (6+2=8 credits)
- Probability & Statistics (6+2=8 credits)
- Differential & Integral Equations (6+2=8 credits)

Concentration
12 credits
Growing list of Concentrations

- Biology
- Business Management
- Chemical Engineering
- Chemistry
- Civil Engineering: Geotechnical
- Civil Engineering: Structures and structural mechanics
- Civil Engineering: Transportation
- Civil Engineering: Water Resources and Environmental
- Computer Science
- Economics
- Electrical and Computer Engineering: Circuits
- Electrical and Computer Engineering: Electromagnetics
- Electrical and Computer Engineering: Signals and Systems
- Financial Markets
- Geological Sciences
- Manufacturing Systems Design
- Mathematical Biology
- Mathematical Theory
- Mechanical Engineering: Dynamic Systems
- Mechanical Engineering: Fluids and Thermodynamics
- Physics
- Political Science
- Statistics
- Statistics: Actuarial Science
- Statistics: Biostatistics
Math Science Core: The Foundations of Applied Mathematics

- Linear & Nonlinear Analysis
- Computation & Optimization
- Probability & Statistics
- Differential & Integral Equations

Each core course has a computer lab where students learn computation and applications
Junior Core: Fall Term

Analysis I

- Abstract Vector Spaces
- Linear Transformations
- Inner Product Spaces
- Spectral Theory
- Metric Space Topology
- Differentiation
- Contraction Mappings & Applications
- Convex Analysis

Computation & Optimization I

- Combinatorics & Graphs
- Complexity & Data
- Approximation Theory
- Analysis of Algorithms
- Introduction to Optimization
- Linear Optimization
- Unconstrained Optimization
- Constrained Optimization
Junior Core: Winter Term

Analysis II
- Riemann-Darboux Integration
- Line & Surface Integration
- Complex Integration
- Exterior Algebra & Differential Forms
- Advanced Spectral Theory
- Generalized Inverses
- Perturbation of Linear Operators
- Matrix Groups and Permutations

Computation & Optimization II
- Dyn Opt (Finite Horizon)
- Dyn Opt (Infinite Horizon)
- Dyn Opt (Uncertain Stopping)
- Dyn Opt (Overlapping Generations)
- Discrete Transforms
- Advanced Algorithms
- Advanced Complexity
- Conditioning & Stability
Senior Core: Fall Term

Probability & Statistics I
- Random Spaces and Variables
- Distributions
- Expectation
- Limit Theorems
- Markov Processes
- Poisson, Queuing, Renewal
- Information Theory
- Martingales, Diffusion

Differential and Integral Equations I
- Linear Dynamical Systems
- Nonlinear Dynamical Systems
- Bifurcation Theory
- Control Theory
- Modeling PDE
- Hyperbolic PDE
- Parabolic PDE
- Elliptic PDE
Senior Core: Winter Term

Probability & Statistics II
- Estimation
- Likelihood
- Regression
- Hypothesis Testing
- Multivariate Statistics
- Bayesian Statistics
- State Estimation
- Time Series Analysis & System Identification

Differential and Integral Equations II
- Integral Equations
- Calculus of Variations
- Optimal Control I
- Optimal Control II
- Stochastic Calculus
- Stochastic Differential Equations
- Stochastic Optimal Control
- Applications
Final Talking Points

- Lock-step approach is efficient
 - Cohort approach—students in all the same classes.
 - Students apply to the program (e.g., Junior core, Senior core).
 - Classes would be full as a result.

- Comes at a cost of 2 FTES (8 courses/year), could graduate 40 majors/year.

- More opportunities for funding

- More opportunities for collaboration