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Abstract

The Missouri River Basin (MRB) is an important food-producing region in the
United States and Canada. Climate variability and water availability affect crops
production in this region. Past climate data have been recorded at various locations in
the basin over a period of ten years. We use the data for a retrospective prediction of
rainfall. As the dimension of the data is relatively large, a sufficient dimension reduction
approach is used to reduce the dimensionality of the data while preserving the regression
information pertinent to rainfall. We use the nascent dimension reduction methodology
called Minimum Average Deviance Estimation or MADE to reduce the dimensionality
of the climate data. Since MADE is still a tool in development, we explored two of its
intrinsic prediction methods and compared them to the Nadaraya-Watson prediction
approach by a cross-validation. A parallel implementation of MADE and its prediction
methods on a high performance computer were carried out. A performance study was
performed along with the application of the best prediction method to the MRB climate
data.

1 Introduction

Fresh water is naturally available in lakes, rivers, and through rainfall. It sustains life on
earth. Rainfalls fill aquifers and keep rivers and lakes filled. Generally, in agriculture, water
availability is a necessary condition for an optimal yield of crops. The Missouri River Basin
is incredibly important for food production in the United States. It is one of the largest river
basins in the United States, covering more than 500,000 square miles also covering parts 10
U.S. states and 2 Canadian Provinces. This region produces about 46% of U.S. wheat and
22% of U.S. grain corn. Approximately 90% of the basins cropland is not irrigated and is
entirely dependent on precipitation. According to the drought monitor for June 2016 from
the National Drought Mitigation Center, there is an increase in intensity and areal stage of
drought conditions in the northern Missouri river basin compared to May. June precipitation
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in the Missouri river basin was about 50% of the average. This increased drought prevalence
in the area provides a need for better precipitation prediction in order to manage cropland
and agricultural yield.

Climate is the average weather conditions – such as atmospheric pressure, temperature,
humidity, wind speed, and precipitation – in a certain area over a period of many years. n
particular, we have the data for MRB collected at different locations over a period of ten
years. Our interest is in the rainfall. An ideal endeavor would be to model the rainfall across
space and time. But restrictions due to time and availability of tools limit our work to a
single location. Our goal was to develop a predictive model for the rainfall in at a given
location using historical time series data.

As the dimensionality of the data is large, we opted at using a methodology for dimension
reduction to help reduce the dimensionality of the covariates, and then use the reduced data
to predict the rainfall. Dimension reduction methods abound in the literature. They are
generally for some specific response variable. In our case, the response, rainfall measure-
ments, were non-negative. To deal with this specific type of response, we consider a nascent
dimension reduction methodology called Minimum Average Deviance Estimation, or MADE,
in order to reduce the dimension of the data. Once the reduction is obtained, it is used to
predict the response.

The rest of this paper is organized in the following way: Section 2 gives a detailed de-
scription of the statistical methodology of Minimum Average Deviance Estimation, provides
the estimation method of its parameters, and also describes three prediction methods to be
compared via a simulation. Section 3 describes a series of simulation studies performed in
order to determine the effectiveness of MADE. Section 4 presents the results of the applica-
tion of MADE to the climate model data set provided by the client, and section 5 includes
discussion of the results and conclusions of our project.

2 Statistical Methodologies

Sufficient Dimension Reduction is achieved when the dimensionality of a data set is reduced
while still retaining most regression information. There are numerous ways to reduce data
dimensionality present in statistical literature. When considering the classical regression
problem of Y |X, a sufficient dimension reduction is a reduction R(X) of the data-matrix X,
that still holds all the regression information about Y that was contained in X.

2.1 Minimum Average Deviance Estimation Model

The developing tool of Minimum Average Deviance Estimation was used in order to reduce
dimensionality of data. Because this is a developing method there is much to be learned
about its functionality with different types of data. This method is to obtain a reduction
R(X) so that Y |X has the same distribution as Y |R(X) where Y |X follows an exponential
family distribution. The exponential family distributions have the form

f(Y | ϑ(X)) = f0(Y, φ) exp {[Y ϑ(X)− b(ϑ(X))]/a(φ)} . (2.1)
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For a particular dataset, a specific form of exponential family distribution would be assumed.
The canonical parameter ϑ(X) is related to the mean function E(Y |X) through a link func-
tion g meaning g(E(Y |X)) = ϑ(X). The specific distribution of Y |X determines which link
function is used. Let (Yi, Xi), i = 1, . . . , n represent independent samples from the distribu-
tion of (Y,X) so that Yi|Xi has the distribution [?]. Assuming that ϑ(X) is continuous and
smooth so that at any point X the first order linear expansion is as follows,

ϑ(Xi) ≈ ϑ(X) + [∇ϑ(X)]T (Xi −X) (2.2)

for any Xi in the neighborhood of X. Let α = ϑ(X) and Γ = ∇ϑ(X). As X varies in its
sample space, Γ describes a u-dimensional subspace S in Rp with u ≤ min(n, p). Let U
be an orthonormal basis of S so that Γ = Uδ for some δ = δ(X) ∈ Ru×1. It follows that
ϑ(Xi) = ϑ(UTXi). Consequently, UTX is a sufficient reduction of X as the distribution of
Y | X is approximately the same as that of Y | UTX. These reduction subspaces are not
unique and could not be the minimum possible dimension of the kernel matrix B. Regression
based on the local log-likelihood evaluated at a given X ∈ Rp can be written as

LX(α, γ,B) =
n∑
i=1

w0i(X) log f(Yi|α + γTBT (Xi −X))

=
n∑
i=1

w0i(X)

{
Yi(α + γTBT (Xi −X))− b(α + γTBT (Xi −X))

ai(φ)
+ log f0(Yi, φ)

}
. (2.3)

The weights w01(X), . . . , w0n(X) represent the contribution of each observation toward the
local likelihood LX(α, γ,B). A local deviance can be expressed as

D(Yj, ϑ(BTXj)) = 2
[
max
ϑ

log f(Yj | ϑ)− LXj
(αj, γj, B)

]
. (2.4)

The term maxϑ log f(Yj | ϑ) is the maximum likelihood achievable for an individual obser-
vation. Consider minimizing the average deviance n−1

∑n
j=1D(Yj, ϑ(BTXj)) with respect to

(αj, γj) ∈ Rd+1 for j = 1, . . . , n and B ∈ Rp×d such that BTB = I. This is equivalent to
maximizing

Q(α, γ,B) =
n∑
j=1

LXj
(αj, γj, B)

=
n∑
j=1

n∑
i=1

w0i(Xj)

{
Yi(αj + γTj B

T (Xi −Xj))− b(αj + γTj B
T (Xi −Xj))

ai(φ)
+ log f0(Yi, φ)

}
,

(2.5)

which is the full local log-likelihood evaluated at each of the sample points, where α =
(α1, . . . , αn) and γ = (γ1, . . . , γn). While each sample point Xj has its own regression
coefficients αj and γj, they all share a common dimension reduction kernel matrix B. The
dimension d of the reduction kernel matrix B is to be estimated. Three estimation methods
were devised to estimate d: a sequential permutation test, a bootstrap method, and cross-
validation.
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2.2 Algorithm for Estimation

The parameters of interest are αj, γj, j = 1, . . . , n, and B ∈ Rp×d. We start by assuming that
the dimension d is known. For any orthogonal matrix O, γTBT = γTOOTBT , which implies
that γ and B are not uniquely determined but obtained up to an orthogonal transformation.
Furthermore, refined weights based on the Gaussian kernel wi(B

TX) with H = hI depend
on B only through BBT = BOOTBT . In this setting, the MADE problem is invariant to
orthogonal transformation of B in the sense that

(2.6)Q(α, γ,B) = Q(α,OTγ1, . . . , O
Tγn, BO).

The parameter space of B is the set of d-dimensional subspaces in Rp known as the Grass-
mann manifold of dimension d(p − d). However, the estimation method we adopt does not
estimate all the parameters jointly, but works iteratively. For fixed values of αj and γj,
j = 1, . . . , n, the parameter space of B is the set of d-dimensional orthonormal matrices in
Rp, also known as Stiefel manifold of dimension pd−d(d+1)/2. The dimension of Steifel and
Grassmann manifolds is discussed in [1]. In the following, we present an iterative method to
maximize (2.5) for a given dimension d, and later discuss selection of d.

To estimate the parameters (αj, γj) ∈ Rd+1, j = 1, . . . , n, we start by fixing B in (2.5).
We see that maximizing Q over (αj, γj) is equivalent to maximizing each LXj

(αj, γj;B) sep-
arately. There is no closed-form solution of the estimator, except in certain special cases
such as Gaussian outcomes. Instead, we proceed with a multivariate Newton-Raphson iter-
ative approach. For a particular LX(α, γ;B), let ξ = (α, γT )T , Zi = (1, (Xi −X)TB)T , and
wi = wi(B

TX) so that

(2.7)LX(α, γ;B) =
n∑
i=1

wi[
Yi · ZT

i ξ − b(ZT
i ξ)

ai(φ)
+ log f0(Yi, φ)].

Let Z = (Z1, . . . , Zn)T , W = diag(w1, . . . , wn) and H(ξ) : Rd+1 → Rn with entries [Yi −
b′(ZT

i ξ)]/ai(φ) for i = 1, . . . , n. The first derivative at X is then

∂

∂ξ
LX(α, γ;B) =

n∑
i=1

wi
Yi − b′(ZT

i ξ)

ai(φ)
Zi = ZTWH(ξ). (2.8)

The function H(ξ) has an n× (d+ 1) Jacobian

JH(ξ) =

(
∂

∂ξj

Yi − b′(ZT
i ξ)

ai(φ)

)
= − 1

ai(φ)

b
′′(zT1 ξ)Z1,1 · · · b′′(zT1 ξ)Z1,d+1

...
. . .

...
b′′(zTn ξ)Zn,1 · · · b′′(zTn ξ)Zn,d+1

 .

To formulate Newton-Raphson iterations, suppose ξ(g) is a given iterate and ξ(g) + ∆ξ will
be the next iterate. To solve for ∆ξ approximately, set the first order Taylor expansion of
(2.8),

ZTWH(ξ(g) + ∆ξ) ≈ ZTWH(ξ(g)) + ZTWJH(ξ(g))∆ξ,
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to zero and solve to obtain ∆ξ = −{ZTWJH(ξ(g))}−1ZTWH(ξ(g)). This suggests the update
of ξ as ξ(g+1) = ξ(g) − {ZTWJH(ξ(g))}−1ZTWH(ξ(g)). These steps are iterated until the gth
iteration where ‖ξ(g) − ξ(g−1)‖ < ε for some small prescribed ε > 0.

To estimate B, we suppose that (αj, γj), j = 1, . . . , n, are fixed and known. Omitting
the terms of the objective function (2.5) that are free of B, estimation of B is carried out
by maximizing

Q(B) =
n∑
j=1

n∑
i=1

wi(B
TXj)

1

ai(φ)

{
Yi(αj + γTj B

T (Xi −Xj))− b(αj + γTj B
T (Xi −Xj))

}
,

(2.9)

over the set of d dimensional semi-orthogonal matrices in Rp. It is noteworthy that in the
setting of MAVE, [4], and [5] used a quadratic programming method, where a vectorized form
of B is estimated in an iterative fashion, and orthonormalized afterwards. In the present
work, B is estimated in its natural parameter space, a Stiefel manifold, which naturally
honors the orthonormality constraint.

∂Q(B)

∂Brs

=
n∑
j=1

n∑
i=1

wij

{Yi − µ(αj + γTj B
T (Xi −Xj))

ai(φ)

}
γjs(Xir −Xjr), (2.10)

for r ∈ {1, . . . p} and s ∈ {1, . . . , d}. Here, µ(ϑ) = b′(ϑ) represents the mean function for the
exponential family and Brs represents the (r, s)th element of B. The optimization on the
Stiefel manifold converges when TrHTH − (1/2)ATA < ε for a user-specified ε > 0, where
H = ∇Q(B̂) and A = B̂T∇Q(B̂) with ∇Q(B) = ∂Q/∂B −B(∂Q/∂B)TB.

2.3 Prediction Methods

Suppose we wish to estimate E(Y |X) for a new observation X = X∗. Let B̂ denote the
estimate of B based on n independent observations. We provide three different prediction
methods that do not rely on the exact specification of the regression function to predict
the response corresponding to a new observation X∗. Let {wi∗}ni=1 denote the set of kernel
weights obtained as

wi∗ = KH(B̂T (Xi −X∗))/
∑n

m=1KH(B̂T (Xm −X∗))

The first prediction method yields the predicted response as

Ê(Y | X∗) =
n∑
i=1

wi∗Yi =

∑n
i=1KH(B̂T (Xi −X∗))Yi∑n
j=1KH(B̂T (Xj −X∗))

. (2.11)

This prediction method is a Nadaraya-Watson estimator which is typical for nonparametric
methods, and was used in [4] in the context of cross-validation. The Nadaraya-Watson
estimator can be used with any sufficient dimension reduction method that could provide an
estimate for B. We will refer to this prediction method as the NW method.
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The second prediction method is related to a local likelihood regression. We continue to
make the assumption that the n independent samples are used to obtain B̂, an estimator of
the reduction matrix B. Now, for the new observation X∗, α̂ and γ̂ may be are obtained as

(α̂, γ̂) = argmax
α,γ

n∑
i=1

wi(B̂
TX∗)

{Yi(α + γT B̂T (Xi −X∗))− b(α + γT B̂T (Xi −X∗))
ai(φ)

}
,

(2.12)

In the original Taylor expansion, α = ϑ(BTX∗). As is often done in local likelihood literature
[2, 3] we can predict Y ∗ using only the intercept as g−1(α̂). We will denote this as local
likelihood prediction I, or Ê(Y |X∗)LLI

.
We also consider local likelihood prediction II, computed as

(2.13)Ê(Y |X∗)LLII
= g−1

(
n∑
i=1

(α̂ + γ̂T B̂T (Xi −X∗))wi∗

)
,

which incorporates the estimate for the slope as well. Both LL1 and LL2 are associated to
MADE.

We used a simulation study to compare these three prediction methods. We used the
mean squared prediction error to calculate the prediction errors for each of the three predic-
tion methods. The mean squared prediction error is calculated by

MSPE = n−1e

ne∑
i=1

(Yi − Ŷi)2

. Relatively, a method with a smaller mean squared prediction error is preferred.

3 Simulation Study

The native R code provided by our mentor and co-author of MADE was not written for
a parallel routine on hign performance computer, but in serial for a single processor. We
rewrote the code and took advantage of some R packages designed to facilitate R codes in
parallel on computers with distributed processors.

We wanted to evaluate how the parallel version of the R code for MADE would run
with high dimensional data on the clusters. In order to run a simulation and a performance
study, we generated the data under a typical linear regression setting of the form Y = Xβ+ε.
The data-matrix X was generated using the standard normal distribution; β was a column-
vector generated from an uniform distribution with minimum of −2 and maximum of 2. The
outcome Y was obtained by adding the noise ε simulated from the normal distribution of
σ = .5. A constraint was added to the Y data-vector so that it can’t be less than 0. This
was due to the fact that the intended data that we will be using in application is rainfall
data which cannot have a value smaller than 0 for the Y vector.
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3.1 Performance Study

The initial code of MADE was written by the authors for serial processes and is composed
with three main parts: estimation of γ and α with a Newton-Raphson iteration, the estima-
tion of B using a Stiefel manifold optimization code, and the prediction. Each part requires
complex operations. For our project, we analyzed to identify its main intensive portions.
Consequently, we devised a parallelization procedure of these main portions. The paralleliza-
tion was implemented using snowslurm and snow packages in R. We created a slurm cluster
and then ran using the parallelization of functions that were converted to be in an apply
setting.

We ran a performance study after parallelization. The goal is to determine whether the
procedure would speed up the runtime of the time when several processors are used. For
this study, the sample size of the data was set at n = 500 with p = 40 covariates. The data
was replicated 100 times.

# Processors 1 2 4 8 16 32 48 64
Time (hours) 16.27 8.27 8.91 8.23 8.27 8.92 8.22 8.71

Speedup 1 1.97 1.82 1.98 1.97 1.82 1.98 1.87

Table 3.1: Performance Study Times

The results of the performance study shown in 3.1 show there is a significant decrease
in time to run the code on this simulation from 1 to 2 processors. Increasing farther than
2 processes however does not show any improvement. This suggests that running the code
in parallel does produce an improvement in running time but only in a split from 1 to 2
processes, at least for the present R code setting. The plot 3.1 gives the same information
with a closer look at the improvement between 1 and 2 processes to show the significant
improvement in run time.

3.2 Prediction Performance

We aimed at comparing the three prediction methods associated to MADE. These methods
can’t be compared analytically so recourse was to a simulation. Using the same setting for
data simulation as in the previous section, we study the performance of these prediction
methods described in section 2.3 when the sample size was increased.

Several settings were considered with three different sample sizes n = 50, 250, and 500,
and four different number of predictors p = 5, 10, 20, and 40. We ran 100 replications of
each level and evaluated the performance. The results are summarized in Table 3.2. There
is no clear trends in the change of prediction error when n or p is changing. Perhaps more
investigation should be carried to determine whether these results should be confirmed.

The results on Figure 3.2 comparing the three prediction methods suggest that LLI
performs better than the other two in the setting of these simulation. It might be necessary
to consider other possible settings. For example, when the predictors are from skewed or
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Figure 3.1: Plot of times from 1 to 8 processes

discrete distributions. There is no firm conclusion at this point, but we believe ulterior study
needs to be carried out for possibly conclusive results.

n = 50 n = 250 n = 500

p = 5 0.050 0.036 0.040
p = 10 0.078 0.036 0.011
p = 20 0.097 0.139 0.059
p = 40 0.597 0.065 0.0205

Table 3.2: Median Prediction Error for LLI

4 Application to Missouri River Basin Data

To explore the possible usefulness of MADE with time series data we applied the methodology
to the Missouri River Basin (MRB) climate data. The MRB data was collected over the
period from 1949–2005. Access to this data was provided by JCET. There were observed
values and climate model produced values from the MIROC5 climate model. The data set
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Figure 3.2: Prediction error using NW, LL1, and LL2.

was collected at over 18,000 locations. This dataset consists of variables such as latitude,
longitude, date recorded, precipitation measurements, and various other climate variables.
Precipitation was the variable of interest. The dataset can be split into either daily or
monthly sets, we operated exclusively with monthly data.

We took three climate variables from the climate model data, which consisted of max
temperature, sea level pressure, and relative humidity. As well as subsetting those three
variables we created two lag variables for precipitation. The years 1950 to 1960 were used
to run this analysis. This created an X matrix of 132× 5 with desired dimension reduction
(BTX) of only one dimension, d = 1. The Y vector was created using the precipitation
values in the same location. We ran a leave-one-out cross validation on these data at a
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single latitude longitude point in the Missouri River Basin. We used the MADE specific
estimator (LL1) to estimate the effectiveness of the MADE reduction on these data. The
cross validation took out a single month’s observations at a certain time and used the rest
of the data to predict that month’s precipitation value. This produced a mean squared
prediction error value of 0.114. This shows that MADE was able to successfully reduce the
dimension of X from 5 to 1, and use the reduction for subsequent prediction.

Further analyses using MADE on a larger subset of the original covariates from the data
and larger area of the region would be suggested in order to test how well MADE performs.

5 Conclusions

The results of the simulation study suggest that MADE estimators are better than the
Nadaraya-Watson estimator because the prediction errors of MADE estimators were better
than the Nadaraya-Watson estimator. This was clearly evident when the number of obser-
vations increased because the Nadaraya-Watson estimator had a consistent mean squared
prediction error whereas the MADE specific estimators improved. We tested how quickly the
MADE code could be implemented with large sets of data, so we conducted a performance
study. This performance study suggested that MADE did in fact require parallelization by
comparing the time it took for different numbers of processes. In serial (1 processor) the code
ran for over 16 hours. Then, when increasing the number of processes to 2, the performance
of MADE improved significantly as it took 8 hours to perform. However, when continuing
to increase the number of processes on MADE, there was no clear relationship between the
number of processes and the amount of time it took to perform. Then, we used climate
data from 1950 - 1960 for one location in the MRB and applied MADE to that data. The
results showed that MADE successfully reduced the dimensions of the data and still kept the
regression information. Since MADE is a relatively new technique, there needs to be further
exploration of the use of MADE with time series data in order to determine what kinds of
data could benefit from the sufficient dimension reduction of MADE. The code of MADE
could also improve so that it can be implemented more quickly on the large data sets for
which it was created.
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