

EDU @JSC

SIAM CSE 2011

Johannes Grotendorst Jülich Supercomputing Centre (JSC)

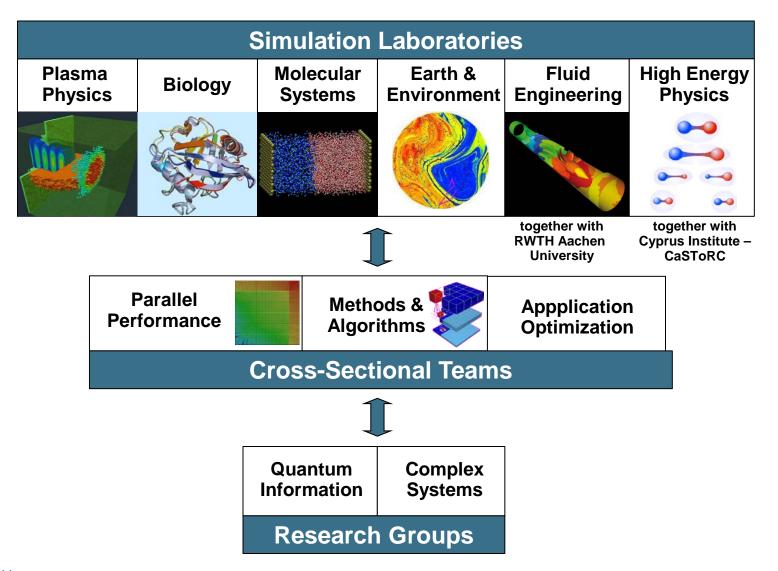
Outline

- Jülich Supercomputing Centre (JSC)
 - Domain-specific research and support
- JSC partners for education
- Degree programmes
 - Bachelor Scientific Programming
 - Master Technomathematics
- German Research School for Simulation Sciences (GRS)
- Guest student programme
- Summer/Winter schools

IAS Structure and Partnerships

German Research IAS Cooperation School (GRS **Institute for Advanced Simulation Quantum Theory of Theoretical Soft-Materials Matter and Biophysics** (IAS 2) (IAS1) FZJ Theory of Structure Theory of Strong **Formation** Interaction FH Aachen Research Alliance PC (IAS 3) (IAS 4) Jülich-Aachen Jülich Supercomputing Centre (JSC)

Partnership for Advanced Computing in Europe (PRACE)



Main Tasks of JSC

- Operation of the supercomputers for local, national and European scientists
- User support: application tuning; domain-specific support through simulation laboratories
- R&D: architectures, algorithms, performance analysis and tools, GRID computing
- Education and training of students and users -> topic of the talk

Domain-specific Research and Support

Simulation Labs: Structure

Personnel

- 1 senior scientist
- 1-2 postdocs
- 1-2 technical staff (software development, parallel programming)
- Jointly supervised PhD & MSc students

Research

- Common/generic simulation methods
- Scalable algorithms
- Project work with partners

Support

- Porting/tuning/benchmarking
- Algorithm scaling
- Training

JSC Partners for Education

- Cooperations with universities
 - Joint Bachelor and Master courses
 - Joint appointments of professors by JSC and universities
 - RWTH Aachen University
 - Aachen University of Applied Sciences
 - University of Wuppertal
 - University of Regensburg
- European network CECAM

CECAM Node in Jülich

Centre Européen de Calcul Atomique et Moléculaire (CECAM)

- 8 nodes have been set up in France, Germany, Italy, Ireland,
 The Netherlands and UK
- The nodes promote and establish leading research activities in the fields of molecular simulations, multi-scale modeling and algorithms
- The nodes form a network structure, working together towards a European software and knowledge base

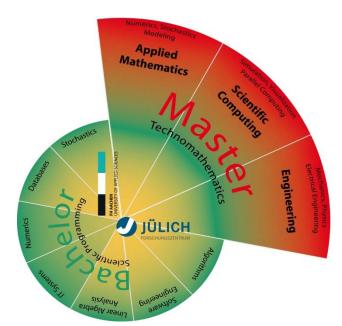
Jülich joined CECAM as active node in 2010

 IAS will organize and run CECAM-specific activities, such as workshops, tutorials, schools and visitor programmes

Bachelor Scientific Programming MATSE

- Cooperation between JSC and Aachen University of Applied Sciences (FH Aachen) since 2007
- Dual integral education programme
 - Apprenticeship 'Mathematical Technical Software Developer' (MATSE)
 - Bachelor course Scientific Programming
- Curriculum
 - 50% mathematics and 50% computer science
 - Three-year course
- Lectures are organized by JSC
- Practical work at Jülich instituts or partner companies
- 30 students per year
- More details by Oliver Bücker in the poster session

Bachelor Scientific Programming JÜLICH FORSCHLINGSZENTRIIM Curriculum

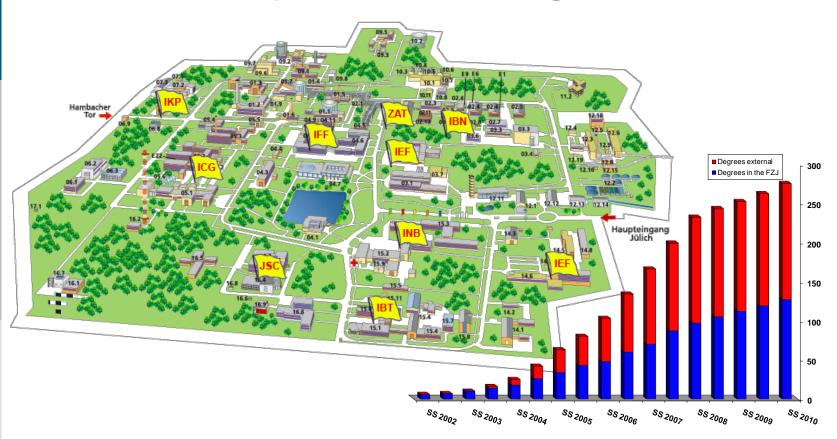


1st Semester Winter 30 CP	2nd Semester Summer 30 CP	3rd Semester Winter 30 CP	4th Semester Summer 30 CP	5th Semester Winter 30 CP	6th Semester Summer 30 CP
Programming in Java 5 + 5 CP		Databases 5 CP	Practical work 5 CP	Practical work	Bachelor colloquium 3 CP
IT fundamentals 5 CP	Algorithms	2nd Programming language 5 CP	IT systems 5 CP	10 CP	Bachelor thesis 12 CP
Analysis 1	Analysis 2	Software engineering 10 CP	Computer networks 5 CP	General competencies 10 CP	
10 CP			Elective course 1 5 CP		General competencies 5 CP
Mathematical fundamentals 5 CP		Stochastics	Numerics	Seminar 5 CP	Elective course 3 5 CP
Linear Algebra 5 + 5 CP		10 CP	10 CP	Elective course 2 5 CP	Elective course 4 5 CP

Master Technomathematics

- Consecutive master with focus on mathematical and computational know-how needed at FZ Jülich
 - Applied mathematics, simulation, scientific computing, engineering
- Lecture courses
 - held by professors and JSC senior scientists with lectureship

- Two-year master with a research-oriented final master project
- 30 students per year
- Education programme with the vocational qualification MATSE and the academic degrees Bachelor and Master is unique in Germany


Master Technomathematics

Specialization Applied Mathematics	Specialization Scientific Computing	Specialization Engineering	
Master Colloquium - 5 CP	Master Colloquium - 5 CP	Master Colloquium - 5 CP	
Master Thesis 25 CP	Master Thesis 25 CP	Master Thesis 25 CP	
Elective Courses 15 CP	Elective Courses 15 CP	Elective Courses 15 CP	
Seminar - 5 CP	Seminar - 5 CP	Seminar - 5 CP	
Engineering 10 CP	Engineering 10 CP	Engineering 30 CP	
Scientific Computing 10 CP	Scientific Computing		
Applied Mathematics	30 CP	Scientific Computing 10 CP	
30 CP	Applied Mathematics 20 CP	Applied Mathematics 20 CP	
Pure Mathematics 20 CP	Pure Mathematics 10 CP	Pure Mathematics 10 CP	

Technomathematics at FZ Jülich Diploma/Master degrees

German Research School for Simulation Sciences (GRS)

- Joint foundation of Research Centre Jülich and RWTH Aachen
- Part of the Jülich Aachen Research Alliance (JARA)
- 4 new full professorships
- New master course and doctoral programme
- Access to state-of-the-art HPC computing resources at JSC and RWTH Aachen
- New buildings in Jülich and Aachen

Master Simulation Sciences

- New non-consecutive two-year master course started in 2008
- Entry profile: BSc in physics, chemistry, engineering, mathematics or computer science
- Large mandatory course block as harmonization area
- Electives from 6 participating faculties of RWTH Aachen
 - Engineering: mechanical, CES
 - Natural sciences: physics, chemistry, geoscience, life science
 - Methodology: mathematics, computer science
- Bridging the gap between Quantum and Continuum Physics
- First graduates in 2010
- Some of the students in fast track: MSc + doctoral programme

Master Simulation Sciences Curriculum

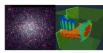
1st Semester Winter – 30 CP	2nd Semester Summer – 30 CP	3rd Semester Winter – 30 CP	4th Semester Summer – 30 CP	
Numerical Methods for Partial Differential Equations	Fast Iterative Solvers 4 CP	Simulation Science Laboratory 6 CP		
8 CP	Parallel Computing in Simulation Sciences 6 CP			
From Quantum to Continuum Physics I 6 CP	From Quantum to Continuum Physics II 5 CP		Master Thesis 27 CP	
Simulation Methods 6 CP	Model Based Estimation Methods 5 CP	Elective Courses 24 CP		
Data Analysis and Visualization 4 CP	Elective Courses			
Simulation Software Engineering 6 CP	10 CP		Master Colloquium 3 CP	

JSC Guest Student Programme

- Organized every year since 2000
- Programme runs for 10 weeks
- Course participants: Master students of CSE, mathematics or computer science
- Introduction to parallel computing
- Each student will be assigned to a staff member who will allocate a task from his current field of research
- Final report, colloquium with presentations
- Guest student programme will be a CECAM activity in 2011
- Partner: GRS

JSC Summer/Winter Schools

- Organized every second year since 2000
- School's target audience: PhD students, postdocs
- Programme runs for 1-2 weeks
- Lectures in the morning, practical sessions in the afternoon
- Introduction to parallel computing
- Lecture notes are available before the schools starts
- All participants are kindly invited to submit posters on their own work
- Winter school 2012 is planned as CECAM activity



WE-Heraeus Summer School

Fast Methods for Long-Range Interactions in Complex Systems

Summer School Forschungszentrum Jülich 6 -10 September 2010 P. Gibbon Th. Lippert G. Sutmann

Tutorials

Particle Simulations
Fast Fourier Techniques
Tree-Methods
Multigrid Techniques
Fast Multipole Method

Hands-on Training

Application of Simulation Methods Introduction to Parallel Computing

Deadline for Applications: 31 July 2010

Forschungszentrum Jülich Institute for Advanced Simulation (IAS) Jülich Supercomputing Centre (JSC) URL: www.fz-juelich.de/wehss E-mail: jsc-wehss@fz-juelich.de Phone: (+49) 2461 61 - 6746 Contact: Godehard Sutmann

Heraeus Summer School 2010 Fast Methods for Long-Range Interactions in Complex Systems

	Monday	Tuesday	Wednesday	Thursday	Friday	
	6 September	7 September G. Sutmann	8 September M. Bolten	9 September	10 September F. Gähler	
9:00 – 9:30	Registration	Parallel Algorithms for Particle Simulations	Multigrid Methods for Longe-Range Interactions	P. Gibbon Parallel Tree Methods I	Local Cutoff-Methods for Long-Range Interactions I	
09:30 – 10:15	·	D. Potts Non-Equidistant Fast-Fourier Transforms	M. Bolten Parallel Multigrid	P. Gibbon Parallel Tree Methods II	F. Gähler Local Cutoff-Methods for Long-Range Interactions II	
10:15 10:15	Welcome	rust-rouner mansionns		Don't	Long-Kange Interactions ii	
10:15 – 10:45	N. Attig Challenges in	Coffee Break D. Potts A. Arnold I. Kabadshow N. Eicker				
10:45 – 11:30	High Performance Computing	NFFT and Fast Summation	A. Arnoid Fourier Transform-Based Methods I	I. Kabadshow The Fast Multipole Method	N. Eicker The Future of	
10.40 - 11.00	Coffee Break				Cluster Computing	
		D. Potts /N. Pippig	A. Arnold	I. Kabadshow	Final Remarks	
11:30 – 12:15	G.Sutmann Particle Simulation Methods	Parallel NFFT and Fast Algorithms	Fourier Transform-Based Methods II	Periodic FMM & Parallel FMM	Visit of JSC Facilities	
12:15 – 13:30			Lunch Break			
13:30 – 14:15	L. Arnold / A. Schiller Introduction to MPI & Parallel Computing	M. Bolten The Multigrid Method	A. Arnold Optimal Methods: P ³ M	R. Speck / M. Winkel Introduction to PEPC	Departure	
14:15 – 14:45	, ,	D. Potts / M. Pippig Introduction to Practical NFFT	O. Lenz / A. Arnold Introduction to Espresso	Practical Session Experiences with PEPC		
14:45 – 15:45			Practical Session Experiences with Espresso			
15:45 – 16:15	Practical Session Parallel Computing	Practical Session Experiences with NFFT		I. Kabadshow / H. Dachsel Practical FMM		
16:15 – 17:00				Practical Session Experiences with FMM		
17:00 – 17:30		Poster Presentations				
		Poster Session	Social Programme			
17:30 – 19:00	Get-Together		Excursion to Aachen			

Thank you for your attention!