
A dynamically load-balanced parallel p-adaptive
implicit high-order flux reconstruction method for

under-resolved turbulence simulation

Lai Wanga, Matthias K. Gobbertb, Meilin Yua

aDepartment of Mechanical Engineering, University of Maryland, Baltimore County
bDepartment of Mathematics and Statistics, University of Maryland, Baltimore County

Abstract

We present a dynamically load-balanced parallel p-adaptive implicit high-
order flux reconstruction method for under-resolved turbulence simulation. The
high-order explicit first stage, singly diagonal implicit Runge–Kutta (ESDIRK)
method is employed to circumvent the restriction on the time step size. The
pseudo transient continuation is coupled with the matrix-free restarted general-
ized minimal residual (GMRES) method to solve the nonlinear equations at each
stage, except the first one, of ESDIRK. We use the spectral decay smoothness
indicator as the refinement/coarsening indicator for p-adaptation. A dynamic
load balancing technique is developed with the aid of the open-source library
ParMETIS. The trivial cost, compared to implicit time stepping, of mesh repar-
titioning and data redistribution enables us to conduct p-adaptation and load
balancing every time step. An isentropic vortex propagation case is employed
to study the impact of element weights used in mesh repartitioning on parallel
efficiency. We apply the p-adaptive solver for implicit large eddy simulation
(ILES) of the transitional flows over a cylinder when Reynolds number (Re) is
3900 and the SD7003 wing when Re is 60000. Numerical experiments demon-
strate that a significant reduction in the run time (up to 70%) and total number
of solution points (up to 76%) can be achieved with p-adaptation.

Keywords

Dynamic load balancing; dynamic p-adaptation; implicit large eddy simula-
tion; implicit high-order flux reconstruction; matrix-free GMRES.

1. Introduction

Recent decades have witnessed tremendous developments in high-order com-
putational fluid dynamics (CFD) methods, such as discontinuous Galerkin meth-
ods (DG) [1, 2, 3, 4, 5, 6, 7, 8], spectral difference methods (SD) [9, 10, 11, 12],

Preprint submitted to Elsevier October 10, 2019

ar
X

iv
:1

91
0.

03
69

3v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 8
 O

ct
 2

01
9

classic compact finite difference methods [13, 14], finite difference summation
by parts (SBP) operators [15, 16, 17], and flux reconstruction/correction pro-
cedure via reconstruction methods (FR/CPR) [18, 19, 20, 21, 22, 23, 24]. Low-
dissipation and low-dispersion properties of high-order methods have made them
attractive for implicit large eddy simulation (ILES) of turbulent flows. It has
been reported in [25] that DG-based ILES can outperform subgrid-model-based
LES for transitional flows and wall bounded flows. The dissipation of high-order
methods on low-frequency large-scale flow features is trivial, and it is only sig-
nificant on high wavenumbers/frequencies. Therefore, the truncation error of
high-order methods is considered as an implicit subgrid model for turbulence
simulation. We note that high-order methods are prone to suffer from instabil-
ities due to aliasing errors in under-resolved turbulence simulation, especially
when the spatial polynomial degree exceeds two. It has been shown that with
proper de-aliasing techniques, ILES using high-order methods has promising
capabilities in under-resolved turbulence simulation [7]. Four popular types of
stabilization approaches for under-resolved turbulence simulation can be found
in the literature, including (a) the split form [26, 27], (b) over integration [28, 29],
(c) artificial viscosity via spectral vanishing viscosity [30, 31, 32], and (d) poly-
nomial filtering [33, 34, 35]. In this study, we employ nodal polynomial filtering
proposed by Fisher and Mullen [35] when de-aliasing is needed.

A uniformly high-order spatial discretization in the entire flow field for under-
resolved turbulence simulation of certain problems, such as wall bounded tur-
bulent flows at high Reynolds numbers, is very expensive. As a matter of fact,
the high-order spatial discretization is only needed in the near wall region, such
as the turbulent boundary layer, and the wake region where vortex shedding
dominates. Collocation schemes favor a straightforward implementation of p-
adaption, which has the potential to significantly decrease computational cost.
In the literature, three major groups of adaptation methodologies can be found.
The first one is the feature-based adaptation [36, 37, 38], the second one is the
truncation-error-based or discretization-error-based adaptation [39, 40, 41], and
the last one is the output-based or adjoint-based adaptation [42, 43, 44, 45].
Feature-based adaptation methods are usually ad hoc and heavily rely on em-
pirical parameters; however, their ease of implementation and reasonable ro-
bustness make them a good choice for adaptation. Truncation-error based
approaches usually use the correction from either an additional coarser mesh
or a lower-order discretization to estimate the local discretization error, which
can serve as the adaptation indicator. A comparison of several feature-based
and discretization-error-based adaptation indicators is conducted by Naddei et
al. [38]. Adjoint-based adaptation methods are popular for engineering purposes
since engineers are more interested in output functionals, such as, lift and drag.
Their superiority over the former two approaches has been demonstrated for
steady problems. However, the computational cost of adjoint-based adaptation,
especially for unsteady turbulence simulation, can be large. Recently, Bassi et
al. [46] employed an efficient entropy-adjoint-based [47] p-adaptive DG solver to
conduct scale-resolving turbulence simulation. In this study, we will evaluate
the performance of a feature-based adaptation method [38], which employs the

2

spectral decay smoothness indicator [48] as the refinement/coarsening indicator
when it is applied to under-resolved turbulence simulation.

Explicit high-order Runge-Kutta (RK) methods [49, 50] have been widely
applied to unsteady flow simulation. p-adaptation will naturally lead to p-
enrichment in near wall regions where the elements are usually clustered, thus
worsening the Courant–Friedrichs–Lewy (CFL) condition when explicit meth-
ods are employed. Implicit time integrators can essentially circumvent the CFL
restriction that explicit methods have. Diagonally implicit RK methods [51]
and backward differentiation formula (BDF) methods are among the most pop-
ular implicit time integration methods. Recently, linearly implicit Rosenbrock
methods have become popular for under-resolved turbulence simulation [52, 53].
Matrix-based implicit methods are notorious for the large memory consumption.
Therefore, the matrix-free implementation [53, 54] is usually employed to re-
duce memory usage [55] for massive turbulence simulation. Though Rosenbrock
methods can be potentially more efficient than ESDIRK methods [53], we em-
ploy ESDIRK methods in this study since they are more robust than Rosenbrock
methods in the context of matrix-free implementation with an element-Jacobi
preconditioner.

Given that the time step size of an implicit time integrator can be relatively
large, dynamic adaptivity is desired to track the rapid change of turbulence
features. Consequently, the work loads on all processes in parallel simulation
will be imbalanced once p-adaptation takes place. The difference of numbers of
degrees of freedom on different processes can be over 500% for a simple isen-
tropic vortex propagation problem [56]. Hence, a dynamic load balancing tech-
nique is of crucial importance for the parallel efficiency of p-adaptive methods.
Existing publications regarding p-adaptive high-order methods for turbulence
simulation use the mean flow field to conduct the adaptation without dynamic
adaptivity [37, 46]. We utilize the open-source library ParMETIS [57] to achieve
dynamic load balancing for p-adaptation. Technical details on using ParMETIS
for dynamic adaptivity are presented in Section 3 for interested readers. In our
numerical experiments, we find that the cost of mesh repartitioning and data
redistribution is trivial compared to that of implicit time stepping, which en-
ables the p-adaptation to be conducted every time step to significantly decrease
the run time.

Contributions. We develop a dynamically load balanced p-adaptation tech-
nique for parallel implicit high-order flux reconstruction solution of unsteady
Navier–Stokes equations. The implementation regarding the dynamic load bal-
ancing technique is presented in detail. We discuss the impact of weight calcu-
lation for each element on the parallel efficiency of p-adaptation when implicit
time integrators are used. The p-adaptive solver is applied to under-resolved tur-
bulence simulation of the transitional flow over an infinite cylinder at Re = 3900
and the transitional flow over the SD7003 wing at Re = 60000. Compared to the
p-uniform spatial discretization, the p-adaptive FR method can save up to 70%
computational cost when p ≤ 3 in our experiments and provide favorable nu-
merical predictions. We expect more savings when p is higher as demonstrated
in a simple experiment of the isentropic vortex propagation problem.

3

Organization. The remainder of the paper is organized as follows. Section 2
provides the mathematical background of the governing equations, the spatial
discretization, and the time integration. Section 3 introduces the p-adaptation
algorithm with the spectral decay smoothness indicator, and then explains the
parallel mesh partitioning technique with ParMETIS. A simple example is em-
ployed to demonstrate the impact of weight calculation of each element on the
parallel efficiency. Applications of the p-adaptive solver to under-resolved tur-
bulence simulation are presented in Section 4. In Section 5, we draw conclusions
from the current work.

2. Background

2.1. Governing equations

Using Einstein summation convention, the compressible Navier–Stokes equa-
tions can be written as

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0, (1)

∂(ρui)

∂t
+
∂(ρujui + δjip)

∂xj
=
∂τji
∂xj

, (2)

∂(ρE)

∂t
+
∂(ρujH)

∂xj
=
∂(uiτij −Kj)

∂xj
, (3)

where i = 1, . . . , nd, and nd is the dimension number. Herein, ρ is the fluid

density, ui is the velocity component, p is the pressure, E = p/ρ
γ−1 + 1

2ukuk is

the specific total energy, H = E + p
ρ is the specific total enthalpy, τij is the

viscous stress and Kj is the heat flux. Note that only in this section, p refers
to pressure; in other sections, p stands for polynomial degree. γ is the specific
heat ratio defined as γ = Cp/Cv, where Cp and Cv are specific heat capacity at
constant pressure and volume, respectively. In this study, γ is set as 1.4. The
ideal gas law p = ρRT holds, where R is the ideal gas constant and T is the
temperature. The viscous stress tensor and heat flux vector are given by

τij = 2µ

{
Sij −

1

3

∂uk
∂xk

δij

}
, (4)

Kj = −µCp
Pr

∂T

∂xj
, (5)

where µ is the fluid dynamic viscosity, Pr is the molecular Prandtl number, and
the strain-rate tensor Sij is defined as

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (6)

In this study, µ and Pr are treated as constants.

4

2.2. The FR/CPR method

For completeness, a brief review of the FR/CPR method [20] is presented in
this section. A symbolic form of the compressible Navier–Stokes equations (1),
(2), (3) is written as

∂q

∂t
+∇ · f = 0, (7)

which is defined in domain Ω. Ω is partitioned into N non-overlapping and
conforming elements Ωe, where e = 0, 1, . . . , N − 1. After multiplying each side
by the test function ϑ and integrate over Ωe, one obtains∫

Ωe

∂qe
∂t

ϑ dV +

∫
Ωe

ϑ∇ · fe dV = 0. (8)

On applying the integration by parts and divergence theorem, Eq. (8) reads∫
Ωe

∂qe
∂t

ϑ dV +

∫
∂Ωe

ϑfe · n dS −
∫

Ωe

fe · ∇ϑ dV = 0, (9)

where n is the outward-facing unit normal vector of the faces of the element Ωe.
In the discrete form, we assume qhe is the approximate solution in element Ωe.
The solution and the test function belong to the polynomial space of degree k,
i.e., qhe ∈ pk and ϑh ∈ pk. To ensure conservation, fe · n in Eq. (9) is replaced
with f comn , the common flux in the normal direction of the element surfaces.
Eq. (9) then reads∫

Ωe

∂qhe
∂t

ϑh dV +

∫
∂Ωe

ϑh f comn dS −
∫

Ωk

fhe · ∇ϑ
h dV = 0. (10)

After applying integration by parts and divergence theorem again to the last
term of Eq. (10), one obtains∫

Ωe

∂qhe
∂t

ϑh dV +

∫
Ωe

ϑh∇ · fhe dV +

∫
∂Ωe

ϑh [f] dS = 0, (11)

where [f] = f comn − f locn with f locn = fhe · n. In the FR/CPR method, the
correction field δe ∈ pk is defined as [20]∫

∂Ωe

ϑh [f] dS =

∫
Ωe

ϑh δe dV. (12)

Therefore, Eq. (11) can be expressed as∫
Ωe

(
∂qhe
∂t

+∇ · fhe + δe

)
ϑh dV = 0. (13)

The differential form can then be employed as

∂qhe
∂t

+ P
(
∇ · fhe

)
+ δe = 0. (14)

5

Herein, P
(
∇ · fhe

)
is the projection of the flux divergence

(
∇ · fhe

)
, which may

not be a polynomial, onto an appropriate polynomial space. We note that
Eq. (14) can be directly derived from the differential form; their equivalence has
been established in [58]. Specifically, for quadrilateral and hexahedral elements,
the correction field can be obtained by means of the tensor product of the one
dimensional correction polynomials; for triangular and tetrahedral elements, the
readers are referred to [20, 59]. Only hexahedral elements are considered in this
study.

The Roe approximate Riemann solver [60] is used to calculate the common
inviscid fluxes at the cell interfaces in their normal directions as

f comn,inv =
f+
n,inv + f−n,inv

2
−R|Λ|R−1 q

+ − q−

2
, (15)

where superscripts ‘−’ and ‘+’ denote the left of right side of the current in-
terface, the subscript n is the unit normal direction from left to right, Λ is
a diagonal matrix consisting of the eigenvalues of the preconditioned Jaco-
bian ∂fn/∂q, and R consists of the corresponding right eigenvectors evaluated
with the averaged values. The common viscous fluxes at the cell interfaces are
f comn,vis = fvis(q

+,∇q+, q−,∇q−). Here, we need to define the common solu-
tion qcom and common gradient ∇qcom at the cell interface. On simply taking
average of the primitive variables, we get

qcom =
q+ + q−

2
. (16)

The common gradient is computed as

∇qcom =
∇q+ + r+ +∇q− + r−

2
, (17)

where r+ and r− are the corrections to the gradients on the interface. The sec-
ond approach of Bassi and Rebay (BR2) [5] is used to calculate the corrections.

2.3. ESDIRK methods with pseudo transient continuation

The ESDIRK methods for the 3D compressible Navier-Stokes equation (7)
can be written as

qn+1 = qn + ∆t
∑s
i=1 biR(qi),

qi = qn, i = 1,

qi = ∆t ωR(qi) + qn + ∆t
∑i−1
j=1 aijR(qj), i = 2, . . . , s,

(18)

where i is the stage number, s is number of total stages, n denotes the physical
time step, and R = −∇ · f . The second-order, three-stage ESDIRK2 [51], and
fourth-order, six-stage ESDIRK4 [61] methods are employed in this paper. A
comparative study of different implicit time integration methods can be found

6

in [53]. In every stage except the first one, a nonlinear system is to be solved,
which can be expressed as

F (qi) =

(
− 1

ω∆t
qi +R(qi)

)
+

1

ω∆t

qn + ∆t

i−1∑
j=1

aijR(qj)

 , i = 2, . . . , s.

(19)
The pseudo transient continuation for the i-th stage reads

qm+1,i − qm,i

∆τ
= F (qm+1,i), (20)

where m is the iteration step. Eq. (20) can be linearized as(
1

ω∆t
+

1

∆τ
− ∂R

∂q

)m
∆qm,i = F (qm,i), (21)

where ∆qm,i = qm+1,i − qm,i. We employ the successive evolution relaxation
(SER) algorithm [62] to update the pseudo time step size as

∆τ0 = ∆τinit, and ∆τm+1 = min

(
∆τm

||F ||m−1
L2

||F ||mL2

,∆τmax

)
. (22)

In all the numerical experiments conducted in this study, we set the convergence
tolerance of relative residual of the pseudo transient continuation as tolpseudorel =
10−4.

We use the restarted GMRES framework in the portable, extensible toolkit
for scientific computation (PETSc) package [63] with user-defined functions to
do the matrix-vector product and preconditioning. In Krylov subspace meth-
ods, the Jacobian matrix only appears in the matrix-vector product. A finite
difference approximation of the matrix-vector product reads(

∂R

∂q

)
X =

R(q + εX)−R(q)

ε
+O(ε), (23)

where ε = 10−6 in this study. The element-Jacobi preconditioner, i.e., the

inverse of the diagonal blocks of
(

1
ω∆t + 1

∆τmax
− ∂R

∂q

)
, is used for left precondi-

tioning in this study. The preconditioner is only evaluated once at the starting
stage of each physical time stepping.

The pseudo transient continuation is an inexact Newton’s method. There-
fore, we assign a relatively large tolerance to the GMRES solver, i.e., tolgmresrel =
10−1, to save computational cost [53]. However, for stiff problems, tolgmresrel =
10−1 may lead to divergence of the pseudo transient continuation [64]. In this
case, we will decrease tolgmresrel to 10−2. If not specifically mentioned, the restart
number is 60 for all numerical experiments. We note that the performance of
the element-Jacobi preconditioner will quickly deteriorate as ∆τ increases to
large values ∆τ � ∆t. Therefore, in the pseudo transient continuation, we do

7

not increase the pseudo time step ∆τ to large values to ensure that the relative
tolerance of GMRES tolgmresrel can always be met within 100 iterations. Other-
wise, we will decrease the current pseudo time step size by half and redo the
current pseudo-time iteration. In this study, we set ∆τmax as ∆τmax = O(∆t)
and ∆τmin is usually one magnitude smaller than ∆t. The authors have devel-
oped a p-multigrid solver for coarsely-resolving simulation of low-Mach-number
turbulent flows in [65]. Applying the p-multigrid solver as a preconditioner for
Newton-Krylov method will be our future work.

3. Dynamically load-balanced p-adaptation for high performance com-
puting

3.1. p-adaptation using spectral decay smoothness indicator

The spectral decay smoothness indicator has been successful used to detect
trouble cells for shock-capturing [48]. It is defined as

ηk =
‖sp − sp−1‖L2

‖sp‖L2

(24)

for one element. ‖·‖L2 is defined as

‖·‖L2 =

∑p+1
ξ=1

∑p+1
η=1

∑p+1
ζ=1

[
(·)2ωξωηωζ |J |ξ,η,ζ

]∑p+1
ξ=1

∑p+1
η=1

∑p+1
ζ=1 [ωξωηωζ |J |ξ,η,ζ]

(25)

for a hexahedral element, where J is the Jacobian matrix of the coordinate
transformation from a physical element to the standard element, |J | is the
determinant of J , and ωξ/η/ζ are the quadrature weights in the ξ/η/ζ directions,
respectively. sp−1 is obtained by projecting the solution from the degree p
polynomial space to the degree p−1 space. With the spectral decay smoothness
indicator, the adaptation procedure can be achieved as follows:

• calculate the smoothness indicator of every element;

• adjust the polynomial degree of every element according to the adaptation
criteria;

• limit the difference of polynomial degrees at non-conforming interfaces to
one;

• project or prolong the solutions when the polynomial is decreased or in-
creased, respectively.

The adaptation criteria we employ in the present study are organized as follows:

• increasing the polynomial degree by one when ηk > νmaxηk,max;

• decreasing the polynomial degree by one when ηk < νminηk,max.

8

Herein, νmax and νmin are problem dependent. The polynomial degree p of
an element in the flow field is p ∈ [pmin, pmax], where pmin and pmax are the
minimum and maximum polynomial degree, respectively. If not specifically
mentioned, we choose momentum in the x direction, i.e., ρu, as the variable
for smoothness indicator calculation; νmax = 0.1 and νmin = 0.001. In this
study, all adaptive solvers will have pmin = 1. When the description adaptive
pk FR or pk FR with p-adaptation is used, we are referring to the adaptive
FR method with pmin = 1 and pmax = k. Some preliminary results using the
current p-adaptation method to solve 2D unsteady Navier–Stokes equations have
been presented in [56]. Since no dynamic load balancing was employed there,
the differences of the numbers of degrees of freedom on different processors in
parallel simulation can be over 500% for a simple isentropic vortex propagation
problem. In this study, we propose to develop a dynamic load balancing strategy
for parallel simulation with p-adaptation.

3.2. Implementation of parallel mesh partitioning

To achieve dynamic load balancing, ParMetis_V3_AdaptiveRepart() in the
open source library ParMETIS [57] is employed for efficient parallel mesh par-
titioning. This application programming interface (API) is particularly de-
veloped to repartition locally adapted mesh in parallel computing. It allows
one to use nproc processes to partition the mesh into npart parts. In this
work, nproc = npart is used to assure the load of repartitioning is balanced
among all processes. A distributed mesh is required as one of the inputs of
ParMetis_V3_AdaptiveRepart(). We employ METIS_PartMeshDual() in serial
METIS [57] to partition the mesh to obtain the initial distributed mesh and no
weights are assigned to any elements. On using ParMetis_V3_AdaptiveRepart(),
each element of the unstructured mesh is regarded as a vertex in the graph. An
illustration of the parallel mesh partitioning is presented in Figure 1 to explain
the technical details. Following C++ convention, all indices start from 0. There
are nproc processes and each process possesses one mesh partition. Assume the
i-th process has nei elements. The global index of the j-th local element in

the i-th process must be Index(j, i) =
∑i−1
m=0 n

e
m + j to ensure that the dis-

tributed mesh is a legal input of ParMetis_V3_AdaptiveRepart(). One output
of ParMetis_V3_AdaptiveRepart() is an array of size nei which stores the pro-
cess indices of the local elements after parallel mesh partitioning. As shown in
the second row in Figure 1, before the parallel mesh partitioning, each process
has four elements. Process 0 has Elements 0 to 3, Process 1 has Elements 4
to 7, etc. After parallel mesh parititioning, the index of the process that an
element belongs to is stored locally. Due to change of element weights resulting
from p-adaptation, elements could appear to be ‘randomly’ distributed to all
processes. In other words, some processes will possess a part of the elements
that they have before partitioning and some will obtain all elements from other
processes. As shown in the fourth row in Figure 1, Process 0 has four elements
and two of them, Elements 4 and 5, are obtained from Process 1. Process 3
needs to fetch Elements 2, 3 from Process 0, Elements 6, 7 from Process 1, and

9

Element 11 from Process 2. To make the new distributed mesh as a legal input
for ParMetis_V3_AdaptiveRepart() in the next parallel mesh partitioning, one
needs to reorganize the global element indices as illustrated in the last row of
Figure 1. Corresponding CFD data should also be reorganized following the
mapping between the old and new global element indices.

For data redistribution, we use a collect-and-distribute strategy. We utilize
MPI_Allgather() to gather all the conservative variables on all the processes
and each process will fetch the corresponding working variables from the col-
lected data pool. The aforementioned randomness of redistributing elements
to all processes leads to the fact that when it comes to data redistribution,
the elements on many of the processes could be totally different from those
before the parallel mesh partitioning. This implies that the cost of a process-
to-process communication strategy to exchange CFD data could possibly be
close to that of the collect-and-distribute stategy. Besides, the coding com-
plexity of the process-to-process strategy is overwhelming. In our numerical
experiments, we have found that the total amount of run time needed for mesh
partitioning and data redistribution is trivial when compared to that of implicit
time-stepping. We would like to clarify that in the spatial and temporal solvers,
communication among all processes is done in a process-to-process manner to
maximize efficiency.

An important input of ParMetis_V3_AdaptiveRepart() is the weight of
each element in the distributed mesh. For the FR discretization, the number of
solution points nsp within a element is (p+ 1)3 for a hexahedral element. And
there are five equations at each solution point to be solved in three dimensional
problems. Hence, the number of degrees of freedom in one element is ndof =
5nsp. For a hexahedral element, all operations of the FR/CPR methods are
indeed conducted dimension by dimension. Therefore, we roughly estimate the
computational complexity of one-time residual evaluation as O (ndof · (p+ 1)).
When implicit time integrators are employed, the cost of one-time residual eval-
uation is trivial compared to three major parts, (a) evaluating the element Ja-
cobian matrix,(b) calculating the element-Jacobi preconditioner and (c) solving
the nonlinear/linear equations using Newton/Krylov methods. When evaluat-
ing the element Jacobian matrix, the finite difference approach is used. For each
element, there will be ndof times the residual evaluation and the computational
complexity is O(n2

dof · (p+ 1)). We use lower-upper (LU) decomposition to in-
vert the element Jacobian matrix to obtain the element-Jacobi preconditioner.
The computational complexity of is O(n3

dof). In the matrix-free implementa-
tion of the GMRES solver, the approximation of matrix-vector product and
preconditioning will contribute to the computational cost dominantly. For the
matrix-vector product approximation, the computational cost will be that of
one-time residual evaluation. The left preconditioning is used in our approach
and the complexity is O(n2

dof). Overall, the complexity of the Newton-Krylov

solver is G(O(n2
dof)+O (ndof · (p+ 1)), where G is the total number of GMRES

iterations in the pseudo transient continuation. G is highly problem depen-
dent. Thus, three candidates to calculate the weight of each element, namely,

10

Figure 1: Illustration of the parallel mesh partitioning using the ParMETIS API.

11

ωe = ndof/5 = nsp, ωe = n2
sp, and ωe = n3

sp, can be investigated.
Though we can sketch the computational complexity within each element

to pursue an optimal candidate for weight calculation, the parallel performance
is only directly related to the output distributed mesh of ParMETIS. In our
numerical experiments, we observe that when the disparity of element weights
is excessively large, e.g., we = n3

sp, pmin = 2, and pmax = 5, the output mesh
will lead to degraded parallel efficiency and the large disparity will occasionally
lead to failure of ParMETIS, even when p is smaller than 4 and we = nsp is
used. Specifically, there will be processes which have no elements after parallel
mesh partitioning. Therefore, when ParMETIS failure is encountered, we will
decrease the weight of each element to we = p + 1 and redo the mesh parti-
tioning for the current time step. Note that the computational cost of parallel
mesh partitioning is trivial compared to implicit time-stepping. In the following
subsection, a simple example is employed to demonstrate the proposed dynamic
load balancing strategy.

3.3. A simple example of dynamic load balancing

We simulate the 2D isentropic vortex propagation on a 3D mesh (obtained
by extruding a 2D mesh in the z direction for two layers) to demonstrate the
dynamic load balancing strategy. The free stream condition is (ρ, u, v, w,Ma)ᵀ =
(1, 1, 1, 0, 0.5)ᵀ. The fluctuation is defined as [52]

δu = − α
2π (y − y0)eφ(1−r2),

δv = α
2π (x− x0)eφ(1−r2),

δw = 0,

δT = −α
2(γ−1)

16φγπ2 e
2φ(1−r2),

(26)

where φ = 1
2 and α = 5 are parameters that define the vortex strength. r =

(x−x0)2+(y−y0)2 is the distance from any point (x, y, z) to the center of line the
vortex (x0, y0, z) = (0, 0, z) at t = 0. The domain is within [−10, 10]×[−10, 10]×
[0, 0.8]. A uniform mesh of 50 × 50 × 2 elements is used for the numerical
experiments. Periodic boundary conditions are imposed on all boundaries. We
only simulate this problem for 60 steps with a time step size ∆t = 0.05. In
the pseudo transient continuation, ∆τinit = 0.05 and ∆τmax = 10 are used for
SER. For the adaptive solver, the flow field is initialized using uniform pmax
discretization.

72 processes are employed in this section. Herein, we take p5 FR with p-
adaptation as an example to show how the elements will be distributed to all
processes. Elements in the first seven processes and the corresponding order-of-
accuracy distribution, i.e., (p+1) distribution, of four consecutive time steps are
presented in Figure 2. From t = 0.15 to t = 0.20, the local polynomial degree
at non-critical region will be coarsened to pmin = 1 while a circular region
surrounding the vortex will maintain high polynomial degrees. Due to this
coarsening, the redistributed mesh change drastically. From t = 0.20 to t = 0.25,
all the first seven process except the third one do not exchange any elements with

12

other processes. From t = 0.25 to t = 0.3, even though the order-of-accuracy
distribution only changes slightly, almost all the seven processes will send a large
portion of local elements to other processes and obtain a significant amount of
elements from other processes. For turbulence simulation, we anticipate that the
change of the distributed mesh will be more dramatic than this simple problem.

In Figure 3, numerical results from p/pmax-refinement studies for the FR
solver with/without adaptation are presented. From Figure 3(a), it is observed
that both the p-uniform solver and p-adaptive solver have spectral convergence.
The errors of the p-adaptive and p-uniform solvers are on the same magnitude
when the highest polynomial degrees are the same. Run time of different solvers
and the run time reduction of the p-adaptive solver using different weight algo-
rithms (with respect to the p-uniform solver) are illustrated in Figure 3(b) and
Figure 3(c), respectively. Overall, with proper weights assigned to all the ele-
ments, around 80% run time reduction can be achieved via p-adaptation when
pmax ≥ 3 (highest order of accuracy is no smaller than 4). For ωe = nsp, when
pmax > 3, the parallel efficiency will keep decreasing as pmax increases. This
is due to the fact the computational cost of the Jacobian matrix and precon-
ditioner evaluation will grow at much larger rates than that of the one-time
residual evaluation. When pmax = 5, ωe = n2

sp and ωe = n2
sp(p + 1) have bet-

ter performance than ωe = nsp. However, it is shown that ωe = n3
sp generally

degrades the efficiency than other candidates. Especially, when ωe = n3
sp and

pmax = 5, the p-adaptive solver fails to finish the simulation within the time
that the p-uniform solver needs. In order to achieve optimal performance, both
the weight calculation and the parallel mesh partitioning algorithm should be
taken into account. In the following section, we use we = nsp for the p-adaptive
solver when it is applied to under-resolved turbulence simulation since we only
consider pmax ≤ 3.

13

(a) t = 0.15 (b) t = 0.15

(c) t = 0.20 (d) t = 0.20

(e) t = 0.25 (f) t = 0.25

(g) t = 0.30 (h) t = 0.30

Figure 2: (a), (c), (e), and (g) are elements in Processes 0–6 at four consecutive time steps.
Processes 0–6 are colored by red, yellow, green, blue, orange, pink, and dark green, respec-
tively. (b), (d), (f), and (h) are corresponding instantaneous order-of-accuracy distributions.

14

Order of accuracy

E
rr

o
r

3 4 5 6

10
7

10
6

10
5

10
4

, padaptive

u, padaptive

, puniform

u, puniform

(a)

Run time (minutes)

E
rr

o
r

0 50 100 150 200 250 300

10
7

10
6

10
5

10
4

, padaptive

u, padaptive

, puniform

u, puniform

(b)

Order of accuracy

R
ed

u
ct

io
n

 o
f

ru
n

 t
im

e
(1

0
0
%

)

3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

e
=n

sp

e
=n

2

sp

e
=n

2

sp
(p+1)

e
=n

3

sp

(c)

Figure 3: p/pmax-refinement of the p-uniform and p-adaptive FR solvers for the isentropic
vortex propagation. (a) Error vs. order of accuracy, (b) error vs. run time, and (c) reduction
of run time vs. order of accuracy. For the p-adaptive solver, the order of accuracy indicates
the highest order of accuracy, i.e., pmax + 1 in the flow field.

15

Table 1: Run time of all simulations of the transitional flow over the infinite cylinder.

Method (νmax, νmin) Run time Reduction of Reduction of
(hours) run time ntot

sp

p2 FR
no adaptation 27.43 0 0

(0.1, 0.001) 22.43 18.23% 49.96% at t = 800
(0.1, 0.01) 16.55 39.66% 63.43% at t = 800

p3 FR
no adaptation 149.78 0 0

(0.1, 0.01) 45.56 69.58% 75.98% at t = 800

4. Applications to under-resolved turbulence simulation

The numerical studies in this section use seven computational nodes in a
distributed-memory cluster. Each node has two 18-core Intel Xeon Gold 6140
Skylake CPUs (2.3 GHz clock speed, 24.75 MB L3 cache) and 384 GB memory
(12 × 32 GB DDR4). The nodes are connected by a network of four 36-port
EDR (Enhanced Data Rate) InfiniBand switches (100 Gb/s bandwidth, 90 ns
latency). 252 processes are used for every simulation. The CFD codes and third
party libraries, such as ParMETIS and PETSc, are compiled using MPICH 3.2.1
and GCC 7.3.0 compilers. The C++11 standard is used in the compilation of
the CFD codes.

4.1. Under-resolved simulation of the flow over an infinite cylinder

Long time simulations of the transitional flow over an infinite cylinder are
conducted to validate the reliability of the p-adaptive solver in this section.
The diameter of the cylinder is d = 1. The inflow conditions are set as the
vector (ρ∞, u∞, v∞, w∞,Ma∞)ᵀ = (1, 1, 0, 0, 0.1)ᵀ. The Reynolds number of
the inflow with respect to the diameter of the cylinder is Red = ρ∞u∞d/µ =
3900. The Prandtl number is Pr = 0.71. A 2D view of the mesh is illustrated
in Figure 4. The center of the cylinder sits at the origin. The 3D mesh is
obtained by extruding the 2D mesh along the z direction, i.e., (0, 0, 1)ᵀ, for
eight layers and the thickness of each layer is 0.25d. There are 17694 hexahedral
elements and the curved wall boundary is represented by p3 elements. p2 and
p3 FR are employed with/without p-adaptation. The cylinder surface is treated
as a no-slip adiabatic wall. Farfield boundary conditions are applied to outer
boundaries. Periodic boundary conditions are imposed at the front and back
sides. We employ ESDIRK4 for time integration and ∆t = 0.025. In the pseudo
transient continuation, ∆τinit = 0.001 and ∆τmax = 0.01 are used for SER. The
tolerance for the pseudo transient continuation is tolpseudorel = 10−4 and that of
the GMRES solver is tolgmresrel = 10−1. We run all simulations until tend = 800.
The instantaneous solutions in t ∈ (100, 800] are used for time averaging. For p2

FR with adaptation, (νmax, νmin) = (0.1, 0.001) and (νmax, νmin) = (0.1, 0.01)
are tested. For p3 FR, only (νmax, νmin) = (0.1, 0.01) is used to carry out the
p-adaptation. The flow field is initialized uniformly with the inflow conditions
and the p-adaptive solver starts from a uniform p1 discretization.

16

(a) Global view (b) Close-up view

Figure 4: 2D views of the unstructured mesh around a circular cylinder.

The run time of all simulations is documented in Table 1. Overall, the p-
adaptive solver can reduce a significant amount of run time. Particularly, for p3

FR, the adaptive solver can reduce the run time by 69.58% when (νmax, νmin) =
(0.1, 0.01). At t = tend, the adaptive p2 FR solver has 239,073 solution points
when (νmax, νmin) = (0.1, 0.001) and 17,4701 solution points when (νmax, νmin) =
(0.1, 0.01); the adaptive p3 FR solver has 271,958 solution points. When the
turbulence is fully developed, the total number of p-refined elements will be
similar at different time steps. In general, the reduction of run time and that of
ntotsp are consistent with each other and p-adaptation with larger pmax is encour-
aged as shown in Table 1. From the isosurfaces of Q-criterion, where Q = 0.5,
illustrated in Figure 5, it is intuitive that the p-adaptive solver is more dissi-
pative than p-uniform solver in the wake region away from the cylinder. The
order-of-accuracy distributions of the adaptive solver with different adaptation
parameters at slice z = 0 are also presented. When νmin is decreased from
0.01 to 0.001, the p2 region will substantially extend into the wake region away
from the cylinder. Thus, the reduction in run time will decrease. The order-of-
accuracy distributions of the adaptive p3 FR solver at different slices are shown
in Figure 6 to give a better presentation of the local p-adaptation.

We further examine the power spectral density (PSD) of the total velocity at
four locations in the wake region, namely (0.58, 0, 1)ᵀ, (1.54, 0, 1)ᵀ, (6, 0, 1)ᵀ, and
(10, 0, 1)ᵀ as presented in Figure 7. A reference line of slope −5/3 is included in
every graph. Compared to the DNS results in [66], a large portion of the inertial
range can be resolved at the first two points. At the last two points, (6, 0, 1)ᵀ,
and (10, 0, 1)ᵀ, the adaptive solver gets more dissipative as the parameter νmin
increases. The velocity profiles at different positions on the x-axis in Figure 8,
where y/d ∈ [−3, 3], further demonstrates this observation. At x = 0.58 and
x = 1.54, the velocity profiles of the p-adaptive FR methods are close to those
of the p-uniform FR methods. At x = 6 and x = 10, the local extrema of the

17

(a) p2 FR without adaptation

(b) p2 FR with adaptation and (νmax, νmin) = (0.1, 0.001)

(c) p2 FR with adaptation and (νmax, νmin) = (0.1, 0.01)

Figure 5: Transitional flow over the infinite cylinder at Re = 3900. Instantaneous isosurfaces
of Q = 0.5 colored by velocity component in the x direction at t = 800. Order-of-accuracy
distribution at slice z = 0 is turned on in (b) and (c). A close-up view of the near wall region
is also presented in (c).

18

(a) z = 0.5 (b) z = 1

(c) z = 1.5 (d) z = 2

Figure 6: Instantaneous order-of-accuracy distribution of p3 FR with adaptation at different
slices when t = 800.

p-adaptive FR are largely dissipated, even when (νmin, νmax) = (0.1, 0.001).
The surface pressure coefficient Cp and surface friction coefficient Cf on the

y > 0 side of the cylinder are presented in Figure 9. When (νmax, νmin) =
(0.1, 0.001), the results of the adaptive p2 FR method is close to that of the p-
uniform p2 FR method. When (νmax, νmin) = (0.1, 0.01), the results of adaptive
solver are still comparable to those of the p-uniform solver even though a large
portion of the wake region uses p1 polynomials only.

19

f

P
S
D

10
2

10
1

10
0

10
1

10
14

10
12

10
10

10
8

10
6

10
4

10
2

10
0

10
2

5/3

(a) (0.58, 0, 1)ᵀ

f

P
S
D

10
2

10
1

10
0

10
1

10
14

10
12

10
10

10
8

10
6

10
4

10
2

10
0

10
2

5/3

(b) (1.54, 0, 1)ᵀ

f

P
S
D

10
2

10
1

10
0

10
1

10
14

10
12

10
10

10
8

10
6

10
4

10
2

10
0

10
2

5/3

(c) (6, 0, 1)ᵀ

f

P
S
D

10
2

10
1

10
0

10
1

10
14

10
12

10
10

10
8

10
6

10
4

10
2

10
0

10
2

5/3

(d) (10, 0, 1)ᵀ

f

P
S
D

10
2

10
1

10
0

10
1

10
14

10
12

10
10

10
8

10
6

10
4

10
2

10
0

10
2

5/3

(e) (0.58, 0, 1)ᵀ

f

P
S
D

10
2

10
1

10
0

10
1

10
14

10
12

10
10

10
8

10
6

10
4

10
2

10
0

10
2

5/3

(f) (1.54, 0, 1)ᵀ

f

P
S
D

10
2

10
1

10
0

10
1

10
14

10
12

10
10

10
8

10
6

10
4

10
2

10
0

10
2

5/3

(g) (6, 0, 1)ᵀ

f

P
S
D

10
2

10
1

10
0

10
1

10
14

10
12

10
10

10
8

10
6

10
4

10
2

10
0

10
2

5/3

(h) (10, 0, 1)ᵀ

f

P
S
D

10
2

10
1

10
0

10
1

10
14

10
12

10
10

10
8

10
6

10
4

10
2

10
0

10
2

5/3

(i) (0.58, 0, 1)ᵀ

f

P
S
D

10
2

10
1

10
0

10
1

10
14

10
12

10
10

10
8

10
6

10
4

10
2

10
0

10
2

5/3

(j) (1.54, 0, 1)ᵀ

f

P
S
D

10
2

10
1

10
0

10
1

10
14

10
12

10
10

10
8

10
6

10
4

10
2

10
0

10
2

5/3

(k) (6, 0, 1)ᵀ

f

P
S
D

10
2

10
1

10
0

10
1

10
14

10
12

10
10

10
8

10
6

10
4

10
2

10
0

10
2

5/3

(l) (10, 0, 1)ᵀ

f

P
S
D

10
2

10
1

10
0

10
1

10
14

10
12

10
10

10
8

10
6

10
4

10
2

10
0

10
2

5/3

(m) (0.58, 0, 1)ᵀ

f

P
S
D

10
2

10
1

10
0

10
1

10
14

10
12

10
10

10
8

10
6

10
4

10
2

10
0

10
2

5/3

(n) (1.54, 0, 1)ᵀ

f

P
S
D

10
2

10
1

10
0

10
1

10
14

10
12

10
10

10
8

10
6

10
4

10
2

10
0

10
2

5/3

(o) (6, 0, 1)ᵀ

f

P
S
D

10
2

10
1

10
0

10
1

10
14

10
12

10
10

10
8

10
6

10
4

10
2

10
0

10
2

5/3

(p) (10, 0, 1)ᵀ

f

P
S
D

10
2

10
1

10
0

10
1

10
14

10
12

10
10

10
8

10
6

10
4

10
2

10
0

10
2

5/3

(q) (0.58, 0, 1)ᵀ

f

P
S
D

10
2

10
1

10
0

10
1

10
14

10
12

10
10

10
8

10
6

10
4

10
2

10
0

10
2

5/3

(r) (1.54, 0, 1)ᵀ

f

P
S
D

10
2

10
1

10
0

10
1

10
14

10
12

10
10

10
8

10
6

10
4

10
2

10
0

10
2

5/3

(s) (6, 0, 1)ᵀ

f

P
S
D

10
2

10
1

10
0

10
1

10
14

10
12

10
10

10
8

10
6

10
4

10
2

10
0

10
2

5/3

(t) (10, 0, 1)ᵀ

Figure 7: Power spectral density of the total velocity at different locations in the wake region.
(a)–(d) adaptive p2 FR without adaptation, (e)–(h) adaptive p2 FR with (νmax, νmin) =
(0.1, 0.001), (i)–(l) adaptive p2 FR with (νmax, νmin) = (0.1, 0.01), (m)–(p) p3 FR without
adaptation, and (q)–(t) adaptive p3 FR with (νmax, νmin) = (0.1, 0.01). A line of slope −5/3
is added to every graph as a reference.

20

y/d

u
/u

3 2 1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1

2

3

4

5

(a) x = 0.58

y/d

u
/u

3 2 1 0 1 2 3
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1

2

3

4

5

(b) x = 1.54

y/d

u
/u

3 2 1 0 1 2 3

0.7

0.8

0.9

1.0

1

2

3

4

5

(c) x = 6

y/d

u
/u

3 2 1 0 1 2 3
0.7

0.8

0.9

1.0

1

2

3

4

5

(d) x = 10

Figure 8: Profiles of velocity component u in x-direction at different locations. Legend 1,
p-uniform p2 FR; Legend 2, p-adaptive p2 FR with (νmax, νmin) = (0.1, 0.001); Legend 3,
p-adaptive p2 FR with (νmax, νmin) = (0.1, 0.01); Legend 4, p-uniform p3 FR; Legend 5,
p-adaptive p3 FR with (νmax, νmin) = (0.1, 0.01);

21

x/d

C
p

0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5
1.5

1.0

0.5

0.0

0.5

1.0

p
2
, puniform

p
2
, padaptive, (0.1, 0.001)

p
2
, padaptive, (0.1, 0.01)

p
3
, puniform

p
3
, padaptive, (0.1, 0.01)

(a) Surface pressure coefficient Cp

x/d

C
f

0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5
0.120

0.100

0.080

0.060

0.040

0.020

0.000

p
2
, puniform

p
2
, padaptive, (0.1, 0.001)

p
2
, padaptive, (0.1, 0.01)

p
3
, puniform

p
3
, padaptive, (0.1, 0.01)

(b) Surface friction coefficient Cf

Figure 9: Surface Cp and Cf in the averaged field of the transitional flow over the infinite
cylinder at Re = 3900.

22

4.2. Under-resolved simulation of the transitional flow over the SD7003 wing

In this section, we apply the p-adaptive solver to the simulation of the tran-
sitional flow over the SD7003 wing. The geometry of the wing is obtained from
the 1st International Workshop on High-Order CFD Methods. The chord length
of the wing is c = 1 with the sharp trailing edge rounded by an arc of radius r ≈
0.0004. The inflow conditions are (ρ∞, u∞, v∞, w∞,Ma∞)ᵀ = (1, 1, 0, 0, 0.1)ᵀ.
The angle of attack of the inflow is 8◦. The Reynolds number of the inflow
with respect to the chord length of the wing is Rec = ρ∞u∞c/µ = 60000. The
Prandtl number is Pr = 0.72. 2D views of the unstructured mesh used for
under-resolved simulation are illustrated in Figure 10. The height of the first
layer of elements in the normal direction of the wing is 0.0003c. We extrude the
2D mesh along the z direction to obtain the 3D mesh. The first 3D mesh has 20
layers in the z direction and 109,540 hexahedral elements in total. The thickness
of each layer is 0.01c. The second one has ten layers in the spanwise direction
and each layer has a thickness of 0.02c. Taking advantage of p-adaptation, only
the p-adaptive p2 and p3 FR methods are used to simulate this problem. We
will provide the reduction in the total number of solution points ntotsp to demon-
strate the efficiency of p-adaptation. The p-adaptation parameters are set as
(νmax, νmin) = (0.1, 0.001).

The time step ∆t = 0.002 and tolerance for the pseudo transient continuation
tolpseudorel = 10−4 are employed for all numerical experiments. For the simulation
on the 20-layer mesh, ESDIRK2 is employed for time integration with tolgmresrel =
10−1 for the GMRES solver. In the pseudo transient continuation, ∆τmin =
0.0002 and ∆τmax = 0.004 are used for SER. We first run the simulation with
adaptive p2 FR until t1 = 26. The instantaneous values of conservative variables
in t ∈ (20, 26] are used for averaging. Then we increase the pmax to pmax = 3 and
resume the simulation until t2 = 42. Then, averaging is done for t ∈ (36, 42].
When p3 FR with p-adaptation is used to simulate this problem on the 10-
layer mesh, aliasing errors will lead to failure. Therefore, we employ a simple
nodal polynomial filtering method proposed by Fisher and Mullen [35] for every
element whose polynomial degree exceeds two. The p2 polynomial is employed

as a basis to perform a cut-off as q̃p3 = (1− α)qp3 + αPp
3

p2qp3 , where Pp
3

p2 is the

projection operation from p3 to p2 and α = 0.2. With this nodal polynomial
filtering, a small amount of dissipation is introduced to stabilize the numerical
methods. ESDIRK4 serves as the time integrator for the simulation on the
10-layer mesh with adaptive p3 FR. To increase the robustness of the pseudo
transient continuation, tolgmresrel = 10−2, ∆τmin = 0.0002, and ∆τmax = 0.002
are used. We run the simulation until t1 = 26 only. Solutions in t ∈ (20, 26] are
averaged for statistics.

Two snapshots of the instantaneous isosurfaces of the Q-criterion, where
Q = 500, are presented in Figure 11 for the simulation conducted on the 20-
layer mesh. One visible difference is that more finer structures are resolved using
adaptive p3 FR. From Figure 12 and Figure 13, we observe that polynomials
of degree p > 1 are clustered in regions near the stagnation point, turbulent
boundary layers as well as the wake region. The order-of-accuracy distributions

23

at different slices in the spanwise direction are not exactly the same since the p-
adaptation is conducted locally. Overall, the feature-based adaptation method
can give an feature-tracking p-distribution. Unlike the transitional flow over the
cylinder, the choice of (νmax, νmin) = (0.1, 0.001) actually clusters all the poly-
nomials of degree p > 1 in a small domain and only a few high-order elements can
be found in the wake region far away from the wing. The power spectral density
of the total velocity at four locations close to the suction side of the wing, i.e.,
(0.3, 0.057, 0.1)ᵀ (0.5, 0.048, 0.1)ᵀ, (0.7, 0.032, 0.1)ᵀ, and (0.9, 0.012, 0.1)ᵀ are il-
lustrated in Figure 14. The first point is near the end of the separation bubble,
where the transition from laminar flow to turbulent flow takes place. The slopes
of PSDs are generally steeper than −5/3 at high frequencies at the first point
in all simulation. At the rest three points, PSDs align with the reference lines
in a certain range of high frequencies, which agrees with the results in [67].

The mean field of the averaged velocity component u in the x direction are
presented in Figure 15. Predictions of the time-averaged flow features, namely,
lift coefficient Cl, drag coefficient Cd, separation point xs, and reattachment
point xre, are documented in Table 2. The reduction of the total number of
solution points ntotsp at specific time instances are also provided in Table 2. The
time-averaged surface pressure coefficient Cp and surface friction coefficient Cf
on the SD7003 wing are illustrated in Figure 16. All numerical experiments over-
predict the drag when compared to the experimental result [68]. Simulation of
the incompressible Navier–Stokes equations done by Bassi et al. [52] gave larger
Cd than those of the compressible Navier–Stokes equations when Ma = 0.1. The
numerical results of our current work have a decent agreement with those in [69].
For simulation conducted on the 20-layer mesh, the adaptive p2 FR has 1,644,414
solution points at t1 = 26; the adaptive p3 FR has 2,570,297 solution points at
t2 = 42. The reductions compared to p-uniform p2 and p3 FR are 44.40% and
63.34%, respectively. The reduction of solution points on the 10-layer mesh using
p-adaptive p3 FR is 60.57% at t1 = 26. From the reduction in the total number
of solution points, we can speculate a similar reduction in the computational cost
or run time. We note that insufficient resolution of the physical scales will lead
to failure of the under-resolved turbulence simulation due to insufficient grid
resolution in the 10-layer mesh. However, with a small dissipation introduced
by nodal polynomial filtering, the force prediction can be accurate to 0.01 and
the length of separation bubble is only slightly shorter. It is hard to know
whether one under-resolved turbulence simulation will fail due to aliasing errors.
Therefore, in the practice of performing under-resolved turbulence simulation
using high-order methods, we would recommend to employ proper de-aliasing
techniques.

24

(a) Global view (b) Close-up view

Figure 10: 2D views of the unstructured mesh around the SD7003 wing.

(a) Adaptive p2 FR, t = 26 (b) Adaptive p3 FR, t = 40

Figure 11: Instantaneous Q-isosurfaces colored by velocity component u in the x direction
when simulating the transitional flow on the 20-layer mesh.

Table 2: Predictions of the transitional flow using the p-adaptive solver. Rows 1–3 are from
current work using p-adaptive FR. Rows 4–9 are previous numerical results using p-uniform
high-order methods. Row 10 presents the results from experiment. The abbreviation Inc.
stands for “incompressible”.

Spatial discretization Ma Cl Cd xs xre Reduction of ntot
sp

1 p-adaptive, p2 FR (20-layer) 0.1 0.9289 0.0459 0.0321 0.3075 44.40% at t1 = 26
2 p-adaptive, p3 FR (20-layer) 0.1 0.9270 0.0470 0.0301 0.3123 63.34% at t2 = 42
3 p-adaptive, p3 FR (10-layer) 0.1 0.9316 0.0419 0.0336 0.2735 60.57% at t1 = 26
4 p4 FR (Vermeire et al. [70]) 0.2 0.941 0.049 0.045 0.315
5 p3 DG (Beck et al. [69]) 0.1 0.923 0.045 0.027 0.310
6 p7 DG (Beck et al. [69]) 0.1 0.932 0.050 0.030 0.336
7 O(h6) FD (Galbriath & Visbal [13]) 0.1 0.91 0.043 0.04 0.28
8 p3 DG (Bassi et al. [52]) Inc. 0.962 0.042 0.027 0.268
9 p4 DG (Bassi et al. [52]) Inc. 0.953 0.045 0.027 0.294

10 Experiment (Selig et al. [68]) 0.92 0.029

25

(a) z = 0.05 (b) z = 0.05

(c) z = 0.1 (d) z = 0.15

Figure 12: Instantaneous order-of-accuracy distributions of adaptive p2 FR at different slices
in the spanwise direction when simulating the transitional flow over the SD7003 wing. t = 26.

(a) z = 0.05 (b) z = 0.15

(c) z = 0.1 (d) z = 0.15

Figure 13: Instantaneous order-of-accuracy distributions of adaptive p3 FR at different slices
in the spanwise direction when simulating the transitional flow over the SD7003 wing. t = 40.

26

f

P
S

D
 o

f
to

ta
l

v
el

o
ci

ty

10
1

10
0

10
1

10
2

10
11

10
9

10
7

10
5

10
3

10
1

5/3

(a) (0.3, 0.057, 0.1)ᵀ

f

P
S

D
 o

f
to

ta
l

v
el

o
ci

ty

10
1

10
0

10
1

10
2

10
11

10
9

10
7

10
5

10
3

10
1

5/3

(b) (0.5, 0.048, 0.1)ᵀ

f

P
S

D
 o

f
to

ta
l

v
el

o
ci

ty

10
1

10
0

10
1

10
2

10
11

10
9

10
7

10
5

10
3

10
1

5/3

(c) (0.7, 0.032, 0.1)ᵀ

f

P
S

D
 o

f
to

ta
l

v
el

o
ci

ty

10
1

10
0

10
1

10
2

10
11

10
9

10
7

10
5

10
3

10
1

5/3

(d) (0.9, 0.012, 0.1)ᵀ

f

P
S

D
 o

f
to

ta
l

v
el

o
ci

ty

10
1

10
0

10
1

10
2

10
11

10
9

10
7

10
5

10
3

10
1

5/3

(e) (0.3, 0.057, 0.1)ᵀ

f

P
S

D
 o

f
to

ta
l

v
el

o
ci

ty

10
1

10
0

10
1

10
2

10
11

10
9

10
7

10
5

10
3

10
1

5/3

(f) (0.5, 0.048, 0.1)ᵀ

f

P
S

D
 o

f
to

ta
l

v
el

o
ci

ty

10
1

10
0

10
1

10
2

10
11

10
9

10
7

10
5

10
3

10
1

5/3

(g) (0.7, 0.032, 0.1)ᵀ

f

P
S

D
 o

f
to

ta
l

v
el

o
ci

ty

10
1

10
0

10
1

10
2

10
11

10
9

10
7

10
5

10
3

10
1

5/3

(h) (0.9, 0.012, 0.1)ᵀ

Figure 14: Power spectral density of the total velocity at different locations in the wake region.
(a)–(d) p3 FR with no adaptation and (e)–(h) adaptive p3 FR with (νmax, νmin) = (0.1, 0.01).
A line of slope −5/3 is added to every graph as a reference.

x

y

0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

U: 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

(a) p2 FR with adaptation (b) p3 FR with adaptation

Figure 15: Averaged velocity component in the x direction on the 20-layer mesh.

27

x/c

C
p

0 0.2 0.4 0.6 0.8

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

p
3
, 20layer mesh

p
2
, 20layer mesh

p
3
, 10layer mesh

(a) Cp

x/c

C
f

0 0.2 0.4 0.6 0.8

0.02

0.01

0.00

0.01

0.02

p
3
, 20layer mesh

p
2
, 20layer mesh

p
3
, 10layer mesh

(b) Cf

Figure 16: Time-averaged surface pressure coefficient Cp and surface friction coefficient Cf

on the SD7003 wing.

28

5. Conclusion

In this work, a dynamically load balanced parallel p-adaptive implicit high-
order flux reconstruction method is developed and applied to under-resolved
turbulence simulation. The parallel mesh partitioning API in ParMETIS, i.e.,
ParMetis_V3_AdaptiveRepart(), is utilized for efficient parallel mesh parti-
tioning. A collect-and-distribute strategy is used to redistribute the working
variables to different processes. We have discussed the impact of weight calcu-
lation for each element on the parallel efficiency in the context of matrix-free
implementation of the ESDIRK method. We investigate different weights re-
lated to the cost of residual evaluation, Jacobian matrix and preconditioner
evaluation, and GMRES iterations. For p ≤ 3, we recommend ωe = nsp, and
as p grows larger, ωe = nksp, where k > 1, is more preferable. Overall, a sig-
nificant reduction in the run time and total number of solution points can be
achieved via p-adaptation for turbulence simulation and favorable results can
be obtained.

When the adaptive solver is applied to solving the transitional flow over an
infinite cylinder, due to the presence of large flow separation, the featured-based
solver can result in a large domain where the polynomial degrees are refined. One
can adjust the adaptation criteria towards wall-resolving to save computational
cost; however, the accuracy would be compromised. When the flow separation is
small, e.g., transitional flow over the SD7003 wing at a small angle of attack, the
feature-based p-adaptation method is able to confine the p-refined region close to
the wing, thus significantly reducing the cost while providing good predictions.
We also show, with the SD7003 case, that insufficient mesh resolution can lead to
instabilities triggered by aliasing errors of high-order methods in under-resolved
turbulence simulation. A proper de-aliasing technique can overcome this issue
and provide acceptable predictions.

The framework of dynamically load balanced p-adaptive implicit high-order
methods developed in this study paves the way towards robust and efficient ILES
of turbulent flows at higher Reynolds numbers with the high-order FR/CPR
method. The dynamic load balancing technique presented here can be easily
extended to other types of high-order collocation methods.

Acknowledgments

Wang and Yu gratefully acknowledge the support of the Office of Naval
Research through the award N00014-16-1-2735, and the faculty startup support
from the department of mechanical engineering at the University of Maryland,
Baltimore County (UMBC). The hardware used in the computational studies is
part of the UMBC High Performance Computing Facility (HPCF). The facility
is supported by the U.S. National Science Foundation through the MRI program
(grant nos. CNS-0821258, CNS-1228778, and OAC-1726023) and the SCREMS
program (grant no. DMS-0821311), with additional substantial support from
UMBC.

29

References

[1] B. Cockburn and C.-W. Shu, “TVB Runge-Kutta local projection discon-
tinuous Galerkin finite element method for conservation laws II: general
framework,” Mathematics of Computation, vol. 52, pp. 411–435, 1989.

[2] B. Cockburn, S. Hou, and C.-W. Shu, “The Runge-Kutta local projection
discontinuous Galerkin finite element method for conservation laws. IV.
The multidimensional case,” Mathematics of Computation, vol. 54, no. 190,
pp. 545–581, 1990.

[3] F. Bassi and S. Rebay, “A high-order accurate discontinuous finite element
method for the numerical solution of the compressible Navier–Stokes equa-
tions,” Journal of Computational Physics, vol. 131, no. 2, pp. 267–279,
1997.

[4] B. Cockburn and C.-W. Shu, “Runge–Kutta discontinuous Galerkin meth-
ods for convection-dominated problems,” Journal of Scientific Computing,
vol. 16, no. 3, pp. 173–261, 2001.

[5] F. Bassi, A. Crivellini, S. Rebay, and M. Savini, “Discontinuous Galerkin
solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model
equations,” Computers & Fluids, vol. 34, no. 4-5, pp. 507–540, 2005.

[6] J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods:
Algorithms, Analysis, and Applications. New York: Springer-Verlag, 2008.

[7] G. J. Gassner and A. D. Beck, “On the accuracy of high-order discretiza-
tions for underresolved turbulence simulations,” Theoretical and Computa-
tional Fluid Dynamics, vol. 27, no. 3-4, pp. 221–237, 2013.

[8] A. Uranga, P.-O. Persson, M. Drela, and J. Peraire, “Implicit large eddy
simulation of transition to turbulence at low Reynolds numbers using a dis-
continuous Galerkin method,” International Journal for Numerical Meth-
ods in Engineering, vol. 87, no. 1-5, pp. 232–261, 2011.

[9] Y. Liu, M. Vinokur, and Z. J. Wang, “Spectral difference method for un-
structured grids I: basic formulation,” Journal of Computational Physics,
vol. 216, no. 2, pp. 780–801, 2006.

[10] Y. Zhou and Z. J. Wang, “Implicit Large Eddy Simulation of Low Reynolds
Number Transitional Flow over a Wing Using High-Order Spectral Differ-
ence Method,” in 40th Fluid Dynamics Conference and Exhibit, p. 4442,
2010.

[11] P. Castonguay, C. Liang, and A. Jameson, “Simulation of transitional flow
over airfoils using the spectral difference method,” in 40th Fluid Dynamics
Conference and Exhibit, p. 4626, 2010.

30

[12] M. L. Yu, Z. J. Wang and H. Hu, “A high-order spectral difference method
for unstructured dynamic grids,” Computers & Fluids, vol. 48, pp. 84–97,
2011.

[13] M. Galbraith and M. Visbal, “Implicit large eddy simulation of low
Reynolds number flow past the SD7003 airfoil,” in 46th AIAA Aerospace
Sciences Meeting and Exhibit, p. 225, 2008.

[14] D. J. Garmann, M. R. Visbal, and P. D. Orkwis, “Comparative study of
implicit and subgrid-scale model large-eddy simulation techniques for low-
Reynolds number airfoil applications,” International Journal for Numerical
Methods in Fluids, vol. 71, no. 12, pp. 1546–1565, 2013.

[15] P. Boom and D. Zingg, “Time-accurate flow simulations using an efficient
newton-krylov-schur approach with high-order temporal and spatial dis-
cretization,” in 51st AIAA Aerospace Sciences Meeting including the New
Horizons Forum and Aerospace Exposition, p. 383, 2013.

[16] M. H. Carpenter, T. C. Fisher, E. J. Nielsen, and S. H. Frankel, “Entropy
Stable Spectral Collocation Schemes for the Navier–Stokes Equations: Dis-
continuous Interfaces,” SIAM Journal on Scientific Computing, vol. 36,
no. 5, pp. B835–B867, 2014.

[17] M. Svärd and J. Nordström, “Review of summation-by-parts schemes
for initial–boundary-value problems,” Journal of Computational Physics,
vol. 268, pp. 17–38, 2014.

[18] H. T. Huynh, “A flux reconstruction approach to high-order schemes in-
cluding discontinuous Galerkin methods,” in 18th AIAA Computational
Fluid Dynamics Conference, p. 4079, 2007.

[19] H. T. Huynh, “A Reconstruction Approach to High-Order Schemnes In-
cluding Discontinuous Galerkin for Diffusion,” in 47th AIAA Aerospace
Sciences Meeting Including The New Horizons Forum and Aerospace Ex-
position, p. 403, 2009.

[20] Z. J. Wang and H. Gao, “A unifying lifting collocation penalty formulation
including the discontinuous Galerkin, spectral volume/difference methods
for conservation laws on mixed grids,” Journal of Computational Physics,
vol. 228, no. 21, pp. 8161–8186, 2009.

[21] P. E. Vincent, P. Castonguay, and A. Jameson, “A new class of high-order
energy stable flux reconstruction schemes,” Journal of Scientific Comput-
ing, vol. 47, no. 1, pp. 50–72, 2011.

[22] J. Romero, K. Asthana, and A. Jameson, “A simplified formulation of
the flux reconstruction method,” Journal of Scientific Computing, vol. 67,
no. 1, pp. 351–374, 2016.

31

[23] L. Wang and M. Yu, “Compact direct flux reconstruction for conservation
laws,” Journal of Scientific Computing, pp. 1–23, 2017.

[24] F. D. Witherden, A. M. Farrington, and P. E. Vincent, “PyFR: An
open source framework for solving advection–diffusion type problems on
streaming architectures using the flux reconstruction approach,” Computer
Physics Communications, vol. 185, no. 11, pp. 3028–3040, 2014.

[25] P. Fernandez, N.-C. Nguyen, and J. Peraire, “Subgrid-scale modeling and
implicit numerical dissipation in DG-based Large-Eddy Simulation,” in
23rd AIAA Computational Fluid Dynamics Conference, p. 3951, 2017.

[26] G. J. Gassner, “A skew-symmetric discontinuous Galerkin spectral element
discretization and its relation to SBP-SAT finite difference methods,” SIAM
Journal on Scientific Computing, vol. 35, no. 3, pp. A1233–A1253, 2013.

[27] G. J. Gassner, A. R. Winters, and D. A. Kopriva, “Split form nodal dis-
continuous Galerkin schemes with summation-by-parts property for the
compressible Euler equations,” Journal of Computational Physics, vol. 327,
pp. 39–66, 2016.

[28] R. M. Kirby and G. E. Karniadakis, “De-aliasing on non-uniform grids:
algorithms and applications,” Journal of Computational Physics, vol. 191,
no. 1, pp. 249–264, 2003.

[29] G. Mengaldo, D. De Grazia, D. Moxey, P. E. Vincent, and S. J. Sherwin,
“Dealiasing techniques for high-order spectral element methods on regular
and irregular grids,” Journal of Computational Physics, vol. 299, pp. 56–81,
2015.

[30] E. Tadmor, “Convergence of spectral methods for nonlinear conservation
laws,” SIAM Journal on Numerical Analysis, vol. 26, no. 1, pp. 30–44,
1989.

[31] G. Karamanos and G. E. Karniadakis, “A spectral vanishing viscosity
method for large-eddy simulations,” Journal of Computational Physics,
vol. 163, no. 1, pp. 22–50, 2000.

[32] R. Pasquetti, “Spectral vanishing viscosity method for large-eddy simula-
tion of turbulent flows,” Journal of Scientific Computing, vol. 27, no. 1-3,
pp. 365–375, 2006.

[33] D. Gottlieb and J. S. Hesthaven, “Spectral methods for hyperbolic prob-
lems,” Journal of Computational and Applied Mathematics, vol. 128, no. 1-
2, pp. 83–131, 2001.

[34] J. Hesthaven and R. Kirby, “Filtering in Legendre spectral methods,”
Mathematics of Computation, vol. 77, no. 263, pp. 1425–1452, 2008.

32

[35] P. Fischer and J. Mullen, “Filter-based stabilization of spectral ele-
ment methods,” Comptes Rendus de l’Académie des Sciences-Series I-
Mathematics, vol. 332, no. 3, pp. 265–270, 2001.

[36] G. Gassner, M. Staudenmaier, F. Hindenlang, M. Atak, and C.-D. Munz,
“A space–time adaptive discontinuous Galerkin scheme,” Computers & Flu-
ids, vol. 117, pp. 247–261, 2015.

[37] M. Tugnoli, A. Abbà, L. Bonaventura, and M. Restelli, “A locally p-
adaptive approach for Large Eddy Simulation of compressible flows in a
DG framework,” Journal of Computational Physics, vol. 349, pp. 33–58,
2017.

[38] F. Naddei, M. de la Llave Plata, and V. Couaillier, “A comparison of
refinement indicators for p-adaptive discontinuous Galerkin methods for
the Euler and Navier–Stokes equations,” in 2018 AIAA Aerospace Sciences
Meeting, p. 0368, 2018.

[39] R. Hartmann and P. Houston, “Adaptive discontinuous Galerkin finite el-
ement methods for the compressible Euler equations,” Journal of Compu-
tational Physics, vol. 183, no. 2, pp. 508–532, 2002.

[40] H. Gao and Z. Wang, “A Residual-Based Procedure for Hp-Adaptation on
2-D Hybrid Meshes,” in 49th AIAA Aerospace Sciences Meeting including
the New Horizons Forum and Aerospace Exposition, p. 492, 2011.

[41] M. Kompenhans, G. Rubio, E. Ferrer, and E. Valero, “Comparisons of
p-adaptation strategies based on truncation-and discretisation-errors for
high order discontinuous Galerkin methods,” Computers & Fluids, vol. 139,
pp. 36–46, 2016.

[42] D. A. Venditti and D. L. Darmofal, “Anisotropic grid adaptation for func-
tional outputs: application to two-dimensional viscous flows,” Journal of
Computational Physics, vol. 187, no. 1, pp. 22–46, 2003.

[43] L. Wang and D. J. Mavriplis, “Adjoint-based h–p adaptive discontinuous
Galerkin methods for the 2D compressible Euler equations,” Journal of
Computational Physics, vol. 228, no. 20, pp. 7643–7661, 2009.

[44] K. J. Fidkowski and D. L. Darmofal, “Review of output-based error es-
timation and mesh adaptation in computational fluid dynamics,” AIAA
Journal, vol. 49, no. 4, pp. 673–694, 2011.

[45] K. J. Fidkowski and Y. Luo, “Output-based space–time mesh adaptation
for the compressible Navier–Stokes equations,” Journal of Computational
Physics, vol. 230, no. 14, pp. 5753–5773, 2011.

[46] F. Bassi, A. Colombo, A. Crivellini, K. Fidkowski, M. Franciolini, A. Ghi-
doni, and G. Noventa, “An entropy-adjoint p-adaptive discontinuous
Galerkin method for the under-resolved simulation of turbulent flows,” in
AIAA Aviation 2019 Forum, p. 3418, 2019.

33

[47] K. J. Fidkowski and P. L. Roe, “An entropy adjoint approach to mesh re-
finement,” SIAM Journal on Scientific Computing, vol. 32, no. 3, pp. 1261–
1287, 2010.

[48] P.-O. Persson and J. Peraire, “Sub-cell shock capturing for discontinuous
Galerkin methods,” in 44th AIAA Aerospace Sciences Meeting and Exhibit,
p. 112, 2006.

[49] B. Cockburn and C.-W. Shu, “TVB Runge-Kutta local projection discon-
tinuous Galerkin finite element method for conservation laws. II. General
framework,” Mathematics of Computation, vol. 52, no. 186, pp. 411–435,
1989.

[50] S. Gottlieb, C.-W. Shu, and E. Tadmor, “Strong stability-preserving high-
order time discretization methods,” SIAM Review, vol. 43, no. 1, pp. 89–
112, 2001.

[51] C. A. Kennedy and M. H. Carpenter, “Diagonally implicit Runge-Kutta
methods for ordinary differential equations. A review,” 2016.

[52] F. Bassi, L. Botti, A. Colombo, A. Ghidoni, and F. Massa, “Linearly im-
plicit Rosenbrock-type Runge–Kutta schemes applied to the Discontinu-
ous Galerkin solution of compressible and incompressible unsteady flows,”
Computers & Fluids, vol. 118, pp. 305–320, 2015.

[53] L. Wang and M. Yu, “A comparative study of implicit Jacobian-free
Rosenbrock-Wanner, ESDIRK and BDF methods for unsteady flow sim-
ulation with high-order flux reconstruction formulations,” arXiv preprint
arXiv:1904.04825, 2019.

[54] M. Franciolini, A. Crivellini, and A. Nigro, “On the efficiency of a matrix-
free linearly implicit time integration strategy for high-order discontinuous
Galerkin solutions of incompressible turbulent flows,” Computers & Fluids,
vol. 159, pp. 276–294, 2017.

[55] D. A. Knoll and D. E. Keyes, “Jacobian-free Newton–Krylov methods: a
survey of approaches and applications,” Journal of Computational Physics,
vol. 193, no. 2, pp. 357–397, 2004.

[56] L. Wang and M. Yu, “Jacobian-free implicit p-adaptive high-order compact
direct flux reconstruction methods for unsteady flow simulation,” in AIAA
Aviation 2019 Forum, p. 3062, 2019.

[57] G. Karypis, “METIS and ParMETIS,” Encyclopedia of Parallel Computing,
pp. 1117–1124, 2011.

[58] M. Yu and Z. J. Wang, “On the connection between the correction and
weighting functions in the correction procedure via reconstruction method,”
Journal of Scientific Computing, vol. 54, no. 1, pp. 227–244, 2013.

34

[59] D. M. Williams, P. Castonguay, P. E. Vincent, and A. Jameson, “Energy
stable flux reconstruction schemes for advection–diffusion problems on tri-
angles,” Journal of Computational Physics, vol. 250, pp. 53–76, 2013.

[60] P. L. Roe, “Approximate Riemann solvers, parameter vectors, and differ-
ence schemes,” Journal of Computational Physics, vol. 43, no. 2, pp. 357–
372, 1981.

[61] H. Bijl, M. H. Carpenter, V. N. Vatsa, and C. A. Kennedy, “Implicit time
integration schemes for the unsteady compressible Navier–Stokes equations:
laminar flow,” Journal of Computational Physics, vol. 179, no. 1, pp. 313–
329, 2002.

[62] W. A. Mulder and B. Van Leer, “Experiments with implicit upwind meth-
ods for the Euler equations,” Journal of Computational Physics, vol. 59,
no. 2, pp. 232–246, 1985.

[63] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschel-
man, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, and H. Zhang, “PETSc
users manual,” Tech. Rep. ANL-95/11 - Revision 3.6, Argonne National
Laboratory, 2015.

[64] L. Wang and M. Yu, “An Implicit High-Order Preconditioned Flux Recon-
struction Method for Low-Mach-Number Flow Simulation with Dynamic
Meshes,” International Journal for Numerical Methods in Fluids, 2019.

[65] L. Wang and M. Yu, “An implicit P -multigrid flux reconstruction method
for simulation of locally preconditioned unsteady Navier-Stokes equations
at low Mach numbers,” arXiv preprint arXiv:1908.03972, 2019.

[66] O. Lehmkuhl, I. Rodŕıguez, R. Borrell, and A. Oliva, “Low-frequency un-
steadiness in the vortex formation region of a circular cylinder,” Physics of
Fluids, vol. 25, no. 8, p. 085109, 2013.

[67] F. Bassi, L. Botti, A. Colombo, A. Crivellini, A. Ghidoni, and F. Massa,
“On the development of an implicit high-order Discontinuous Galerkin
method for DNS and implicit LES of turbulent flows,” European Journal
of Mechanics-B/Fluids, vol. 55, pp. 367–379, 2016.

[68] M. S. Selig, Summary of low speed airfoil data Vol. 1. SoarTech Publica-
tions, 1995.

[69] A. D. Beck, T. Bolemann, D. Flad, H. Frank, G. J. Gassner, F. Hinden-
lang, and C.-D. Munz, “High-order discontinuous Galerkin spectral ele-
ment methods for transitional and turbulent flow simulations,” Interna-
tional Journal for Numerical Methods in Fluids, vol. 76, no. 8, pp. 522–548,
2014.

35

[70] B. C. Vermeire, F. D. Witherden, and P. E. Vincent, “On the utility of
GPU accelerated high-order methods for unsteady flow simulations: A com-
parison with industry-standard tools,” Journal of Computational Physics,
vol. 334, pp. 497–521, 2017.

36

	1 Introduction
	2 Background
	2.1 Governing equations
	2.2 The FR/CPR method
	2.3 ESDIRK methods with pseudo transient continuation

	3 Dynamically load-balanced p -adaptation for high performance computing
	3.1 p -adaptation using spectral decay smoothness indicator
	3.2 Implementation of parallel mesh partitioning
	3.3 A simple example of dynamic load balancing

	4 Applications to under-resolved turbulence simulation
	4.1 Under-resolved simulation of the flow over an infinite cylinder
	4.2 Under-resolved simulation of the transitional flow over the SD7003 wing

	5 Conclusion

