
Parallelizing Computation of Expected Values in Recombinant Binomial

Trees

Sai K. Popuria, Andrew M. Raimb, Nagaraj K. Neerchala, and Matthias K. Gobberta

aDepartment of Mathematics and Statistics, University of Maryland, Baltimore County, 1000 Hilltop
Circle, Baltimore, MD 21250, USA; bCenter for Statistical Research & Methodology, U.S. Census
Bureau, 4600 Silver Hill Road, Washington, DC 20233, USA

ARTICLE HISTORY

Compiled November 7, 2017

ABSTRACT
Recombinant binomial trees are binary trees where each non-leaf node has two child nodes, but
adjacent parents share a common child node. Such trees arise in finance when pricing an option.
For example, valuation of a financial option can be carried out by evaluating the expected
value of asset payoffs with respect to random paths in the tree. In many variants of the option
valuation problem, a closed form solution cannot be obtained and computational methods are
needed. The cost to exactly compute expected values over random paths grows exponentially
in the depth of the tree, rendering a serial computation of one branch at a time impractical. We
propose a parallelization method that transforms the calculation of the expected value into an
embarrassingly parallel problem by mapping the branches of the binomial tree to the processes
in a multiprocessor computing environment. We also discuss a parallel Monte Carlo method
which takes advantage of the mapping to achieve a reduced variance over the basic Monte Carlo
estimator. Performance results from R and Julia implementations of the parallelization method
on a distributed computing cluster indicate that both the implementations are scalable, but
Julia is significantly faster than a similarly written R code. A simulation study is carried out to
verify the convergence and the variance reduction behavior in the parallel Monte Carlo method.
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1. Introduction

An N -step recombinant binomial tree is a binary tree where each non-leaf node has two children,
which we will label “up” and “down”. The tree has depth N , so that any path from the root
node to a leaf node consists of N up or down steps. The tree is called recombinant because
the sequence of moves (up, down) is assumed to be equivalent to the sequence (down, up). In
such a tree, there are N + 1 distinct leaf nodes and 1 + 2 + · · ·+ (N + 1) = (N + 1)(N + 2)/2
nodes overall. Any particular path from the root to a leaf can be written as a binary sequence
x = (x1, . . . , xN ) where xj ∈ B, B = {0, 1}, and 1 corresponds to an up movement while 0
corresponds to down. Given a density p(x) = P(X = x), we may consider X as a random
path from the root to a leaf. We will refer to random variables X ∈ BN as Bernoulli paths. An
N -step binomial tree has 2N Bernoulli paths.

A primary example of recombinant binomial trees is the binomial options pricing model
proposed by Cox et al. [1]. This model accounts for uncertainty of a future stock price based on
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Figure 1.1.: A two-step recombinant binomial tree.

its current market price at S. Figure 1.1 illustrates a binomial options model for the evolution
of the stock in N = 2 time periods. Starting from the root node, the stock price moves up by
an amount u to Su with probability p or moves down to S/u with probability 1− p. After one
step, each of the two child nodes further branch to two leaf nodes where a factor of u is applied
with probability p or d is applied with probability 1 − p. Here, the sequences (up, down) and
(down, up) both take the stock price back to its starting price.

The binomial options pricing model is used in the valuation of financial contracts like options,
which derive their value from a less complicated, underlying asset such as a stock price. In order
to calculate the value of an option, one builds a recombinant binomial tree to a future time
point from the current market price of the stock S using a Bernoulli probability model at each
time step. Depending on the type of the option, the option value is either the present value
of the expected option payoff or is calculated by traversing the tree backwards and revising
the option value at each step. See Hull [2] and Seydel [3] for more details on options and their
valuation. When the option payoff at a leaf node depends on the path, one must consider all
2N possible paths to calculate the expected value of the option payoff.

Pattern-mixture models for missing longitudinal data provide a second example involving
recombinant binomial trees. A brief overview is given here, while the remainder of the paper
focuses on the options pricing application. In a pattern-mixture model [4], longitudinal data
with missing values is available for each subject and the conditional distribution of the data
given the pattern of missingness is considered. Let Yit be the response from subject i at time t,
where i = 1, . . . , n and t = 1, . . . , T . The multivariate response Yi = (Yi1, . . . , YiT ) may contain
missing data whose pattern is denoted by Zi = (Zi1, . . . , ZiT ); Zit is 0 if Yit is observed and 1
if missing. The joint distribution of the observed {(Yi,Zi) : i = 1, . . . , n} for such a model is
given by

n∏
i=1

f(yi | zi,θ)g(zi | θ), (1.1)

where f and g are the probability functions of yi | zi and zi, respectively. Note that the expected
value calculations with respect to z will involve summing over all Bernoulli paths z.

In applications of recombinant binomial trees, such as the two previously mentioned, it is
often required to compute the expected value of a function V (X)

E[V (X)] =
∑
x∈BN

V (x)p(x). (1.2)

The option value calculation and the pattern-mixture likelihood (1.1) both take this form. The
function V (x) may depend on the entire path x, and not only on the leaf nodes. Notice that (1.2)



is a summation over 2N terms, so that computing by complete enumeration quickly becomes
infeasible as N increases. In this work, we present a method to parallelize the calculation in a
multiprocessor computing environment. In the option valuation problem, the common method
to value options is to use an efficient backward induction method without considering the 2N

terms in (1.2). The proposed parallelization method is suitable for advanced class of path-
dependent options that are valued by sampling paths off the recombinant binomial tree than
through backward induction [5, Chapter 4.]. Our method uses a Single Program Multiple Data
(SPMD) approach [6], where each of the M processes determines its assigned subset of BN
without coordination from a central process. Hence, the calculation can be transformed into
an embarrassingly parallel problem [7], in which processes need not communicate except at
the end of the computation, thereby allowing efficient scaling to many processes. Even with a
large number of processes M , the number of paths 2N quickly becomes exceedingly large as
N increases. Therefore, we consider a Partitioned Monte Carlo method which uses a similar
parallelization to reduce approximation error relative to basic Monte Carlo.

The rest of the paper is organized as follows. Section 2 introduces the binomial tree model
to value an option using Bernoulli paths. Section 3 describes a parallel scheme to compute the
expected value exactly. Section 4 presents the Partitioned Monte Carlo method to approximately
compute the expected value. Section 5 presents results from the implementation of the methods
for put options in R and Julia. Concluding remarks are given in Section 6.

2. Valuation of a path-dependent option using the binomial tree model

An option is a financial contract that gives the owner the right, but not the obligation, to
either buy or sell a certain number of shares at a prespecified fixed price on a prespecified
future date. A call option gives the owner the right to buy shares, while a put option gives the
owner the right to sell shares. Several factors are used to value an option. The strike price K
is a prespecified fixed price. The time T is the future date of maturity; for European options
which are considered in this paper, the option can only be exercised at time T and subsequently
becomes worthless. The value of an option is the amount a buyer is willing to pay when the
option is bought. It depends on K, T , and the characteristics of the underlying stock. More
formally, let V (St) denote the value of the option at time t, at which time the price of the
underlying stock is St. We assume that time starts at t = 0 at which point the option is bought
or sold. The objective is to calculate V (S0), the value of the option at time t = 0. Although
V (St) for t < T is not known, the value V (ST ), called the payoff, is known with certainty. The
value V (ST ) of a call option at the time of maturity T is given by

V (ST ) = max{ST −K, 0}. (2.1)

For a put option, the value at the time of maturity T is given by

V (ST ) = max{K − ST , 0}. (2.2)

Note that in (2.1) and (2.2), the payoffs V (ST ) depend only on the price of stock at time T ,
ST , and the strike price K. In more complicated options, the payoffs often depend on additional
factors. For example, the payoffs in path-dependent options depend on the historical price of
the stock in a certain time period. For now, we will restrict our attention to simple options with
payoffs in (2.1) and (2.2).

The binomial tree method of option valuation is based on simulating an evolution of the
future price of the underlying stock between t = 0 and T using a recombinant binomial tree.
We first discretize the interval [0, T ] into equidistant time steps. We select N to be the number



Algorithm 1 Build the grid of stock prices and calculate option payoffs for binomial method.

for i = 1, 2, . . . , N do
Sij = S0u

jdi−j for j = 0, 1, . . . , i
end for
for j = 0, . . . , N do

VNj ← max{SNj −K, 0}
end for

of time steps, which determines the size of the tree, and let δt = T/N be the size of each time
step. Denote ti = i δt for i = 0, . . . , N as the distinct time points. Imagine a two-dimensional
grid with t on the horizontal axis and stock price St on the vertical axis; by discretizing time,
we slice the horizontal axis into equidistant time steps. We next discretize St at each t = ti
resulting in values Stij , where j is the index on the vertical axis. For notational convenience,
we will write Stij as Sij . The binomial tree method makes the following assumptions.

A1 The stock price Sti at ti can only take two possible values over time step δt: price goes up to
Stiu or goes down to Stid at ti+1 with 0 < d < u where u is the factor of upward movement
and d is the factor of downward movement. To enforce symmetry in the simulated stock
prices, we assume ud = 1.

A2 The probability of moving up between time ti and ti+1 is p for i = 0, . . . , N − 1.
A3 E(Sti+1

| Sti) = Stie
qδt, where q is the annual risk-free interest rate. For example, q may be

the interest rate from a savings account at a high credit-worthy bank.

Under assumptions A1–A3, and if the stock price movements are assumed to be lognormally
distributed with variance σ2, it can be shown that

u = β +
√
β2 + 1,

p = (eqδt − d)/(u− d),

β =
1

2
(e−qδt + e(q+σ2)δt).

The standard deviation σ is also known as the volatility of the stock. For more details on
deriving u and p, see Hull [2] or Seydel [3]. The above description follows the notations and
development in Section 1.4 of Seydel [3] closely.

Starting with the current stock price in the market S0, a grid of possible future stock prices
Sij is built using u and p. Algorithm 1 shows the procedure to build a binomial tree of simulated
future stock prices and calculate the payoffs at time T for a call option, for which, V (ST ) is
given by (2.1) at each j at time T . Therefore, VNj = max{SNj −K, 0}, j = 0, . . . , N , where Vij
is V (Sij). Figure 2.1 shows a two-step recombinant binomial tree for a call option starting at
the stock price S with the stock price evolution and option payoffs.

In order to calculate the option value V (S0), the probabilities of reaching each of the leaf
nodes of the tree must be calculated. These may be obtained from the probabilities of traversing
each of the Bernoulli paths of dimension N . Since we assume that p is constant from A2, all
the paths with the same number of up and down movements have the same probability of being
traversed. The option value V (S0) is computed as the expectation of the payoffs discounted to
the starting time t = 0 at the annual interest rate q as

V (S0) = e−qT
N∑
i=0

p(i)VNi = e−qT
N∑
i=0

(
N

i

)
pi(1− p)N−iVNi, (2.3)
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Figure 2.1.: A two-step recombinant binomial tree with call option payoffs.

where p(i) =
(
N
i

)
pi(1− p)N−i is the probability of traversing paths ending at leaf node i, whose

payoff is VNi.
Let X = (X1, . . . , XN ) represent a Bernoulli path where each Xi ∼ Bernoulli(p) indepen-

dently for i = 1, . . . , N . Figure 2.2 shows the two-step binomial tree in Figure 2.1 with Bernoulli
paths to leaf nodes shown as vectors. The probability of taking path x is given by

P(X = x) = px
′1(1− p)N−x′1,

where 1 is an N -dimensional vector of ones. Since there are
(
N
i

)
ways of reaching the leaf node

i,

P{reaching terminal node i} =

(
N

i

)
pi(1− p)N−i

=
∑

x∈BN :x′1=i

px
′1(1− p)N−x′1. (2.4)

Substituting (2.4) in (2.3), we obtain

V (S0) = e−qT
N∑
i=0

VNi
∑

x∈BN :x′1=i

px
′1(1− p)N−x′1. (2.5)

If the magnitudes and probabilities of up and down movements at each time step are constant,
there is little computational advantage in evaluating the option value using (2.5) as opposed to
(2.3). However, if the tree is built using time-varying up and down movements with correspond-
ing probability pt of an up movement at time t, or if the payoffs depend on the path x, the
model in (2.3) cannot be used. Let p(x) be the probability of traversing the Bernoulli path x
and VN (x) be the corresponding payoff. Since the space of Bernoulli paths is BN , (2.5) becomes

V (S0) = e−qT
N∑
i=0

∑
x∈BN :x′1=i

p(x)VN (x) = e−qT
∑
x∈BN

VN (x)p(x), (2.6)

where p(x) =
∏N
i=1 p

I(xi=1)
i (1 − pi)

I(xi=0) and I is the indicator function. Note that (2.6) is
similar to (1.2). We seek to parallelize the computation of the option value V (S0) in (2.6) or in
general, the expected value in (1.2).
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Figure 2.2.: A two-step binomial tree with Bernoulli paths.

3. Parallel Bernoulli Path Algorithm

Computation of the expected value (2.6) quickly becomes expensive as N increases, as 2N

Bernoulli paths must be considered. For example, taking N = 24 yields 16,777,216 possible
paths. The computational burden can be efficiently shared by multiple processors by noting that
the problem is embarrassingly parallel. Works such as Ganesan et al. [8] and Kolb and Pharr
[9] have proposed parallel methods for evaluating option pricing models based on backward
induction in a binary tree. To the best of our knowledge, the approach to parallelize the expected
value computation using Bernoulli paths has not been considered before.

Our approach is based on the SPMD paradigm where a single program is executed on all the
processes in parallel. It is not necessary for one process to preallocate the workload to individual
processes; instead, each process can determine its share of the 2N paths to work on. This is
possible using the unique rank assigned to each process. Each process computes a local expected
value on its partition of the sample space, and the final expected value is computed by summing
across all processes. This summation is accomplished in the Message Passing Interface (MPI)
framework through a reduce operation that coordinates communication between processes in
an efficient way [6]. Utilizing the unique ranks of the processes to parallelize an algorithm is
a common theme in parallel computing [6]. For example, Swarztrauber and Sweet [10] use the
binary representation of the data to map computations to processes in a parallel direct solution
of Poisson’s equation. Here, we use the leading bits of the Bernoulli paths to map the paths
onto processes.

Suppose there are M parallel processes with ranks m = 0, . . . ,M − 1; note that ranks tradi-
tionally start at 0 in the MPI framework. The process with rank m will be referred to as “process
m”. We assume that M ≤ N and that M is a power of 2. Let r = log2(M) so that the rank m of
a process can be written with the r-digit binary representation m = zr−12r−1 + · · ·+z121 +z020,
where each zj ∈ B. Process m is assigned all paths x with prefix (zr−1, . . . , z1, z0); this set of
2N−r paths is denoted

BNm = {x ∈ BN : x1 = zr−1, . . . , xr−1 = z1, xr = z0}.

Note that the sets BNm form a partition of BN . Figure 3.1 shows a diagram of the mapping from
m to BNm. For each Bernoulli path x ∈ BNm, process m computes the probability of traversing the
path p(x) and the payoff value VN (x). The local expected value of the payoffs Vm on process
m is calculated as

Vm = e−qT
∑
x∈BN

m

p(x)VN (x). (3.1)



Figure 3.1.: Process-Bernoulli path mapping

Finally, local expected values are summed to produce the final result

V (S0) =

M−1∑
m=0

Vm; (3.2)

this is implemented by an MPI reduce operation to obtain the result on process 0. The com-
putation of (3.2) requires 2N−r steps on 2r parallel processes rather than 2N steps on a single
process, as required in the serial computation. The method can be extended to the case when
M is not exactly a power of 2 if we are willing to forfeit perfect load balancing. For example,
we can consider a partition BN = BN0 ∪ · · · ∪ BNK for some K >> M . Process 0 can handle BNm
for m = 0,M, 2M, . . ., process 1 can handle BNm for m = 1,M + 1, 2M + 1, . . ., and so forth.
Note that the idea of partitioning the paths is applicable to trees with more than two branches
at each node. Examples of such trees include trinomial trees[11].

4. Monte Carlo Estimation and Variance Reduction

Recall that the number of Bernoulli paths in the set BN grows exponentially with N . When N
becomes large, it is infeasible to compute the expected value (2.6) exactly, even with a reasonably
large number of processors. Monte Carlo (MC) estimation provides a way to approximate a
complicated expected value without enumerating the entire sample space. In this section, we
discuss an MC method that uses the partitioning scheme from Section 3 to approximate the
result using M parallel processes. The mth process is given the responsibility of drawing from
BNm, for m = 0, . . . ,M − 1, so that we effectively enumerate the first r = log2M steps of each
path, and draw the rest through Monte Carlo. This provides a reduction in variance over a basic
MC estimator that uses the same number of draws.



Define

θ = E[V (X)] =
∑
x∈BN

V (x)p(x),

where the suffix N in V (x) is dropped for notational convenience. The option value in (2.6) can

be written as V = e−qT θ. Given an estimate θ̂ of θ, an estimate of V is V̂ = e−qT θ̂, its variance

is Var(V̂ ) = e−2qT Var(θ̂), and an estimate of the variance is V̂ar(V̂ ) = e−2qT V̂ar(θ̂). Therefore,
we will focus on estimating θ for the remainder of this section.

Let x1, . . . ,xR be R independent and identically distributed (i.i.d.) Bernoulli paths sampled
from BN . Then the MC estimator of θ is given by

θ̂ =
1

R

R∑
i=1

V (xi)

and its variance is

Var(θ̂) =
1

R
Var[V (X)], (4.1)

which can be estimated from the MC draws by

V̂ar(θ̂) =
1

R2

R∑
i=1

(
V (xi)− θ̂

)2
.

In Section 3, we partitioned the space BN of Bernoulli paths into BN0 , . . . ,BNM . Let Dm denote
the event [X ∈ BNm] which occurs with probability P(Dm), for m = 0, . . . ,M − 1. Furthermore,
consider the partitioning X = (Z,Y ) where Z ∈ Br and Y ∈ BN−r. We can now write θ as

θ =

M−1∑
m=0

E[V (X) | Dm] P(Dm), (4.2)

where

P(Dm) =
∑

y∈BN−r

P(Z = zm,Y = y) = P(Z = zm)

and zm is the binary representation of m corresponding to the rank of the mth process. Let

θ(m) = E[V (X) | Dm] and let x
(m)
1 , . . . ,x

(m)
Rm

be an i.i.d. sample from the distribution of paths

on BNm for each m = 0, . . . ,M − 1. Suppose
∑M−1

m=0 Rm = R so that the sample size used is as
in the basic MC estimator. The estimator

θ̂(m)
s =

1

Rm

Rm∑
i=1

V (x
(m)
i )

is an unbiased estimator of θ(m) with variance 1
Rm

Var[V (X) | Dm]. Substituting θ̂
(m)
s for θ(m)



in (4.2) yields the Partitioned MC estimator

θ̂s =

M−1∑
m=0

θ̂(m)
s P(Dm). (4.3)

Following Rubinstein and Kroese [12], we choose sample sizes Rm proportional to P(Dm) as
Rm = R · P(Dm) for each m. With this choice, and ignoring that R · P(Dm) likely will not be
an exact integer, the variance of the Partitioned MC estimator can be written

Var(θ̂s) =

M−1∑
m=0

Var(θ̂(m))[P(Dm)]2

=
1

R

M−1∑
m=0

Var[V (X) | Dm] P(Dm). (4.4)

A corresponding variance estimator is

V̂ar(θ̂s) =
1

R

M−1∑
m=0

[
1

Rm

Rm∑
i=1

(
V (x

(m)
i )− θ̂m

)2
]

P(Dm)

=
1

R2

M−1∑
m=0

Rm∑
i=1

(
V (x

(m)
i )− θ̂m

)2
.

To verify that θ̂s gives a variance reduction over θ̂, the law of total variation gives

Var[V (X)] = ED Var[V (X) | D] + VarD E[V (X) | D] (4.5)

=

M−1∑
m=0

Var[V (X) | Dm] P(Dm) + VarD E[V (X) | D]

= RVar(θ̂s) + VarD E[V (X) | D], (4.6)

where the last equality is from (4.4). Substituting the left hand side in (4.6) in terms of Var(θ̂)
from (4.1) and dividing both sides by R we get

Var(θ̂) = Var(θ̂s) +
VarD E[V (X) | D]

R
. (4.7)

Note that VarD E[V (X) | D] = 0 if V (X) | D does not depend on the first r steps of the
Bernoulli paths or when r ∈ {0, N}, that is, when the number of processes M ∈ {1, 2N}. When
M = 1, the Partitioned MC method is same as the basic MC method and when M = N , it is
same as the exact expected value in (2.6). Since the payoff V (X) is assumed to depend on the
entire path X, the second term in the right hand side of (4.7) is greater than 0 when 0 < r < N
and, therefore, the Partitioned MC estimator in (4.3) typically yields strict reduction in the
variance. The reduction will be more pronounced when V (X) are heterogeneous across the Dm
and homogeneous within each Dm.

Remark 1. An interesting variation of the Partitioned MC method is to reuse the same sample
of R draws from BN−r on all processes. Consider again the partitioning X = (Z,Y ), and

suppose Z and Y are independent. Let x
(m)
i = (zm,yi), where y1, . . . ,yR are i.i.d. draws



from the distribution of Y and z(m) = (z
(m)
r−1, . . . , z

(m)
1 , z

(m)
0 ) is the binary representation of m

corresponding to the rank of the mth process. Then an estimate for θ(m) is given by

θ̃(m) =
1

R

R∑
i=1

V (x
(m)
i ) (4.8)

and θ in (4.2) can be estimated unbiasedly by

θ̃ =

M−1∑
m=0

θ̃(m) P(Dm)

=
1

R

R∑
i=1

M−1∑
m=0

V (x
(m)
i ) P(Dm)

=
1

R

R∑
i=1

EX|Y [V (Z,yi)]. (4.9)

The variance of this estimator is Var(θ̃) = 1
R VarY EX|Y [V (X)] and an estimate of the variance

from the MC sample is

V̂ar(θ̃) =
1

R2

R∑
i=1

(
EX|Y [V (Z,yi)]− θ̃(m)

)2

=
1

R2

R∑
i=1

(
M−1∑
m=0

V (x
(m)
i ) P(Dm)− θ̃(m)

)2

.

We refer to θ̃ as the Shared Sample MC estimator. Now, the variance of V (X) can be written
as

Var[V (X)] = VarY E[V (X) | Y ] + EY Var[V (X) | Y ]

= RVar(θ̃) + EY Var[V (X) | Y ]. (4.10)

Substituting the left hand side in (4.10) in terms of Var(θ̂) from (4.1) and dividing both sides
by R we get

Var(θ̂) = Var(θ̃) +
EY Var[V (X) | Y ]

R
. (4.11)

Again, the second term in the right hand side of the (4.11) is zero if and only if V (X) | Y
does not depend on the first r steps of the Bernoulli paths, for 0 < r < N . Since we assume
V (X) depends on the entire path X, Var(θ̃) is strictly less than Var(θ̂). The following result

summarizes the relationship among the variances of θ̂, θ̂s, and θ̃.

Theorem 4.1. Suppose Rm = R for m = 0, . . . ,M−1, 0 < r < N , and V (Zk,Y ) and V (Zl,Y )

are positively correlated for all k, l ∈ {0, . . . ,M − 1}. Then Var(θ̂s) ≤ Var(θ̃) ≤ Var(θ̂).

Proof. We have already shown that Var(θ̃) ≤ Var(θ̂). Now we have Var(θ̂s) =



1
R

∑M−1
m=0 Var[V (X) | Dm][P(Dm)]2, and from (4.9),

Var(θ̃) =
1

R
VarY

[
M−1∑
m=0

V (Zm,Y ) P(Dm)

]

=
1

R

M−1∑
m=0

VarY [V (Zm,Y )][P(Dm)]2 +
1

R

∑∑
k 6=l

Cov
(
V (Zk,Y ), V (Zl,Y )

)
P(Dk) P(Dl)

= Var(θ̂s) +
1

R

∑∑
k 6=l

Cov
(
V (Zk,Y ), V (Zl,Y )

)
P(Dk) P(Dl)

≥ Var(θ̂s).

5. Application to option pricing

We implemented the method described in Section 3 to value a put option using the R 3.2.2 and
Julia 0.4.6 programming environments. Computations were run on a distributed cluster with
compute nodes, each having two Intel E5-2650v2 Ivy Bridge (2.6 GHz, 20 MB cache) processors
with 8 cores per node, for a total of 16 cores per node. All nodes have 64 GB of main memory
and are connected by a quad-data rate InfiniBand interconnect. Open MPI 1.8.5 [13] was used
as the underlying implementation of the MPI framework.

R is a statistical computing environment that facilitates advanced data analysis, provides
graphical capabilities and an interpreted high-level programming language [14]. On top of the
statistical, computational, and programmatic features available in the core R environment, addi-
tional capabilities are available through numerous packages which have been contributed by the
user community. The Rmpi [15] and pbdMPI [16] packages may be used to write MPI programs
from R. Results shown in this section are based on Rmpi, but pbdMPI performed similarly in our
experience. The package Rcpp [17] facilitates integration of C++ code into R programs, which
can substantially improve performance at the cost of an increased programming burden. We
have not yet explored Rcpp in our implementation, but note its potential use.

Julia is a recently developed programming language that is gaining popularity in scientific
computing, data analysis, and high performance computing [18]. It is a compiled language that
uses the Low Level Virtual Machine Just-in-Time technology [19] to generate an optimized ver-
sion of the source code compiled to the machine level. Julia provides a number of computational
and statistical capabilities, both in the core environment and through packages contributed by
the user community. We have used the package MPI [20] to run MPI programs in Julia. Integra-
tion with C++ is also possible in Julia through packages such as CxxWrap and Cpp, but we have
not yet explored their use. Our implementation uses native Julia code with the MPI package.
Because Julia is compiled into machine-level code, it is expected that a program written in
Julia will perform better than an equivalent program written in R. Performance results later
in this section confirm our hunch.

Listing 1 shows a snippet of our Julia implementation of the parallelization method. Since the
structure of our R and Julia implementations are similar, we do not show a similar listing of our
R code. In line 1 we load the MPI package. Since our implementation follows the SPMD paradigm,
the same code runs on all the processes. The rank of the process on which the code is being run
is requested on line 5 and on line 6 the total number of processes in the MPI communicator
is requested. As the while loop at line 11 shows, each process works on 2N−r out of the total
2N Bernoulli paths. Note the construction of the full Bernoulli path in line 13 by prepending
the binary representation of the rank of the specific process on which the code is being run to



the current (N − r)-dimensional Bernoulli path. The function call to calc path prob on line 14
calculates the probability of traversing the Bernoulli path constructed in line 13. The function
call to calc payoff on line 15 calculates the option payoff; their function definitions are not
shown because they are independent of the parallelization method. Finally, on line 21, expected
values from individual processes are summed together to obtain the final answer at process 0.

1 import MPI

2 .

3 MPI.Init()

4 comm = MPI.COMM_WORLD

5 id = MPI.Comm_rank(comm)

6 M = MPI.Comm_size(comm)

7 .

8 r = log2(M)

9 l_n = convert(Int64 , 2^(N-r))

10 .

11 while i < l_n

12 node = i

13 path = cat(2, integer_base_b(id , 2, r), integer_base_b(node , 2, N-r))

14 p_vt = calc_path_prob(path , probs)

15 vt = calc_payoff(S, K, u, d, opt_type , path)

16 v += p_vt*vt

17 i += 1

18 end

19 .

20 v = exp(-q*T)*v

21 reduced_v = MPI.Reduce(v, MPI.SUM , 0, comm)

Listing 1: A Julia implementation of the parallel Bernoulli path algorithm.

We take a put option as an example to illustrate our methodology. We set a strike price
of K = 10. Current price and volatility of the asset are S = 5 and σ = 0.30, respectively.
Risk-free interest rate is q = 6% and time to maturity T is one year. Tables 5.1(a) and 5.2(a)
show the wall clock runtimes of our R and Julia implementations, respectively, for problem
sizes N = 16, 20, 24, 28, and 32. While both the implementations scale well with the number
of processes M , the Julia implementation is roughly 10 times faster than R. Our R program
for N = 32 on a single process (M = 1) resulted in an overflow in the loop that computes the
expected value since 231−1 is the maximum integer value that can be stored in R. As a result, the
runtime for this particular case is recorded as N/A in Table 5.1(a). If TM is the runtime taken
for M number of processes, the speedup SM and efficiency EM for M are defined as T1/TM and
SM/M respectively. If the program scales up perfectly to M processes, ideal values SM = M
and EM = 1 are obtained. These numbers indicate the scalability of the program. Since our R

program did not run on a single process for N = 32, we take the speedup for this case to be
2 · T2/TM , M = 2, . . . , 64 and for M = 1 and M = 2, the speedups are taken to be 1 and 2
respectively. Tables 5.1(b) and 5.2(b) show the speedups and Tables 5.1(c) and 5.2(c) show the
efficiency numbers of our R and Julia implementations, respectively. The plots in Figure 5.1
visualize the speedup and efficiency numbers in Tables 5.1(b) and 5.1(c), respectively, and Figure
5.2 shows the corresponding plots from Table 5.2. These plots visually confirm our conjecture
that Julia is more efficient than R for our problem. Note that for a fixed problem size, there
is a reduced advantage in the speedup beyond a certain number of tasks. This is because the
overhead of coordinating the tasks begins to dominate the time spent doing useful calculations;
see Pacheco [6] for more details. This can be seen for N = 16 in Table 5.1(a) and for N = 16
and N = 20 in Table 5.2(a). In both the cases, since the very small total runtime is mostly
dominated by the near constant time consumed by the MPI reduce operation, the speedup
and efficiency numbers are significantly lower than larger sized problems. The relatively high



speedup and efficiency numbers for N = 32 in Tables 5.1(b) and 5.1(c) resulted from fixing
the speedup for M = 2 to be 2 and calculating the rest of the speedup and efficiency numbers
relative to M = 2. Since the runtimes for Julia are roughly 10 times faster than those for R,
if we estimate the runtime for N = 32 and M = 1 for R and accordingly calculate the speedup
and efficiency numbers, we will notice that the numbers drop and are comparable to rest of the
cases.

We implemented the Monte Carlo estimation methods described in Section 4 for Asian and
Lookback options, which are both path-dependent [2]. In an Asian option, the asset price ST
at the time of maturity is replaced in the option payoff function with the arithmetic average of
{St : t = 1, . . . , N}. Therefore, in the binomial tree model, the payoff for an Asian put option
is given by

V (x) = max{K − S∗, 0}, (5.1)

where S∗ = 1
N

∑N
t=1 St(x), St(x) is the asset value at time t followed on the Bernoulli path x.

In a Lookback option, either the strike price K or the asset price ST at the time of maturity
are replaced in the payoff function by the maximum or minimum of {St} respectively. Here we
consider a Fixed Lookback put option, whose payoff is given by

V (x) = max{K − S∗, 0},

where S∗ = min{St(x) : t = 1, . . . , N}. We implemented the basic MC estimate given in
section 4 for the Asian and Fixed Lookback put options using the binomial tree model with
size N to study the convergence of the estimates to the exact expected value (2.6). We further
implemented Partitioned and Shared Sample MC from section 4 to study the variance reduction
property. Table 5.3 shows basic MC estimates and corresponding variance estimates of an Asian
put option and a Fixed Lookback put option with parameters K = 100, S = 20, q = 6%,
σ = 3.0, and T = 1, using the binomial model with tree size N = 32. Option values calculated
by exact enumeration were 82.115 for the Asian put options and 93.196 for the Fixed Lookback
put option. The sample size used for the MC estimation is increased from 29 to 216, which is
less than 0.01% of the total number of paths. As can be seen from Table 5.3, MC estimates
for both the options converge to their respective exact values. Also, as expected, the variance
estimates decrease with increasing sample size R. Table 5.4 shows the Partitioned MC estimates
V̂s for both the Asian and Fixed Lookback put options and corresponding variance estimates,
using a total sample size of R = 1024 and varying the number of processes between 1 to
64. Note that as the number of processes increase, the sample size per process Rm decreases.
The estimates shown in Table 5.4 are averaged over 1000 repetitions. As expected, Table 5.3
shows that variance estimates of the Partitioned MC estimator are mostly smaller than the
corresponding basic MC estimator for R = 1024. Table 5.5 shows the comparison of variance
estimates between the Partitioned and Shared Sample MC estimates for the Asian put option
with N = 32, R = Rm = 1024, and m = 0, . . . ,M − 1. Shared Sample MC estimates Ṽ and
corresponding variance estimates were calculated using the expressions given in section 4. Again,
the estimates in Table 5.5 are averaged over 1000 repetitions. The results show that if R = Rm,
and m = 0, . . . ,M − 1, the Partitioned MC method reduces the variance of the estimator more
than the Shared Sample method does, as expected from Theorem 4.1. The condition on the
covariance between V (zk,y) and V (zl,y) for all k, l ∈ {0, . . . ,M − 1} where k 6= l is satisfied
for the options considered here.



Table 5.1.: Runtime for different number of time steps for R implementation. For M = 1, N = 32, since our program failed
to run because of integer overflow, runtime is shown as N/A.

(a) Wall clock time in HH:MM:SS
N M = 1 2 4 8 16 32 64
16 00:00:04 00:00:02 00:00:01 <00:00:01 <00:00:01 <00:00:01 <00:00:01
20 00:01:09 00:00:43 00:00:23 00:00:12 00:00:06 00:00:03 00:00:02
24 00:20:22 00:12:41 00:06:56 00:03:35 00:01:47 00:00:54 00:00:27
28 06:00:09 03:41:26 01:59:31 01:02:16 00:31:18 00:16:02 00:08:00
32 N/A 65:54:36 35:18:59 18:41:10 10:38:06 04:44:09 02:22:59

(b) Observed speedup SM
N M = 1 2 4 8 16 32 64
16 1.00 1.60 2.97 5.55 10.88 17.69 27.11
20 1.00 1.59 2.98 5.72 11.62 22.86 44.33
24 1.00 1.60 2.93 5.68 11.38 22.62 44.32
28 1.00 1.62 3.01 5.78 11.50 22.45 45.01
32 N/A 2.00 3.73 7.05 13.99 28.21 55.31

(c) Observed efficiency EM
N M = 1 2 4 8 16 32 64
16 1.00 0.80 0.74 0.69 0.68 0.55 0.42
20 1.00 0.80 0.75 0.71 0.72 0.71 0.69
24 1.00 0.80 0.73 0.71 0.71 0.71 0.69
28 1.00 0.81 0.75 0.73 0.72 0.70 0.70
32 N/A 1.00 0.93 0.88 0.87 0.88 0.86
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Figure 5.1.: (a) Speedup and (b) Efficiency in R.



Table 5.2.: Runtime for different number of time steps for Julia implementation.

(a) Wall clock time in HH:MM:SS
N M = 1 2 4 8 16 32 64
16 <00:00:01 <00:00:01 <00:00:01 <00:00:01 <00:00:01 <00:00:01 <00:00:01
20 00:00:07 00:00:05 00:00:02 <00:00:01 <00:00:01 <00:00:01 <00:00:01
24 00:02:23 00:01:15 00:00:42 00:00:22 00:00:11 00:00:06 00:00:03
28 00:40:08 00:21:05 00:11:02 00:05:56 00:03:07 00:01:34 00:00:51
32 11:59:54 06:23:01 03:24:58 01:46:06 00:53:41 00:27:18 00:13:38

(b) Observed speedup SM
N M = 1 2 4 8 16 32 64
16 1.00 1.57 2.19 2.74 3.36 4.36 4.04
20 1.00 1.80 3.16 6.18 11.10 17.65 25.05
24 1.00 1.91 3.36 6.37 13.02 24.76 47.79
28 1.00 1.90 3.64 6.76 12.90 25.71 47.06
32 1.00 1.88 3.52 6.76 13.44 26.37 52.58

(c) Observed efficiency EM
N M = 1 2 4 8 16 32 64
16 1.00 0.78 0.55 0.34 0.21 0.13 0.06
20 1.00 0.90 0.79 0.77 0.69 0.55 0.39
24 1.00 0.95 0.84 0.79 0.81 0.77 0.75
28 1.00 0.95 0.91 0.86 0.81 0.80 0.73
32 1.00 0.94 0.88 0.85 0.84 0.82 0.82
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Figure 5.2.: (a) Speedup and (b) Efficiency in Julia.



Table 5.3.: Monte Carlo estimates and corresponding variance estimates for Asian and Fixed Lookback put options with
N = 32. Exact value of the Asian option is 82.115 and the Lookback option is 93.196.

Option Estimate R = 29 210 211 212 213 214 215 216

Asian V̂ 82.857 82.514 83.425 83.181 82.821 82.615 82.566 82.524

V̂ar(V̂ ) 0.735 0.362 0.179 0.095 0.050 0.022 0.011 0.006

Lookback V̂ 93.156 93.237 93.312 93.324 93.262 93.236 93.234 93.222

V̂ar(V̂ ) 0.022 0.009 0.005 0.002 0.001 <0.001 <0.001 <0.001

Table 5.4.: Partitioned Monte Carlo estimates and corresponding variance estimates for Asian and Fixed Lookback put
options with N = 32 and R = 210.

Option Estimate M = 1 2 4 8 16 32 64
Rm = 210 29 28 27 26 25 24

Asian V̂s 82.077 82.217 82.101 82.232 81.936 82.296 82.165

V̂ar(V̂s) 0.367 0.332 0.315 0.272 0.263 0.212 0.194

Lookback V̂s 93.196 93.201 93.171 93.197 93.187 93.216 93.205

V̂ar(V̂s) 0.010 0.009 0.008 0.008 0.008 0.007 0.007

Table 5.5.: Comparison of the variance estimates from the Partitioned and Shared Sample Monte Carlo methods with
N = 32 and R = 1024 for Asian put option.

Method Estimate M = 1 2 4 8 16 32 64

Partitioned MC V̂s 82.201 82.160 82.101 82.127 82.109 82.120 82.108

V̂ar(V̂s) 0.367 0.220 0.062 0.027 0.005 0.005 0.002

Shared Sample MC Ṽ 82.113 82.112 82.120 82.093 82.102 82.124 82.108

V̂ar(Ṽ ) 0.373 0.305 0.267 0.203 0.170 0.142 0.123



6. Concluding Remarks

We have presented a method to transform the computation of the expected value in a recombi-
nant binomial tree into an embarrassingly parallel problem by mapping the Bernoulli paths in
the tree to the processes on a multiprocessor computer. We also discussed a parallel Monte Carlo
estimation method which takes advantage of this partitioning. The methods were implemented
both in R and Julia, and were applied to value path-dependent options. Numerical results ver-
ify the convergence of the parallel Monte Carlo method and variance reduction with respect to
basic Monte Carlo estimation. Performance results indicate that the Julia implementation was
significantly faster and more efficient than the R implementation, likely because of the superior
handling of loops and the compilation to machine-level code.
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