Performance Comparison between Blocking and Non-Blocking
Communications for a Three-Dimensional Poisson Problem

Guan Wang and Matthias K. Gobbert

Department of Mathematics and Statistics, University of Maryland, Baltimore County

Abstract

The system of linear equations obtained by finite difference discretization of the three-dimensional
Poisson problem is solved by a matrix-free parallel implementation of the Jacobi method. Af-
ter checking the convergence of our implementation, we compare the speed of using blocking
MPI_Ssend/MPI_Recv and non-blocking MPI_Isend/MPI_Irecv communications. The compar-
isons indicate that the non-blocking communications are slightly faster than the blocking ones
but show the same speedup and efficiency behavior. The OpenMPI implementation of MPT is
used in conjunction with the Portland Group C compiler.

1 Introduction

Our goal is to solve the Poisson equation with homogeneous Dirichlet boundary conditions on
the unit cube in three spatial dimensions numerically. The numerical method we will use is the
finite difference method using the conventional seven-point stencil, resulting a large, sparse, and
highly structured system of linear equations. In Section 2 this problem will be stated in detail,
and Section 3 will introduce the derivation of the iterative method and prepare for the parallel
implementation.

All numerical studies for this report were performed on the distributed-memory cluster hpc.rs in
the UMBC High Performance Computing Facility (HPCF). The cluster has 33 compute nodes, each
with two dual-core AMD Opteron 2.66GHz (1 MB cache per core) and 13 GB memory, connected by
a high performance InfiniBand interconnect network. The operating system is RedHat Enterprise
Linux 5 distribution. We use the Portland Group C compiler and the OpenMPI implementation
of MPI.

2 Problem Statement
Consider 3-D Poisson problem

—Au=f in Q,
{ u =0 on 0, (2.1)

with © = (0,1)® C R3. To discretize the domain for numerical methods, we discretize the , y, and
z directions by N + 1 small intervals with equal length h = 1/(/N +1). Then we get a square mesh
given by

ri=ih= g, =0 N1
. J .
i =jh=—""— =0,...,N+1
y] .7 N+17 .7 9 9 +
k
=kh=——, k=0,...,N+1
2k N—i—l,)) + 1,

There are N 4 2 points on each coordinate direction, and in the interior there are N® mesh points.
Using finite differences, we approximate the second partial derivatives by

@(g o) A w(i—1,Yj, 2k) — 2u(@i, yj, 21) + u(Tiy1, Y5, 2k)
8x2 T, Yj,2k) ~ h2 ,
Pu, o u(wi Y1,) — 2u(@s vy, k) + ulw Y, 2)
8—y2(xzvy]7zk) ~ 72 ,
9*u . ~ (i, yj, 2h—1) — 20w, Y5, 21) + w(@i, Y5, 2kg1)
@(xlvy]wzk) ~ h2 s
and then we have
0%u 0%u 9%u

Au(xi, yj, 21) = = (Ti, Y5, 2k) + 75 (Ti, Y5> 26) + 5= (20, Y5> 2k
(isYj») 8%2(is Yj>) ayg(i Yj>) 822(is Yj»)
~ e (Wi jk—1 + Wij—1k + Wim,j — O G + Uitk + Wijt1 kb + Wigkt1) s

as an approximation to the Laplace operator Au and u; ;i ~ u(xs,y;, 2zx). The final discretized
form of the equation is

2

fori,j,k=1,...,N, with f; ;r = f(xs,y;, zx) for short.

3 Jacobi Method

The discretized system can be written in matrix form as

Au=1»
with system matrix
S —INQ i
—1Ip2 S —1I 2
A: ‘. '.. s
—INQ S —IN2
i —Ip2 S
where
[T —IN i 6 -1 i
—Iy T -—In -1 6 -1
S = . S ’ T: T S °.)
—Iy T -—In -1 6 -1
i Iy T | i -1 6

and Iy2 € RY XN and I ~ € RVXN are identity matrices, and the right hand side is

2
bije =" fijk-

We can see that A € RV *N? and u and b are column vectors with a length N3.
The source function in the right-hand side is given by

f(z,y,2) = (—27?) (cos(2mx) sin®(ry) sin? (n2)

+ sin?(7z) cos(2my) sin? (7z) + sin’(rz) sin? (7y) cos(2mz)),

and the analytic solution is we(z,y, 2) = sin?(mx) sin?(7y) sin?(72); this problem is the general-
ization of the two-dimensional example used in [1].

Since N is usually very large, and N3 is even much larger, it is often difficult to use direct
methods to solve this linear system. Iterative methods are more often used here. In this report, we
choose Jacobi method to compute the numerical solution. The algorithm and derivation of Jacobi
method are stated in [4]. And to avoid computing the huge matrix-vector product above, we use a
matrix-free implementation to solve the system. In this problem, the Jacobi method can then be
explicitly programmed as

(m+1) _ 1 (m) (m) (m) (m) m) (m)
Yijk T (bw%k Uik TGk T U T Y T g T “mkﬂ)

with iteration counter m = 0,1,2,.... Here, u is an N x N x N array, and we use z-y-z ordering
to organize u as an N3 column vector that Uijk = UipNj+N2k fOT 4,5,k =1,... N,

When we do parallel computing here, we need to split the array v in the z-direction onto the p
MPT processes. If we let {_N = N/p, the size of the local arrays [_u are N x N x [_N.

4 Numerical Results

4.1 Correctness and Convergence Check

The first thing we need to check is the correctness of our implementation. We set the tolerance
tol = 1079, and we start our iteration with an initial guess u(?) = 0. We start with a relatively
small N = 16, which yields a mesh with 18 x 18 x 18 points and A = 1/17 = 0.058823. Unlike the
2-D case, we cannot clearly see the graph of the function. So we only compare the L>(€2)-norm of
the error between u and the true solution u. Table 1 shows a convergence study for some mesh
resolutions NV that yields degrees of freedom (DOF) N3 for the three-dimensional N x N x N mesh.
This tells us that the Jacobi method converges to the true solution, but it takes progressively much
larger numbers of iterations #iter and progressively longer times of computation (TOC). All test
performances in Table 1 are run on only one process. In the following, we will focus on parallel
computing.

Parallelization should not change the algorithm at all, so all numerical results should be con-
sistent with the serial case. We take N = 16, and let the number of processes p go from 1 to 8,

Table 1: Convergence study of the Jacobi method.

N DOF #iter lu — Utruell Lo (0) TOC (sec.) ‘
16 4,096 728 1.1169278486920731e-02 5.70090e-02
32 32,768 2675 3.0027080376821003e-03 1.71493e+00
64 262,144 10095 7.7305748779854522e-04 8.79645e+01
128 1677,7216 38611 1.9112583060509891e-04 1.83779e+03

Table 2: Consistency of parallelization of the Jacobi method for NV = 16.

p #iter lu — ttruell Lo (@) TOC

1 728 1.1169278403210803e-02 5.10090e-02
2 728 1.1169278403210803e-02 2.25871e-02
4
8

728 1.1169278403210803e-02 2.08211e-02
728 1.1169278403210803e-02 7.08668e-02

and look at #iter, [ju — utmeHLoo(Q), and the time of computation (TOC). From Table 2 we can
observe that #iter and ||u — Ugrel|z<() are highly consistent, but the wall clock time does not
show a good regularity here: From p =1 to p = 2 and p = 4, the time of computation gets faster,
but it slows down to p = 8, since the time of communication dominates over the time of calculation
in this case. For further studies on parallel performance, we need to consider larger V.

4.2 Numerical Results for Blocking Communications

In the parallel computing, on Process id, all interior points of this process’s subdomain can be
directly computed by (3). To compute the points on the top and bottom faces of the subdomain,
points on the bottom face from Process id + 1 and points on the top face from Process id — 1
are needed, respectively. We call these points from neighboring processes “ghost points”. Here
we firstly use MPI_Ssend and MPI_Recv for communications between neighboring processes. The
function MPI_Ssend sends a message so that the send does not return until the destination begins
to receive the message [2]. This is called blocking communication.

Now we test for N from 64 to 512, with IV doubled each time. We will look at the performance
for p from 1 to 32 for N = 64, from 1 to 64 for N = 128, and from 1 to 128 for the other.
Besides the wall clock time, we compute two more quantities, speedup and efficiency. The speedup
Sp =T1(N)/T,(N) is the ratio of wall clock time for serial execution over that of parallel execution
with p processes, whose optimal value is p. The efficiency E, = S,/p, whose optimal value is 1,
describes how close a parallel execution with p processes is to the optimal value.

Considering the slow rate of convergence of Jacobi method and the cubically increasing DOF,
when N is large, the number of iterations for convergence will be unacceptably huge. In this case,
we can set a relatively small maximum number of iterations, and look at the time spent on this
many iterations, but we do not expect convergence of the solution. Notice that as N is larger,
for the same maximum number of iterations, the computation takes a much longer time. So here
we set maxit = 99,999 for N = 64, maxit = 9,999 for N = 128, maxit = 999 for N = 256, and
maxit = 99 for N = 512.

Table 3 and Figure 1 show the timing results of our performances. Table 3 (a) shows the wall
clock time for each N. Here for p = 1, we can use only 1 process per node, 2 processes per node for
p =2, and for p > 4, we always use 4 processes per node. Since we use different maximum numbers
of iterations for each N, the wall clock time in each column are not comparable. In each row of
Table 3, we can see for the same N, as p is doubled, the wall clock time becomes approximately
half of the previous one, mostly a little more than a half when p > 4, as a result of more time
spent on communications between different processes. Consequently, in Figure 1 (a) the speedup
Sy, slows down as p increases and in Figure 1 (b) the efficiency E, also decreases eventually.

Table 3: Timing Results for Blocking Communications.

(a) Wall clock time in seconds
N p=1 p=2 p=4 p=8 p=16 p=32 p=64 p=128
64 87.20 57.31 26.59 13.32 6.62 3.75 N/A N/A
128 1023.38 575.73 280.54 174.49 87.21 49.01 23.67 N/A
256 588.54 343.46 178.57 87.43 59.73 36.89 15.32 8.39
512 396.56 199.20 110.25 60.52 38.34 21.47 11.40 6.03

(b) Observed speedup S,
N p=1 p=2 p=4 p=8 p=16 p=32 p=64 p=128
64 1.0000 1.5215 3.2791 6.5460 13.1657 23.2466 N/A N/A
128 1.0000 1.7775 3.6479 5.8650 11.7344 20.8818 43.2381 N/A
256 1.0000 1.7136 3.2958 6.7318 9.8533 15.9542 38.4244 70.1106
512 1.0000 1.9908 3.5968 6.5525 10.3421 18.4699 34.7976 65.8107

(c) Observed efficiency E,
N p=1 p=2 p=4 p=8 p=16 p=32 p=64 p=128
64 1.0000 0.7607 0.8198 0.8183 0.8229 0.7265 N/A N/A
128 1.0000 0.8888 0.9120 0.7331 0.7334 0.6526 0.6756 N/A
256 1.0000 0.8568 0.8420 0.8415 0.6158 0.4986 0.6004 0.5477
512 1.0000 0.9954 0.8992 0.8191 0.6464 0.5772 0.5437 0.5141

140

——— Optimal
—&— N=64
—F—N=128 1

——— Optimal
—L— N=64
2ar —=— =128 | hE:]
h=255
—F— =512

N=256
100 L7 etz |

0 2‘0 4‘0 E‘D E‘D 160 12‘0 140 o 2‘0 AIU EIU EIU 10‘0 12‘0 140
(a) Observed speedup S, (b) Observed efficiency E,

Figure 1: Speedup and Efficiency for Blocking Communications.

4.3 Numerical Results for Non-Blocking Communications

Now we want to compare the above blocking results with non-blocking communication with the
use of MPI_Isend and MPI_Irecv. A non-blocking communication is an approach that allows users
to start sending and receiving several messages, while proceeding with other operations. It is
recognized as a way of compensating for the relatively slow speed of communications as compared
to numerical calculations [3]. The arguments for MPI_Isend/MPI_Irecv are very similar as those
for MPI_Send/MPI_Recv, except adding a handle argument used to determine whether an operation
has completed. The commands MPI_Wait or MPI_Waitall are used to wait for one send or all sends
complete [2], respectively. To implement this, we just replace where we use MPI_Send/MPI_Recv by
MPI_TIsend/MPI_Irecv and add a wait command right before using the ghost points. In between
the posting of the MPI_Isend/MPI_Irecv and the wait command, we calculate all interior points
of the local process’s subdomain.

We test with the same parameters as in the blocking case. The results are shown in Table 4
and Figure 2. Looking at Table 4 (a), we can observe that in most case, for the corresponding
problem size and number of processes, the non-blocking communication has a little faster speed
than the blocking communication. The speedup and the efficiency show a similar tendency as in
the blocking case.

Acknowledgments

The hardware used in the computational studies is part of the UMBC High Performance Computing
Facility (HPCF). The facility is supported by the U.S. National Science Foundation through the
MRI program (grant no. CNS-0821258) and the SCREMS program (grant no. DMS-0821311),
with additional substantial support from the University of Maryland, Baltimore County (UMBC).
See www.umbc .edu/hpcf for more information on HPCF and the projects using its resources.

References

[1] Matthias K. Gobbert. Parallel performance studies for an elliptic test problem. Technical
Report HPCF-2008-1, UMBC High Performance Computing Facility, University of Maryland,
Baltimore County, 2008.

[2] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Programming
with the Message-Passing Interface. MIT Press, second edition, 1999.

[3] Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1997.

[4] David S. Watkins. Fundamentals of Matriz Computations. Wiley, second edition, 2002.

Table 4: Timing Results for Non-Blocking Communications.

(a) Wall clock time in seconds

140

N p=1 p=2 p=4 p=8 p=16 p=32 p=64 p=128
64 86.23 55.96 26.68 13.94 6.65 3.71 N/A N/A
128 922.78 546.66 272.13 158.42 85.04 46.31 22.07 N/A
256 576.77 326.11 176.72 87.02 62.42 29.75 14.28 8.16
512 366.00 189.30 106.08 57.82 33.45 18.46 10.84 5.92
(b) Observed speedup S,
N p=1 p=2 p=4 p=8 p=16 p=32 p=64 p=128
64 1.0000 1.5411 3.2327 6.1859 12.9651 23.2334 N/A N/A
128 1.0000 1.6880 3.3909 5.8249 10.8510 19.9251 41.8022 N/A
256 1.0000 1.7686 3.2637 6.6276 9.2398 19.3880 40.3840 70.6530
512 1.0000 1.9334 3.4502 6.3296 10.9432 19.8247 33.7509 61.8055
(c) Observed efficiency E,
N p=1 p=2 p=4 p=8 p=16 p=32 p=64 p=128
64 1.0000 0.7705 0.8082 0.7732 0.8103 0.7260 N/A N/A
128 1.0000 0.8440 0.8477 0.7281 0.6782 0.6227 0.6532 N/A
256 1.0000 0.8843 0.8159 0.8284 0.5775 0.6059 0.6310 0.5520
512 1.0000 0.9667 0.8626 0.7912 0.6839 0.6195 0.5274 0.4829
T 1 T
— —— Optimal b — —— Optimal
1y imjga I u.al imf;a H
MN=256 [0 N=256
100 b L7 etz | kil —H— N=512

I I I I I I
0 20 40 60 80 100 120

(a) Observed speedup S,

140

L
20

L
40

L L
B0 a0

L L
100 120

(b) Observed efficiency E,

Figure 2: Speedup and Efficiency for Non-Blocking Communications.

140

