
Parallel Performance Studies for a 3-D Elliptic Test Problem on the
2018 Portion of the Taki Cluster

Richard Ebadi1, Carlos Barajas2, and Matthias K. Gobbert2 (gobbert@umbc.edu)

1Institute for Mathematics, University of Kassel, Germany
2Department of Mathematics and Statistics, University of Maryland, Baltimore County, USA

Technical Report HPCF–2018–19, hpcf.umbc.edu > Publications

Abstract

The new 2018 nodes in the CPU cluster taki in the UMBC High Performance Computing Facility contain
two 18-core Intel Skylake CPUs and 384 GB of memory per node, connected by an EDR (Enhanced Data Rate)
InfiniBand interconnect. The performance studies use the test problem of the Poisson equation in three spatial
dimensions, discretized by the finite difference method to give a very large and sparse system of linear equations
that is solved by the conjugate gradient method. The algorithm is known to be memory-bound so it is a good test
for the architecture of the nodes and the parallel network connecting them. Strong scalability studies varying the
number of processes per node as well as the number of compute nodes demonstrate excellent scalability when using
multiple nodes as well as very good scalability using multiple cores per node.

1 Introduction

The UMBC High Performance Computing Facility (HPCF) is the community-based, interdisciplinary core facility
for scientific computing and research on parallel algorithms at UMBC. Started in 2008 by more than 20 researchers
from ten academic departments and research centers from all three colleges, it is supported by faculty contributions,
federal grants, and the UMBC administration. The facility is open to UMBC researchers at no charge. Researchers
can contribute funding for long-term priority access. System administration is provided by the UMBC Division
of Information Technology, and users have access to consulting support provided by dedicated full-time graduate
assistants. See hpcf.umbc.edu for more information on HPCF and the projects using its resources.

The tests reported here use the new 2018 portion of the CPU cluster in taki. This portion of the CPU cluster
consists of 42 compute nodes with two 18-core Intel Xeon Gold 6140 Skylake CPUs (2.3 GHz clock speed, 24.75 MB
L3 cache, 6 memory channels, 140 W power), for a total of 36 cores per node, 384 GB memory (12×32 GB DDR4), and
a 120 GB SSD drive. These nodes are connected by a network of four 36-port EDR (Enhanced Data Rate) InfiniBand
switches (100 Gb/s bandwidth, 90 ns latency) to a central storage of more than 750 TB. See hpcf.umbc.edu for
photos, schematics, and more detailed information, also on the other portions of the taki cluster.

This report uses the Poisson equation with homogeneous Dirichlet boundary conditions on a unit cube domain
in three spatial dimensions. to test the performance of the 2018 portion of the CPU cluster in taki. Two earlier
reports also considered the problem, namely [8] with the same linear solver, but implemented in Matlab, and [9]
using a parallel C code using MPI, but with a different linear solver. Many other previous reports considered the
two-dimensional analogue of this test problem (see [2] and references therein), most recently using compute nodes
with Intel Skylake CPUs [2] on taki 2018 and [1] on Stampede2. Discretizing the spatial derivatives in the Poisson
equation by the finite difference method yields a system of linear equations with a large, sparse, highly structured,
symmetric positive definite system matrix. The linear system resulting from the two-dimensional version of the test
problem is a classical test problem for iterative solvers and contained in several textbooks including [4, 5, 6, 10].
The parallel, matrix-free implementation of the conjugate gradient method as appropriate iterative linear solver for
this linear system involves necessarily communications both collectively among all parallel processes and between
pairs of processes in every iteration. Therefore, this method provides an excellent test problem for the overall, real-life
performance of a parallel computer on a memory-bound algorithm. The results are not just applicable to the conjugate
gradient method, which is important in its own right as a representative of the class of Krylov subspace methods, but
to all memory-bound algorithms. The implementation uses the C programming language, with MPI (Message Passing
Interface) for communications between distributed-memory cluster nodes.

The results demonstrate excellent scalability when using multiple nodes due to the low latency of the high-perfor-
mance interconnect and good speedup when using all cores of the multi-core CPUs. The studies varying the number
of processes per node demonstrate very good scalability using multiple cores per node.

The remainder of this report is organized as follows: Section 2 details the test problem and discusses the parallel
implementation in more detail, and Section 3 summarizes the solution and method convergence data. Section 4 contains
the strong scalability studies using MPI-only code on taki 2018.

1

hpcf.umbc.edu
hpcf.umbc.edu
hpcf.umbc.edu


2 The Elliptic Test Problem

We consider the classical elliptic test problem of the Poisson equation with homogeneous Dirichlet boundary conditions
(see, e.g., [10, Chapter 8] for the two-dimensional analogue)

−4u = f in Ω,
u = 0 on ∂Ω,

(2.1)

on the unit cube domain Ω = (0, 1)× (0, 1)× (0, 1) ⊂ R3 in three spatial dimensions. Here, ∂Ω denotes the boundary

of the domain Ω and the Laplace operator in is defined as 4u = ∂2u
∂x2

1
+ ∂2u

∂x2
2

+ ∂2u
∂x2

3
. Using N + 2 mesh points

in each dimension, we construct a mesh with uniform mesh spacing h = 1/(N + 1). Specifically, define the mesh
points (xk1

, xk2
, xk3

) ∈ Ω ⊂ R3 with xki
= h ki, ki = 0, 1, . . . , N,N + 1, in each dimension i = 1, 2, 3. Denote the

approximations to the solution at the mesh points by uk1,k2,k3
≈ u(xk1

, xk2
, xk3

). Then approximate the second-order
derivatives in the Laplace operator at the N2 interior mesh points by

∂2u(xk1
, xk2

, xk3
)

∂x21
≈ uk1−1,k2,k3

− 2uk1,k2,k3
+ uk1+1,k2,k3

h2
, (2.2)

∂2u(xk1
, xk2

, xk3
)

∂x22
≈ uk1,k2−1,k3

− 2uk1,k2,k3
+ uk1,k2+1,k3

h2
, (2.3)

∂2u(xk1
, xk2

, xk3
)

∂x23
≈ uk1,k2,k3−1 − 2uk1,k2,k3

+ uk1,k2,k3+1

h2
(2.4)

for ki = 1, . . . , N , i = 1, 2, 3, for the approximations at the interior points. Using this approximation together with the
homogeneous boundary conditions (2.1) gives a system of N3 linear equations for the finite difference approximations
at the N3 interior mesh points.

Collecting the N3 unknown approximations uk1,k2,k3
in a vector u ∈ RN3

using the natural ordering of the mesh
points, we can state the problem as a system of linear equations in standard form Au = b with a system matrix
A ∈ RN3×N3

and a right-hand side vector b ∈ RN3

. The components of the right-hand side vector b are given by
the product of h2 multiplied by right-hand side function evaluations f(xk1 , xk2 , xk3) at the interior mesh points using

the same ordering as the one used for uk1,k2,k3 . The system matrix A ∈ RN3×N3

can be defined recursively as block
tri-diagonal matrix with N ×N blocks of size N2×N2 each, each of which in turn is a block tri-diagonal matrix with
N ×N blocks of size N ×N each. Concretely, we have

A =


S −IN2

−IN2 S −IN2

. . .
. . .

. . .

−IN2 S −IN2

−IN2 S

 ∈ RN3×N3

, S =


T −IN
−IN T −IN

. . .
. . .

. . .

−IN T −IN
−IN T

 ∈ RN2×N2

with the tri-diagonal matrix T = tridiag(−1, 6,−1) ∈ RN×N for the diagonal blocks of S as well as A and identity

matrices IN2 ∈ RN2×N2

and IN ∈ RN×N for the off-diagonal blocks of A and S, respectively.
For fine meshes with large N , iterative methods such as the conjugate gradient method are appropriate for solving

this linear system. The system matrix A is known to be symmetric positive definite and thus the method is guaranteed
to converge for this problem. In a careful implementation, the conjugate gradient method requires in each iteration
exactly two inner products between vectors, three vector updates, and one matrix-vector product involving the system
matrix A. In fact, this matrix-vector product is the only way, in which A enters into the algorithm. Therefore, a
so-called matrix-free implementation of the conjugate gradient method is possible that avoids setting up any matrix,
if one provides a function that computes as its output the product vector q = Ap component-wise directly from
the components of the input vector p by using the explicit knowledge of the values and positions of the non-zero
components of A, but without assembling A as a matrix.

Thus, without storing A, a careful, efficient, matrix-free implementation of the (unpreconditioned) conjugate gra-
dient method only requires the storage of four vectors (commonly denoted as the solution vector x, the residual r, the
search direction p, and an auxiliary vector q). In a parallel implementation of the conjugate gradient method, each
vector is split into as many blocks as parallel processes are available and one block distributed to each process. That
is, each parallel process possesses its own block of each vector, and normally no vector is ever assembled in full on
any process. To understand what this means for parallel programming and the performance of the method, note that

2



an inner product between two vectors distributed in this way is computed by first forming the local inner products
between the local blocks of the vectors and second summing all local inner products across all parallel processes to
obtain the global inner product. This summation of values from all processes is known as a reduce operation in parallel
programming, which requires a communication among all parallel processes. This communication is necessary as part
of the numerical method used, and this necessity is responsible for the fact that for fixed problem sizes eventually for
very large numbers of processes the time needed for communication — increasing with the number of processes — will
unavoidably dominate over the time used for the calculations that are done simultaneously in parallel — decreasing
due to shorter local vectors for increasing number of processes. By contrast, the vector updates in each iteration can
be executed simultaneously on all processes on their local blocks, because they do not require any parallel communi-
cations. However, this requires that the scalar factors that appear in the vector updates are available on all parallel
processes. This is accomplished already as part of the computation of these factors by using a so-called Allreduce op-
eration, that is, a reduce operation that also communicates the result to all processes. This is implemented in the MPI
function MPI_Allreduce [7]. Finally, the matrix-vector product q = Ap also computes only the block of the vector q
that is local to each process. But since the matrix A has non-zero off-diagonal elements, each local block needs values
of p that are local to the two processes that hold the neighboring blocks of p. The communications between parallel
processes thus needed are so-called point-to-point communications, because not all processes participate in each of
them, but rather only specific pairs of processes that exchange data needed for their local calculations. Observe now
that it is only a few components of q that require data from p that is not local to the process. Therefore, it is possible
and potentially very efficient to proceed to calculate those components that can be computed from local data only,
while the communications with the neighboring processes are taking place. This technique is known as interleaving
calculations and communications and can be implemented using the non-blocking MPI communications commands
MPI_Isend and MPI_Irecv [7].

3 Convergence Study for the Model Problem

To test the numerical method and its implementation, we consider the elliptic problem (2.1) on the unit cube

Ω = (0, 1)× (0, 1)× (0, 1)

with right-hand side function

f(x1, x2, x3) = (−2π2)
(

cos(2πx1) sin2(πx2) sin2(πx3)+sin2(πx1) cos(2πx2) sin2(πx3)+sin2(πx1) sin2(πx2) cos(2πx3)
)
,

for which the true analytic solution in closed form

u(x1, x2, x3) = sin2(πx1) sin2(πx2) sin2(πx3)

is known.
To check the convergence of the finite difference method as well as to analyze the performance of the conjugate

gradient method, we solve the problem on a sequence of progressively finer meshes. The conjugate gradient method
is started with a zero vector as initial guess and the solution is accepted as converged when the Euclidean vector
norm of the residual is reduced to the fraction 10−6 of the initial residual. Table 3.1 lists the mesh resolution N of
the N × N × N mesh, the number of degrees of freedom N3 (DOF; i.e., the dimension of the linear system), the
norm of the finite difference error ‖u− uh‖ ≡ ‖u− uh‖L∞(Ω)

, the ratio of consecutive errors ‖u− u2h‖/‖u− uh‖ , the
number of conjugate gradient iterations #iter, the observed wall clock time in HH:MM:SS and in seconds, and the
predicted and observed memory usage in GB for studies performed in serial. More precisely, the serial runs use the
parallel code run on one process only, on a dedicated node (no other processes running on the node), and with all
parallel communication commands disabled by if-statements. The wall clock time is measured using the MPI_Wtime

command (after synchronizing all processes by an MPI_Barrier command). The memory usage of the code is predicted
by noting that there are 4N3 double-precision numbers needed to store the four vectors of significant length N3 and
that each double-precision number requires 8 bytes; dividing this result by 10243 converts its value to units of GB,
as quoted in the table. The memory usage is observed in the code by checking the VmRSS field in the the special file
/proc/self/status.

In all cases, the norms of the finite difference errors in Table 3.1 decrease by a factor of about 4 each time that the
mesh is refined by a factor 2. This confirms that the finite difference method is second-order convergent, as predicted
by the numerical theory for the finite difference method [3, 6]. The fact that this convergence order is attained also

3



Table 3.1: Convergence study on taki with serial code except where noted.

N DOF ‖u− uh‖ Ratio #iter wall clock time memory usage (GB)
HH:MM:SS seconds predicted observed

32 32,769 3.0060e–03 — 61 00:00:00 0.01 < 1 < 1
64 262,144 7.7765e–04 3.86 120 00:00:00 0.13 < 1 < 1

128 2,097,152 1.9763e–04 3.93 243 00:00:04 3.79 < 1 < 1
256 16,777,216 4.9807e–05 3.97 493 00:01:09 69.39 < 1 < 1
512 134,217,728 1.2503e–05 3.98 999 00:19:21 1,161.23 4 4.02

1024 1,073,741,824 3.1327e–06 3.99 2,023 05:34:36 20,075.61 32 32.02
2048 8,589,934,592 7.8346e–07 4.00 4,095 116:50:39 420,638.69 256 256.02

confirms that the tolerance of the iterative linear solver is tight enough to ensure a sufficiently accurate solution of the
linear system. The increasing numbers of iterations needed to achieve the convergence of the linear solver highlights the
fundamental computational challenge with methods in the family of Krylov subspace methods, of which the conjugate
gradient method is the most important example: Refinements of the mesh imply more mesh points, where the solution
approximation needs to be found, and makes the computation of each iteration of the linear solver more expensive.
Additionally, more of these more expensive iterations are required to achieve convergence to the desired tolerance for
finer meshes. And it is not possible to relax the solver tolerance, because otherwise its solution would not be accurate
enough and the norm of the finite difference error would not show a second-order convergence behavior, as required by
its theory. The observed memory usage in units of GB rounds to within less than 1 GB of the predicted usage. This
good agreement between predicted and observed memory usage in the last two columns of the table indicates that
the implementation of the code does not have any unexpected memory usage in the serial case. The wall clock times
and the memory usages for these serial runs indicate for which mesh resolutions this elliptic test problem becomes
challenging computationally. Notice that the very fine meshes show very significant runtimes and memory usage;
parallel computing clearly offers opportunities to decrease runtimes as well as to decrease memory usage per process
by spreading the problem over the parallel processes.

We note that the results in Table 3.1 agree with past results for this problem, namely with Table 7.3 (first subtable)
in [8], which used the software Matlab, but the same method as linear solver. This ensures that the parallel performance
studies in the next section are practically relevant, since a correct solution of the test problem is computed.

4 Performance Studies on taki 2018 Using MPI-Only Code

This section describes the parallel performance studies for the solution of the test problem on the 2018 portion of the
CPU cluster in taki. This portion of the CPU cluster consists of 42 compute nodes with two 18-core Intel Xeon Gold
6140 Skylake CPUs (2.3 GHz clock speed, 24.75 MB L3 cache, 6 memory channels, 140 W power), for a total of 36
cores per node, 384 GB memory (12×32 GB DDR4), and a 120 GB SSD drive. Figure 4.1 shows a schematic of one of
the compute nodes, showing also the two Intel UPI connections between the CPUs and indicating that each CPU has
6 memory channels to a DDR4 memory of 32 GB. These compute nodes are connected by a network of four 36-port
EDR (Enhanced Data Rate) InfiniBand switches (100 Gb/s bandwidth, 90 ns latency).

The results in this section use the default Intel compiler and Intel MPI, currently version 18.0.3, which are accessed
on taki through the wrapper mpiicc. We use the compiler options -O3 -std=c99 -Wall.

The SLURM submission script uses the srun command to start the job. The number of nodes are controlled by
the --nodes option and the number of MPI processes per node by the --ntasks-per-node option. For a performance
study, each node that is used is dedicated to the job with the remaining cores idling, if not all of them are used, using
the --exclusive flag. Correspondingly, we request all memory of the node for the job by --mem=MaxMemPerNode.

We include the OMP_PLACES and OMP_PROC_BIND environment variables1 in the SLURM script. The environment
variable OMP_PLACES=cores is used to list the cores of the CPUs on the node as the places that OpenMP threads
are pinned on, while OMP_PROC_BIND chooses the order of places in the pinning. The value OMP_PROC_BIND=close

means that the assignment goes successively through the available places, while OMP_PROC_BIND=spread spreads
the threads over the places. Studies in [1] with OMP_PLACES=cores using the choices of OMP_PROC_BIND=close and
OMP_PROC_BIND=spread resulted in run time that were almost the same for corresponding values of nodes and processes

1http://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-affinity.html

4

http://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-affinity.html


per node used. This should have been expected, since the environment variables tested are supposed to influence the
placement of OpenMP threads, yet the code used here is an MPI-only parallel code.

We conduct complete performance studies of the test problem for four progressively finer meshes of N = 256, 512,
1024, 2048. These studies result in progressively larger systems of linear equations with system dimensions ranging
from over 16 millions for N = 256 to over 8 billions for N = 2048.

Table 4.1 collects the results of the performance studies on the 2018 portion of the CPU cluster in taki. For each
mesh resolution of the four meshes with N = 256, 512, 1024, 2048, the parallel implementation of the test problem
is run on all possible combinations of nodes from 1 to 32 by powers of 2 and processes per node from 1 to 32 by
powers of 2. The table summarizes the observed wall clock time (total time to execute the code) in HH:MM:SS
(hours:minutes:seconds) format. The upper-left entry of each subtable contains the runtime for the 1-process run, i.e.,
the serial run, of the code for that particular mesh. The lower-right entry of each subtable lists the runtime using
32 cores of both 18-core processors, i.e., not using all available cores, on 32 nodes for a total of 1024 parallel processes
working together to solve the problem. Some of the values for N = 256 and N = 512 are not available if the number
of total processes used is too high compared to N . This is because the domain is divided along the x3 direction and
distributed among all processes. Meaning that N has to be higher or equal than the total number of processes used.

We choose the mesh resolution of 1024×1024×1024 in Table 4.1 to discuss in detail as example. Reading along the
first column of this mesh subtable, we observe that by doubling the number of processes from 1 to 2 we approximately
halve the runtime from each column to the next. We observe the same improvement from 2 to 4 processes as well as
from 4 to 8processes. We also observe that by doubling the number of processes from 8 to 16 processes, there is still
a significant improvement in runtime, although not the halving we observed previously. Finally, while the decrease
in run time from 16 to 32 processes is small, the run times still do decrease, making the use of all available cores
advisable. We observe that the behavior is analogous also in all other columns for this subtable. This behavior is a
typical characteristic of memory-bound code such as this. The limiting factor in performance of memory-bound code
is memory access, so we would expect a bottleneck when more processes on each CPU attempt to access the memory
simultaneously than the available 6 memory channels per CPU; see Figure 4.1.

Reading along each row of the 1024×1024×1024 mesh subtable, we observe that by doubling the number of nodes
used, and thus also doubling the number of parallel processes, we approximately halve the runtime all the way up to
32 nodes. This behavior observed for increasing the number of nodes confirms the quality of the high-performance
InfiniBand interconnect. Also, we can see that the timings for anti-diagonals in Table 4.1 are about equal, that is, the
run time for nodes=2 and and processes per node=1 is almost same as for nodes=1 and processes per node=2, for
instance. Thus, it is advisable to use the smallest number of nodes with the largest number of processes per node.

Figure 4.1: Schematic of a compute node with two Intel Skylake Xeon CPUs.

5



Table 4.1: Wall clock time in HH:MM:SS on taki 2018 using the default Intel compiler and Intel MPI, version 18.0.3.

(a) Mesh resolution N ×N ×N = 256× 256× 256, system dimension 16777216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:01:09 00:00:34 00:00:17 00:00:08 00:00:03 00:00:01
2 processes per node 00:00:35 00:00:17 00:00:10 00:00:05 00:00:02 00:00:01
4 processes per node 00:00:18 00:00:10 00:00:05 00:00:02 00:00:01 00:00:01
8 processes per node 00:00:10 00:00:06 00:00:03 00:00:01 00:00:01 00:00:00
16 processes per node 00:00:08 00:00:05 00:00:02 00:00:01 00:00:01 N/A
32 processes per node 00:00:07 00:00:03 00:00:02 00:00:01 N/A N/A

(b) Mesh resolution N ×N ×N = 512× 512× 512, system dimension 134217728
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:19:21 00:09:47 00:04:52 00:02:28 00:01:13 00:00:36
2 processes per node 00:09:55 00:04:56 00:02:45 00:01:34 00:00:51 00:00:25
4 processes per node 00:05:00 00:02:32 00:01:23 00:00:49 00:00:26 00:00:14
8 processes per node 00:02:38 00:01:21 00:00:46 00:00:25 00:00:15 00:00:08
16 processes per node 00:01:52 00:01:11 00:00:37 00:00:20 00:00:11 00:00:07
32 processes per node 00:01:34 00:00:51 00:00:27 00:00:16 00:00:09 N/A

(c) Mesh resolution N ×N ×N = 1024× 1024× 1024, system dimension 1073741824
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 05:34:36 02:48:47 01:24:23 00:42:15 00:21:24 00:10:42
2 processes per node 02:50:40 01:25:54 00:47:36 00:22:10 00:12:42 00:07:14
4 processes per node 01:27:40 00:44:27 00:22:14 00:11:49 00:07:05 00:03:52
8 processes per node 00:43:58 00:22:11 00:11:14 00:05:57 00:03:38 00:02:07
16 processes per node 00:29:57 00:15:09 00:07:42 00:04:01 00:02:18 00:01:28
32 processes per node 00:25:04 00:12:53 00:06:44 00:03:56 00:02:05 00:01:13

(d) Mesh resolution N ×N ×N = 2048× 2048× 2048, system dimension 8589934592
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 116:50:39 46:29:18 23:26:36 11:47:12 05:53:08 02:56:56
2 processes per node 47:04:26 23:39:35 11:54:49 06:00:32 03:06:33 01:35:45
4 processes per node 23:32:45 11:57:10 06:02:15 03:06:01 01:40:09 00:53:11
8 processes per node 11:53:27 06:05:10 03:06:58 01:40:53 00:51:56 00:26:35
16 processes per node 08:04:29 04:03:26 02:06:49 01:04:19 00:33:08 00:18:55
32 processes per node 06:44:52 03:24:50 01:44:28 00:54:07 00:29:04 00:16:29

Parallel scalability is often visually represented by plots of observed speedup and efficiency. The ideal behavior
of code for a fixed problem size N using p parallel processes is that it be p times as fast as serial code. If Tp(N)
denotes the wall clock time for a problem of a fixed size parameterized by N using p processes, then the quantity
Sp = T1(N)/Tp(N) measures the speedup of the code from 1 to p processes, whose optimal value is Sp = p. The
efficiency Ep = Sp/p characterizes in relative terms how close a run with p parallel processes is to this optimal value,
for which Ep = 1. The behavior described here for speedup for a fixed problem size is known as strong scalability of
parallel code.

Table 4.2 organizes the results of Table 4.1 in the form of a strong scalability study, that is, there is one row for each
problem size, with columns for increasing number of parallel processes p. Table 4.2 (a) lists the raw timing data, like
Table 4.1, but organized by numbers of parallel processes p. Tables 4.2 (b) and (c) show the numbers for speedup and
efficiency, respectively, that will be visualized in Figures 4.2 (a) and (b), respectively. There are several choices for most
values of p, such as for instance for p = 4, one could use 1 node with 4 processes per node, 2 nodes with 2 processes per
node, or 4 nodes with 1 process per node. In all cases, we use the smallest number of nodes possible, with 32 processes
per node for p ≥ 32; for p < 32, only one node is used, with the remaining cores idle. Comparing adjacent columns
in the raw timing data in Table 4.2 (a) confirms our previous observation that performance improvement is very good
from 1 to 2 processes, from 2 to 4 processes, from 4 to 8 processes but not quite as good from 8 to 16 processes and 16 to
32 processes. The speedup numbers in Table 4.2 (b) help reach the same conclusions when speedup is near-optimal
with Sp ≈ p for p ≤ 8. For p = 16 and p = 32, sub-optimal speedup is clear. The speedup numbers also indicate
sub-optimal speedup for p > 32, but recall that the runtimes clearly showed halving from each column to the next

6



one; the speedup numbers can only give this indication qualitatively. The efficiency data in Table 4.2 (c) can bring
out these effects more quantitatively, namely efficiency is near-optimal Ep ≈ 1 for p ≤ 8, then clearly identifies the
efficiency drop taking place from p = 8 to p = 16 and from p = 16 to p = 32. But for p > 32, the efficiency numbers
decrease only slowly, which confirms quantitatively the aforementioned halving of runtimes from each column to the
next one for these columns.

The plots in Figures 4.2 (a) and (b) visualize the numbers in Tables 4.2 (b) and (c), respectively. These plots do
not provide new data but simply provide a graphical representation of the results in Table 4.2. It is customary in
results for fixed problem sizes that the speedup is better for larger problems, since the increased communication time
for more parallel processes does not dominate over the calculation time as quickly as it does for small problems. This
is born out generally by both plots in Figure 4.2. We can indeed see in both Figures 4.2 (a) and (b) that both speedup
and effiency get better, the larger N gets. The efficiency plot shows how bad the behavior is for p ≥ 8, which supports
the conclusion from earlier.

Table 4.2: Strong scalability study on taki 2018 using the default Intel compiler and Intel MPI, version 18.0.3.

(a) Wall clock time Tp in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512 p = 1024

256 00:01:09 00:00:35 00:00:18 00:00:10 00:00:08 00:00:07 00:00:03 00:00:02 00:00:01 N/A N/A
512 00:19:21 00:09:55 00:05:00 00:02:38 00:01:52 00:01:34 00:00:51 00:00:27 00:00:16 00:00:09 N/A

1024 05:34:36 02:50:40 01:27:40 00:43:58 00:29:57 00:25:04 00:12:53 00:06:44 00:03:56 00:02:05 00:01:13
2048 116:50:39 47:04:26 23:32:45 11:53:27 08:04:29 06:44:52 03:24:50 01:44:28 00:54:07 00:29:04 00:16:29

(b) Observed speedup Sp = T1/Tp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512 p = 1024
256 1.00 2.00 3.92 6.82 8.58 9.88 20.41 36.71 68.70 N/A N/A
512 1.00 1.95 3.87 7.37 10.41 12.39 22.73 43.49 73.03 128.03 N/A

1024 1.00 1.96 3.82 7.61 11.17 13.34 25.98 49.64 85.23 161.12 275.16
2048 1.00 2.48 4.96 9.83 14.47 17.32 34.23 67.11 129.56 241.21 425.41

(c) Observed efficiency Ep = Sp/p
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512 p = 1024

256 1.00 1.00 0.98 0.85 0.54 0.31 0.32 0.29 0.27 N/A N/A
512 1.00 0.98 0.97 0.92 0.65 0.39 0.36 0.34 0.29 0.25 N/A

1024 1.00 0.98 0.95 0.95 0.70 0.42 0.41 0.39 0.33 0.31 0.27
2048 1.00 1.24 1.24 1.23 0.90 0.54 0.53 0.52 0.51 0.47 0.42

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 4.2: Strong scalability study on taki 2018 using the default Intel compiler and Intel MPI, version 18.0.3.

7



Acknowledgments

The hardware used in the computational studies is part of the UMBC High Performance Computing Facility (HPCF).
The facility is supported by the U.S. National Science Foundation through the MRI program (grant nos. CNS–0821258,
CNS–1228778, and OAC–1726023) and the SCREMS program (grant no. DMS–0821311), with additional substantial
support from the University of Maryland, Baltimore County (UMBC). See hpcf.umbc.edu for more information on
HPCF and the projects using its resources. Co-author Carlos Barajas was supported by UMBC as HPCF RA.

References

[1] Kritesh Arora, Carlos Barajas, and Matthias K. Gobbert. Parallel performance studies for an elliptic test prob-
lem on the Stampede2 cluster and comparison of networks. Technical Report HPCF–2018–10, UMBC High
Performance Computing Facility, University of Maryland, Baltimore County, 2018.

[2] Carlos Barajas and Matthias K. Gobbert. Parallel performance studies for an elliptic test problem on the 2018
portion of the Taki cluster. Technical Report HPCF–2018–18, UMBC High Performance Computing Facility,
University of Maryland, Baltimore County, 2018.

[3] Dietrich Braess. Finite Elements. Cambridge University Press, third edition, 2007.

[4] James W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[5] Anne Greenbaum. Iterative Methods for Solving Linear Systems, vol. 17 of Frontiers in Applied Mathematics.
SIAM, 1997.

[6] Arieh Iserles. A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts in Applied
Mathematics. Cambridge University Press, second edition, 2009.

[7] Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1997.

[8] David Stonko, Samuel Khuvis, and Matthias K. Gobbert. Numerical methods to solve 2-D and 3-D elliptic
partial differential equations using Matlab on the cluster maya. Technical Report HPCF–2014–9, UMBC High
Performance Computing Facility, University of Maryland, Baltimore County, 2014.

[9] Guan Wang and Matthias K. Gobbert. Performance comparison between blocking and non-blocking commu-
nications for a three-dimensional Poisson problem. Technical Report HPCF–2009–5, UMBC High Performance
Computing Facility, University of Maryland, Baltimore County, 2009.

[10] David S. Watkins. Fundamentals of Matrix Computations. Wiley, third edition, 2010.

8

hpcf.umbc.edu

	Introduction
	The Elliptic Test Problem
	Convergence Study for the Model Problem
	Performance Studies on taki 2018 Using MPI-Only Code

