
Block Cyclic Distribution of Data in pbdR and
its Effects on Computational Efficiency

REU Site: Interdisciplinary Program in High Performance Computing

Matthew G. Bachmann1, Ashley D. Dyas2, Shelby C. Kilmer3, and Julian Sass4,
Graduate Research Assistant: Andrew Raim4,

Faculty Mentors: Nagaraj K. Neerchal4 and Kofi P. Adragni4

Clients: George Ostrouchov5 and Ian F. Thorpe6

1Department of Mathematics, Northeast Lakeview College
2Department of Computer Science, Contra Costa College

3Department of Mathematics, Bucknell University
4Department of Mathematics and Statistics, University of Maryland, Baltimore County

5Oak Ridge National Laboratory
6Department of Chemistry and Biochemistry, University of Maryland, Baltimore County

Technical Report HPCF–2013–11, www.umbc.edu/hpcf > Publications

Abstract

Programming with big data in R (pbdR), a package used to implement high-perfor-
mance computing in the statistical software R, uses block cyclic distribution to organize
large data across many processes. Because computations performed on large matrices
are often not associative, a systematic approach must be used during parallelization to
divide the matrix correctly. The block cyclic distribution method stresses a balanced
load across processes by allocating sections of data to a corresponding node. This
method achieves well divided data that each process computes individually and calcu-
lates a final result more efficiently. A nontrivial problem occurs when using block cyclic
distribution: Which combinations of different block sizes and grid layouts are most ef-
fective? These two factors greatly influence computational efficiency, and therefore it
is crucial to study and understand their relationship.

To analyze the effects of block size and processor grid layout, we carry out a per-
formance study of the block cyclic process used to compute a principal components
analysis (PCA). We apply PCA both to a large simulated data set and to data involv-
ing the analysis of single nucleotide polymorphisms (SNPs). We implement analysis
of variance (ANOVA) techniques in order to distinguish the variability associated with
each grid layout and block distribution. Once the nature of these factors is determined,
predictions about the performance for much larger data sets can be made. Our final
results demonstrate the relationship between computational efficiency and both block
distribution and processor grid layout, and establish a benchmark regarding which
combinations of these factors are most effective.

Key Words : pbdR, Block Cyclic Distribution, Grid Layout, Block Size, PCA, covariance,
correlation

1



1 Introduction

The ability to analyze large quantities of data is becoming increasingly necessary as tech-
nology to accquire data improves. Our capacity to accquire data has far surpassed our
capability to understand it. It is estimated that humankind is able to store 295 exabytes of
informtion. Big data is more than just the buzz word of the day: The White House, National
Institute of Health, National Science Foundation, and many other prominent organizations
all have proposed initiatives emphasizing the big data problem (TBD: citation(s) needed).
The scope of this note is how interpeting big data in efficient ways will facilitate progress
toward a better understanding of literally any topic that has substantial observational data.

Programming with Big Data in R (pbdR) contains numerous packages that allow for ma-
nipulation of this type of data [5]. Section 2.1 gives an overview of such libraries. The under-
lying process pbdR uses to organize big data amongst processes is described in Section 2.2.
Breaking up a matrix of large dimensions can be dangerous when doing computations that
are not embarrassingly parallel. pbdR uses block cyclic distribution to meticulously dis-
tribute the blocks of data, shown in Figure 2.1, so that the evaluation is not compromised.
The process is quite complicated, however block cyclic distribution is primarily implemented
without user interaction. pbdR integrates simple function calls, see Section 3.2, to make it
easy on the user.

Although any block cyclic distribution can be implemented without the user ever inter-
acting with the parameters, pbdR also allows the user to alter parameters manually. The
different parameters used in this note are discussed in Section 3.3. The primary focus here
is to look at how manually adjusting block cyclic distribution can improve efficiency. A
thorough test of these parameters is seen in Section 4.1. The results give insight to the best
combinations of parameters to maximize efficiency.

Sections 2.3, 3.4, and 4.2 all provide an opportunity to view the block cyclic distribution
method applied to a data set from the lab of Dr. Ian Thorpe. The data set we look at is very
large and gathered over less than a second. An application to chemistry provides a great
moment to stress that this data, if measured over minutes, hours, or even days, has the
potential to be incomprehensibly large. In this note, there are 3100 snapshots in intervals of
10 picoseconds containing a 531 × 3 matrix per snapshot. A brief analysis relevant to this
data set is outlined and the results are displayed in Section 4.2. This application only begins
to explain the need for computational efficiency in big data.

2 Background

2.1 pbdR and Supporting Libraries

Programming with big data in R (pbdR) is a package used to implement parallel computing in
the statistical software R [2]. pbdR consists of several subpackages such as pbdMPI, pbdDMAT,
which build upon established libraries such as MPI, ScaLAPACK, BLAS, and are accessible
on the Comprehensive R Archive Network (CRAN). These subpackages assist with the use of
different types of mathematical methods on parallel processors. Parallel implementation is

2



Figure 2.1: Example of block distribution and processor grid layout. TBD: Figure was
borrowed from [5]

primarily done through Message Passing Interface (MPI), the widely considered standard for
communication amongst processes [1]. As opposed to the master-slave paradigm, pbdR uses a
single program multiple data (SPMD) parallelism intended by MPI. Further, pbdR effectively
eliminates the need for a manager node, and all processors are autonomous. This MPI
structure is defined by pbdR in pbdMPI. The packages within pbdR include dense linear algebra
packages with specific methods that allow complex computations to be implemented on
many processors. Of these methods for parallel computing, block cyclic matrix distribution
is included.

2.2 Block Cyclic Distribution

Built upon ScaLAPACK, pbdDMAT allows for a matrix to be distributed amongst a group
of processes by first breaking the matrix into different block sizes. The dimension of these
blocks (b× b) has an effect on efficiency of computation. Block sizes can be both inefficiently
large or inefficiently small, with respect to the size of the overall matrix. Additionally, block
sizes that divide the number of rows and columns evenly are likely more efficient. Figure 2.1
shows, in the case of a 9 × 9 matrix, b = 2 causes some additional smaller matrices (1 × 2,
2 × 1, and 1 × 1) to be given to all processes except 3 and 5 (purple and orange in figure).
This division will cause processes 0, 1, 2, and 4 to have more computations to perform than
the others. Had the block size been, for example, b = 3, the block sizes would divide the over
all dimension evenly and it is probable that there would be speed up in compution time.

Once pbdR breaks a matrix into blocks, these blocks must be distributed amongst different
processes. Therefore, block cyclic distribution employs a grid layout (r × c) of processes to

3



Figure 2.2: Example of block distribution and processor grid layout. TBD: Figure was
borrowed from [5]

partition the blocks. Processor grid layout attempts to maximize efficiency by determining
which groups of blocks are given to each process, and how the layout of data given to each
process is presented. In Figure 2.1, note that processor grid layout is represented by groups
of color. For example, process 0 receives the red blocks of data, process 1 receives the blue
blocks, process 2 receives the green block, and continues in r×c = 2×3 fashion till it reaches
the next group of each color. The same process is shown in Figure 2.2, though here we see an
example of when load balancing is perfectly even. Preliminary studies by our client Dr. G.
Ostrouchov demonstrate that there exists a relationship between the efficiency of parallel
execution and both grid layout and block size.

2.3 Application to Protein Movement

In an application of our study, we use data from the lab of Dr. Ian Thorpe. This data
focuses on the movement of the NS5B protein created by Hepatitis C virus polymerase.
This polymerase is responsible for the replication of the viral RNA of the virus. The data
is formatted as 3100 snapshots of the protein at intervals of 10 picoseconds. Each snapshots
contains the x-, y-, and z-coordinates of different amino acid residues in 8290 different atoms
in the protein. In order to reduce the size of the data set, we organize the data by taking
the average x-, y-, and z-coordinates of each atom in the 531 residues, creating a 531 × 3
matrix for every snapshot. We then are able to combine all of the data into one 531× 9300
data matrix.

4



2.4 Computational Environment

This efficiency study is made possible by the cluster tara in the UMBC High Performance
Computing Facility (www.umbc.edu/hpcf). Tara consists of 86 nodes: 82 compute nodes,
2 develop nodes, 1 user node, and 1 management node. All nodes have two quad-core Intel
Nehalem X5550 processors and 24 GB memory. All nodes are connected by a quad-data rate
InfiniBand interconnect. We may access files, write and compile code, and submit jobs from
the user node. Documentation on running pbdR programs on tara is available in [3].

3 Methodology

The factors of variability we define in our method are based on prelininary studies presented
to us by our client Dr. G. Ostrouchov. This research makes us aware of four factors that
directly affect efficiency of parallel programming in pbdR: number of observations (n × k),
number of processes (p), processor grid layout, and block size. We study more closely the
relationships between computational speed and these four factors in order to develop a
benchmark for further work with big data and block cyclic distribution.

3.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a statistical method used most commonly for dimen-
sionality reduction; see [4] for a general overview. This multivariate analysis can be used to
create a lower dimensional picture of a data set by omitting nonsignicant principal compo-
nents. PCA determines the directions of maximum variability. When the first few principal
components contribute to the majority of variability in the data, these components are used
to transform the data. PCA can be defined as an orthogonal linear transformation of data.
Performing PCA on a large data set provides opportunities for parallelization through block
cyclic distribution.

Here PCA is implemented on the k × k sample covariance matrix

S =
1

n− 1
YT

(
I− 1

n
J

)
Y,

where J = 11T is a matrix of all ones, and

Y =

y11 · · · y1k
...

. . .
...

yn1 · · · ynk


is a matrix of n observations each having k attributes. S is positive semi-definite and
therefore can be diagonalized by

Λ = OTSO,

where O is an orthogonal matrix; this decomposition is possible with any positive semi-
definite symmetric matrix. Each row of O is an eigenvector of S. These eigenvectors are

5



Figure 3.1: Possible grid layouts for 6 processes.

called principal components. Λ is the diagonal matrix of eigenvalues of S. The number of
significant eigenvalues determines the true underlying dimensionality of the data.

pbdR has integrated both a PCA and covariance function defined by prcomp and cov

respectively. Because both functions are important in analyzing big data, they provide a
great way to test block cyclic distribution on data of very large dimension. Therefore, prcomp
is timed in this note to determine how different parameters of block cyclic distribution affect
performance.

3.2 Block Cyclic Distribution in pbdR

The pbdDMAT sub-package in pbdR provides the ddmatrix function for applying block cyclic
distribution to matrices for higher level programming [5]. By implementing the ddmatrix

function defined in pbdDMAT, b is easily manipulated. Furthermore, r × c can be arranged
using init.grid, also found in pbdDMAT.

The program used first generates independent random data on each process. This process
assists in avoiding memory limitations imposed by the hardware. By changing the class of
the data from “matrix” to “ddmatrix” we communicate that each process has a portion
of a distributed matrix. This is crucial because the functions of pbdDMAT will only work
on a distributed matrix. This distribution, however, is not in the correct format to begin
computation. As stated, much care must be taken before beginning computation to ensure
that the evaluation is correct. The redistribute function allows the format of distribution
to be changed to a block cyclic format, ready for computation.

r × c must match p in the sense that the rc divide p evenly. So for example, in the case
p = 6, we can study r × c = 1× 6, 2× 3, 3× 2, and 6× 1, as shown in Figure 3.1.

3.3 Efficiency Studies

As discussed in Section 3.1, we use the prcomp function provided by pbdR to perform our
efficiency study. Our initial runs are performed to study the effects of n × k. Results from
this study are expected to have a predictable effect on efficiency. We perform the study by
holding the block size constant at b = 2, testing for n = 1000, 3000, 5000, 10000, 30000, 50000,
with k = n

10
. With p = 64, we can compare grid layouts of r× c = 4×16, 8×8 and 16×4. If

the results show n× k having a predictable effect on efficiency, as expected, we can observe

6



Figure 3.2: Effects of n× k on run time.

other factors while n and k remain constant.
The results from this n × k study are shown in Figure 3.2. In the n × k study we

observe times that appear to have a logarithmic relationship. By taking the logarithm of the
times we observe a linear trend shown in Figure 3.2. These results confirm the anticipated
predictability of the dimensions affect on efficiency. This conclusion allows further study to
hold n×k constant and focus on the variability associated with r× c and b. We explore this
idea further in Section 4

3.4 PCA and Correlation Matrix for SNPs

In the application of block cyclic distribution and grid layout, we create a covariance matrix
from the data on protein movement. From there we implement PCA on the correlation
matrix. We were also able to compute a 531 × 531 correlation matrix from the movement
data, showing how each residue correlates to the other residues. From there, we create a
level plot of the correlation matrix in order to see correlations of the data with itself, with
the red showing negative correlation and the blue showing positive correlation. From there

7



Figure 4.1: Overall run time for 1 node: 5120× 5120.

we use a Fisher Transform, defined as

z = ln

(
1 + Rij

1−Rij

)
,

where Rij represents the (i, j)th entry in the correlation matrix. This transformation is used
to find which correlations were statistically significant to the movement of the protein. On
the next level plot of the data, we can grey out all data points with a Fisher Transform
value of less than or equal to 2, which shows the statistical insignificance of the correlation
to overall movement.

4 Results

4.1 Efficiency Study Results

Because Figure 3.2 shows a predictable trend, from there we can hold n and k constant in
order to analyze the more pertinent factors: grid layout and block size. In order to produce
the widest range of timing resutls possible, we determine our constant n and k as the largest
possible values within memory restrictions. In our first study we analyze the effects on one
node of processes in an effort to avoid noise caused by communication time. We determine
that with one node, the largest matrix R will allow is approximately 250 million entries. In
order to obtain a wide range of data points, we look at all r× c combinations for 2, 4, and 8
processes. For example, the grid layouts for 4 processes include a 1× 4, a 2× 2, and a 4× 1
grid. Additionally we wish to study both small and relatively large block sizes. We study
b = 2, 8, 32 and 128. However, due to proper load balancing, we need to ensure that the
combination of block size and grid layout divdes the matrix evenly:

n = m b r, k = n b c,

8



Figure 4.2: Overall run time for 1 node: 51200× 5120.

where m, n are some constants. From this we choose to use a 51200× 5120 matrix, keeping
with our desire for n to be ten times larger than k. Figure 4.2 displays the overall run time
for this study.

The results shown in Figure 4.2 clearly demonstrate that in all cases except the 2 × 1
grid layout, the 8 × 8 blocking factor is the most efficient, often substantially so. Both the
computations of the covariance matrix and the principal component analysis are included in
these results. From this it would be easy to conclude that b = 8 is most efficient, essentially
independent of grid layout. However, Figure 4.3, which display the covariance and PCA
run times seperately, give a more insightful description of how the factors are truly affecting
efficiency.

When observing PCA and covariance together, the results are more complex. Our timing
results for PCA alone (excluding the covariance matrix computation) look very similar to
Figure 4.2. This is to be expected because the PCA computation takes about 10 times
longer than the covariance computation. This imbalance causes the trends in the PCA
results to dominate the overall results. The times in Figure 4.3 do not seem to have an easily
distinguishable pattern.

As a result of finding very different trends for PCA and covariance, it is crucial to inves-
tigate the cause. The fundamental difference between these computations is the dimension
of the matrix they compute. The covariance computation accepts an n× k data matrix and
reduces it to a k × k positive semi-definite covariance matrix. PCA, on the other hand,
performs its computation on the new k × k matrix. At first glance, this matrix dimension

9



Figure 4.3: Covariance run time for 1 node: 51200× 5120.

characterstic stands out as a possible explanation for the different trends. Nonetheless, be-
fore making any definitive conclusions, we extend our study to a larger n× k case in hopes
that the trends will become more defined.

By extending our study to four nodes (p = 32), more memory from three additional nodes
grants the ability to compute a matrix with nearly four times more entries. R, however,
restricts vector allocation beyond 4 GB. Therefore, the four node study is restricted to a
maximum dimension of 81920×8192. Although this is not four times larger, the 81920×8192
matrix is about 670 million entries whereas the 51200 × 5120 was only about 250 million.
We still see a reasonable increase in size; this should surely be adequate to add clarity to
our trends. Figure 4.4 now shows a similar, yet more distinct relationship.

4.2 Protein Data Analysis Results

From the plots of the principal component analysis, it is clear that there are three major
principal components of the data. This shows that there are three axes that the data can be
rotated around such that we cannot see the insignificant correlations. From the level plots of
the data, we are clearly able to distinguish which correlations are statistically significant to
the overall movement of the protein. Since there are much fewer points of significant correla-
tions, we can state that few residues give substantial contribution to movement. This gives
new insight to the study of the Hepatitis C virus, since very few of the protein components
contribute to its movement throughout the body.

10



Figure 4.4: 4 node overall.

Figure 4.5: Overall and Covariance times for 4 node study.

5 Conclusions

One potential for further research involves the n and k values we were able to use for the
four node study. Ideally we should have been able to use vectors four times as large, given
that four nodes provides four times as much memory as does one node. However, due to
vector allocation limits imposed by R, we were only able to use vectors up to 4 GB of data.
This severely limited our study. We would like to be able to investigate the potential of
parallelizing vector allocations for the k vector in order to be able to handle even larger data
matrices. Perhaps for even larger matrices our results would be quite different.

Based on our findings in Section 4, we notice that 8× 8 block sizes consistently perform
the most efficiently for the PCA and overall run time studies. We analyze the relationship
more quantitatively through a statistical technique called analysis of variance (ANOVA).
ANOVA allows us to quantify how much variability is being contributed by each factor.
According to our ANOVA results in Table 5.7, we notice that the effects of grid layout on
computational efficiency for PCA are much less significant than those of block layout. For

11



Figure 4.6: Covariance times for 1 node study.

Figure 4.7: Covariance times for 4 node study.

example, in the one node study using 8 processes, block size contributes 95.388% of the
variability, computed by dividing the sum of squares (SS) of the block size by the total sum
of squares, whereas grid layout only contributes 1.942%. This leads us to believe that for
computing PCA, block size serves as the main contributor to the variance.

However, the same conclusions cannot be drawn for the covariance matrix computation.
We analyzed the covariance computation separate from PCA due to the relatively small
amount of computation time needed for covariance vs. PCA, where n is only used in the

12



Figure 4.8: Level plot before and after greying out correlations below threshold.

covariance evaluation. The covariance matrix is a square k × k, and therefore our large n
values do not affect PCA hugely. When we isolated the run times for covariance matrix
computation, we noticed very different results, which can also be noted in the ANOVA ta-
bles. For example, for the same one node study using 8 processes, now block size contributes
65.714% and grid layout contributes 5.714%. Though block size still seems to have a larger
effect, these percentages are drastically different. We believe there to be some sort of inter-
action between grid layout and block size for computations that involve an n much larger
than k, i.e., large rectangular matrices. Another potential for further research would be to
investigate the nature of this interaction.

Acknowledgments

These results were obtained as part of the REU Site: Interdisciplinary Program in High
Performance Computing (www.umbc.edu/hpcreu) in the Department of Mathematics and
Statistics at the University of Maryland, Baltimore County (UMBC) in Summer 2013.
This program is funded jointly by the National Science Foundation and the National Se-
curity Agency (NSF grant no. DMS–1156976), with additional support from UMBC, the
Department of Mathematics and Statistics, the Center for Interdisciplinary Research and
Consulting (CIRC), and the UMBC High Performance Computing Facility (HPCF). HPCF
(www.umbc.edu/hpcf) is supported by the U.S. National Science Foundation through the
MRI program (grant nos. CNS–0821258 and CNS–1228778) and the SCREMS program
(grant no. DMS–0821311), with additional substantial support from UMBC. Co-author Jor-
dan Ramsey was supported, in part, by the UMBC National Security Agency (NSA) Scholars

13



Program though a contract with the NSA. Graduate RA Andrew Raim was supported by
UMBC as HPCF RA.

References

[1] Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1997.

[2] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2013.

[3] Andrew M. Raim. Introduction to distributed computing with pbdR at the UMBC
High Performance Computing Facility. Technical Report HPCF–2013–2, UMBC High
Performance Computing Facility, University of Maryland, Baltimore County, 2013.

[4] Alvin C. Rencher. Methods of Multivariate Analysis. John Wiley & Sons, Inc., 2002.

[5] Drew Schmidt, Wei-Chen Chen, George Ostrouchov, and Pragneshkumar Patel. Guide
to the pbdDMAT package. Version 2.0, http://cran.r-project.org/web/packages/
pbdDMAT/vignettes/pbdDMAT-guide.pdf, 2012.

14



Pilot study to analyze effects of n and k on computational efficiency
n k Block Grid Overall time Cov. time PCA time log(Overall time)

1000 100 2×2 16×4 0.857 0.337 0.520 -0.067
1000 100 2×2 8×8 0.709 0.259 0.450 -0.149
1000 100 2×2 4×16 0.764 0.300 0.464 -0.117
1000 100 4×4 16×4 0.930 0.321 0.609 -0.031
1000 100 4×4 8×8 0.668 0.231 0.437 -0.175
1000 100 4×4 4×16 0.606 0.317 0.289 -0.213
1000 100 8×8 16×4 1.067 0.299 0.768 0.028
1000 100 8×8 8×8 0.678 0.347 0.331 -0.169
1000 100 8×8 4×16 0.658 0.248 0.410 -0.182
3000 300 2×2 16×4 1.003 0.306 0.697 -0.001
3000 300 2×2 8×8 0.759 0.268 0.491 -0.120
3000 300 2×2 4×16 0.845 0.323 0.522 -0.073
3000 300 4×4 16×4 1.037 0.300 0.737 -0.016
3000 300 4×4 8×8 0.741 0.224 0.517 -0.130
3000 300 4×4 4×16 0.606 0.307 0.299 -0.213
3000 300 8×8 16×4 1.234 0.339 0.895 0.091
3000 300 8×8 8×8 0.746 0.274 0.472 -0.127
3000 300 8×8 4×16 0.884 0.374 0.510 -0.053
5000 500 2×2 16×4 1.191 0.344 0.697 0.076
5000 500 2×2 8×8 0.967 0.286 0.491 -0.015
5000 500 2×2 4×16 0.923 0.360 0.522 -0.035
5000 500 4×4 16×4 1.187 0.388 0.737 0.074
5000 500 4×4 8×8 0.950 0.338 0.517 -0.022
5000 500 4×4 4×16 1.017 0.498 0.299 0.007
5000 500 8×8 16×4 1.337 0.475 0.895 0.126
5000 500 8×8 8×8 0.907 0.311 0.472 -0.042
5000 500 8×8 4×16 1.091 0.346 0.510 0.038

10000 1000 2×2 16×4 2.759 0.771 0.697 0.441
10000 1000 2×2 8×8 2.264 0.696 0.491 0.355
10000 1000 2×2 4×16 2.533 0.776 0.522 0.404
10000 1000 4×4 16×4 2.611 0.771 0.737 0.417
10000 1000 4×4 8×8 2.228 0.650 0.517 0.348
10000 1000 4×4 4×16 2.591 0.701 0.299 0.413
10000 1000 8×8 16×4 2.691 0.899 0.895 0.430
10000 1000 8×8 8×8 2.389 0.744 0.472 0.378
10000 1000 8×8 4×16 2.480 0.724 0.510 0.394
30000 3000 2×2 16×4 32.341 5.675 0.697 1.508
30000 3000 2×2 8×8 37.628 5.189 0.491 1.576
30000 3000 2×2 4×16 36.829 6.339 0.522 1.566
30000 3000 4×4 16×4 30.977 5.436 0.737 1.491
30000 3000 4×4 8×8 32.947 5.113 0.517 1.518
30000 3000 4×4 4×16 33.820 5.482 0.299 1.529
30000 3000 8×8 16×4 29.354 5.257 0.895 1.468
30000 3000 8×8 8×8 31.979 4.935 0.472 1.505
30000 3000 8×8 4×16 34.405 5.535 0.510 1.537
50000 5000 2×2 16×4 134.771 18.340 116.431 2.130
50000 5000 2×2 8×8 146.750 18.392 128.358 2.167
50000 5000 2×2 4×16 181.826 28.085 153.741 2.260
50000 5000 4×4 16×4 130.050 17.534 112.516 2.114
50000 5000 4×4 8×8 134.036 19.481 114.555 2.127
50000 5000 4×4 4×16 173.336 26.695 146.641 2.239
50000 5000 8×8 16×4 122.932 17.326 105.606 2.090
50000 5000 8×8 8×8 136.511 17.826 118.685 2.135
50000 5000 8×8 4×16 161.763 26.812 134.951 2.209

Table 5.1: TBD: Needs a caption

15



One node study to analyze effects of grid layout and block size on computational efficiency
Block Grid Overall time Cov. time PCA time log(PCA time)

2×2 1×2 3842.167 443.235 3398.932 3.531
2×2 2×1 3877.976 433.529 3444.447 3.537
2×2 1×4 2356.561 272.741 2038.820 3.319
2×2 2×2 2635.694 270.108 2365.586 3.374
2×2 4×1 2279.065 274.894 2004.171 3.302
2×2 1×8 1573.560 195.102 1378.458 3.139
2×2 2×4 1617.721 193.146 1424.575 3.154
2×2 4×2 1543.913 189.201 1354.712 3.132
2×2 8×1 1568.729 193.828 1374.901 3.138
8×8 1×2 3733.481 458.797 3274.684 3.515
8×8 2×1 3955.449 470.131 3485.318 3.542
8×8 1×4 2109.792 255.371 1854.421 3.268
8×8 2×2 2138.616 273.644 1864.972 3.271
8×8 4×1 2215.427 256.748 1958.679 3.292
8×8 1×8 1488.145 194.049 1294.000 3.112
8×8 2×4 1498.672 192.685 1305.987 3.116
8×8 4×2 1504.172 197.640 1306.532 3.116
8×8 8×1 1508.197 197.125 1311.072 3.118

32×32 1×2 3792.556 432.900 3359.656 3.526
32×32 2×1 3788.126 441.100 3347.026 3.525
32×32 1×4 2356.403 289.640 2066.763 3.315
32×32 2×2 2907.591 281.409 2626.182 3.419
32×32 4×1 2302.033 263.508 2038.525 3.309
32×32 1×8 1625.494 194.599 1430.895 3.156
32×32 2×4 1623.021 193.474 1429.547 3.155
32×32 4×2 1610.474 193.139 1417.335 3.151
32×32 8×1 1639.114 193.786 1445.328 3.160

128×128 1×2 4044.472 482.679 3561.793 3.552
128×128 2×1 4569.753 438.712 4131.041 3.616
128×128 1×4 2380.398 265.830 2114.568 3.325
128×128 2×2 2405.942 266.965 2138.977 3.330
128×128 4×1 2269.469 273.623 1995.846 3.300
128×128 1×8 1680.099 200.834 1479.265 3.170
128×128 2×4 1711.300 197.873 1513.427 3.180
128×128 4×2 1689.560 200.055 1489.505 3.173
128×128 8×1 1690.248 197.403 1492.845 3.174

Table 5.2: TBD: Needs a caption

Four node study to analyze effects of grid layout and block size on computational efficiency
Block Grid Overall time Cov. time PCA time log(PCA time)

2×2 2×16 2056.173 348.499 1707.674 3.232
2×2 4×8 2112.691 352.826 1759.865 3.245
2×2 8×4 2119.155 366.385 1752.770 3.244
2×2 16×2 1942.410 285.605 1656.805 3.219
8×8 2×16 1789.567 331.640 1457.927 3.164
8×8 4×8 1830.972 313.225 1517.747 3.181
8×8 8×4 1823.879 326.904 1496.975 3.175
8×8 16×2 1800.444 332.380 1468.064 3.167

32×32 2×16 2045.125 285.324 1759.801 3.245
32×32 4×8 2054.518 364.027 1690.491 3.228
32×32 8×4 2046.963 343.612 1703.351 3.231
32×32 16×2 2134.329 337.023 1797.306 3.255

128×128 2×16 2118.554 324.817 1793.737 3.254
128×128 4×8 2139.09 305.858 1833.232 3.263
128×128 8×4 2195.315 348.422 1846.893 3.266
128×128 16×2 2236.488 305.781 1930.707 3.286

Table 5.3: TBD: Needs a caption

16



PCA time for One node 2 processes
Source DF SS MS F

Grid 1 0.0060 0.0060 2.6087
Block 3 0.0239 0.0080 3.4783

Residuals 3 0.0070 0.0023
Total 7 0.0369 0.0163 6.0870

PCA time for One node 4 processes
Source DF SS MS F

Grid 2 0.0286 0.0143 2.6981
Block 3 0.0440 0.0147 2.7736

Residuals 6 0.0316 0.0053
Total 11 0.1042 0.0343 5.4717

Table 5.4: TBD: Needs a caption

PCA time for One node 8 processes
Source DF SS MS F

Grid 3 0.0008 0.0003 3.0000
Block 3 0.0393 0.0131 131.0000

Residuals 9 0.0011 0.0001
Total 15 0.0412 0.0135 134.000

PCA time for Four nodes
Source DF SS MS F

Grid 3 0.0007 0.0002 0.2593
Block 3 0.1040 0.0347 38.5556

Residuals 9 0.0316 0.0053
Total 15 0.1363 0.0402 38.8149

Table 5.5: TBD: Needs a caption

Covariance time for One node 2 processes
Source DF SS MS F

Grid 1 0.0007 0.0007 0.4667
Block 3 0.0061 0.0020 1.3333

Residuals 3 0.0046 0.0015
Total 7 0.0114 0.0042 1.8000

Covariance time for One node 4 processes
Source DF SS MS F

Grid 2 0.0010 0.0005 0.4167
Block 3 0.0057 0.0002 0.1667

Residuals 6 0.0073 0.0012
Total 11 0.0140 0.0019 0.5834

Table 5.6: TBD: Needs a caption

Covariance time for One node 8 processes
Source DF SS MS F

Grid 3 0.0002 0.0001 1.0000
Block 3 0.0023 0.0008 8.0000

Residuals 9 0.0010 0.0001
Total 15 0.0035 0.0010 9.0000

Covariance time for Four nodes
Source DF SS MS F

Grid 3 2223.8890 741.2963 1.0290
Block 3 669.9260 223.3087 0.3100

Residuals 9 6483.8900 720.4322
Total 15 9377.705 1685.0372 1.339

Table 5.7: TBD: Needs a caption

17


