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Abstract. The speed of the fast reaction in a model system of

transient reaction-diffusion equations is controlled by a reaction co-

efficient that has an asymptotic limit at infinity. The crucial feature

of the problem is the appearance of sharp internal layers in the fast

reaction rate as two species are consumed everywhere throughout

the domain except along their interfaces. We extend past mathe-

matical analysis of the associated stationary problem to a study of

the behavior of the transient model as the reaction coefficient grows

toward its asymptotic limit. The studies reveal for which value of

the fast reaction coefficient the model has essentially reached its

asymptotic limit. This result is useful in its own right, but par-

ticularly important for future numerical simulations for this model,

because these are faster and more reliable for smaller values of the

asymptotic parameter. The numerical solution of problems with

asymptotic parameters poses the risk that the numerical method

might not reliably capture the most crucial large or small features

inherent to such problems. Therefore, systematic studies of several

numerical parameters are presented to validate the reliability and

accuracy of the numerical results.
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1 Introduction

This paper considers the diffusive flow of chemical species
inside a membrane that separates two reservoirs with un-
limited supplies of the reactants A and B, respectively,
that participate in the chemical reaction 2 A + B → (∗).
The evolution of the concentrations of the species can be
modeled by a system of transient reaction-diffusion equa-
tions. This model becomes mathematically intriguing as
well as numerically challenging if one considers a par-
ticular reaction pathway comprising two reactions with
widely varying rate coefficients [5]: Molecules of A and B
combine in a first, ‘fast’ reaction to produce an interme-
diate C, while a second, ‘slow’ reaction combines A and C
to form the product (∗), which is not explicitly tracked
in the model. This reaction pathway is expressed by

A + B λ→ C,
A + C

µ→ (∗),
(1)

in which the reaction coefficients λ and µ are scaled so
that λ � µ = 1. The chemical reactions in (1) take
place inside a membrane that is thin compared to the

directions normal to it. Thus, it is reasonable to use a
one-dimensional spatial domain with variable x, scaled so
that x ∈ Ω := (0, 1). In time, we compute from the initial
time 0 to the final time tfin, which is chosen such that the
solutions have reached its steady-state. We denote the
concentrations of the chemical species A, B, C by func-
tions u(x, t), v(x, t), w(x, t), respectively. The reaction-
diffusion system for the three species being tracked reads
then

ut = uxx − λuv − uw,
vt = vxx − λuv,
wt = wxx + λuv − uw,

(2)

for x ∈ (0, 1) and 0 < t ≤ tfin. The boundary conditions
are a combination of Dirichlet and Neumann boundary
conditions given by

u = α, vx = 0, wx = 0 at x = 0,
ux = 0, v = β, wx = 0 at x = 1. (3)

The problem statement of this initial-boundary value
problem is completed by specifying the non-negative ini-
tial concentrations

u(x, 0) = uini(x), v(x, 0) = vini(x), w(x, 0) = wini(x) (4)

for x ∈ (0, 1) at t = 0. We assume that the boundary and
initial data are posed consistently; i.e., uini(0) = α, and
vini(1) = β.

Because the first chemical reaction is much faster than
the second one, rapid consumption of A and B to form C
is expected at all spatial points x where A and B co-exist,
leaving only one of them present with a positive concen-
tration after an initial transient. Inside the regions dom-
inated either by A or by B, the reaction rate of the fast
reaction q := λuv will then become 0. However at the
interfaces between the regions, where positive concentra-
tions of A and B make contact due to diffusion, q will be
non-zero; in fact, q will be large due to the large coeffi-
cient λ � 1. These expectations are based on analytical
results in [1, 2] for the stationary problem, that is associ-
ated with (2), given by

0 = uxx − λuv − uw,
0 = vxx − λuv,
0 = wxx + λuv − uw,

(5)

for x ∈ (0, 1), together with the boundary conditions (3).
Their results prove that at its steady-state limit the re-
action rate of the fast reaction q has one internal layer at

1



a point 0 < x∗ < 1 of width O(ε) and height O(1/ε) with
the scaling ε = λ−1/3. Because initial conditions to the
transient problem can have the internal layer at a differ-
ent position than x∗ or can have multiple internal layers,
it is interesting to investigate the evolution of the internal
layers and their coalescence to the single layer present at
steady-state. In [4, 5], we performed numerical studies
of the evolution of these internal layers for several repre-
sentative initial conditions and for several fixed values of
the asymptotic parameter λ. But the asymptotic analy-
sis of relating the solutions for several λ values to each
other was still limited to the steady-state case in these
works. The purpose of the present paper is to enable a
systematic study of the behavior of the transient prob-
lem as function of the asymptotic parameter. In other
words, we will need to compare appropriate quantities
that depend materially on the asymptotic parameter for
all times (not just the final, steady-state time). This nu-
merical approach to asymptotic analysis reflects the fact
that mathematical analysis of the transient problem (2)
is more challenging than that of the stationary problem
(5). In turn, it is vital to study very carefully the reliabil-
ity of the numerical solution in the face of steep gradients
that necessarily appear in crucial terms in the context of
asymptotic analysis.

To select a transient problem for testing that has the
stationary solution just described and an interesting tran-
sient behavior, we select an initial condition with three
interfaces specified by the initial condition functions for
(4) chosen as

uini(x) =


4(0.25− x)α, 0.00 ≤ x ≤ 0.25,
0, 0.25 < x < 0.50,
64(0.50− x)(x− 0.75) γ, 0.50 ≤ x ≤ 0.75,
0, 0.75 < x ≤ 1.00,

vini(x) =


0, 0.00 ≤ x < 0.25,
64(0.25− x)(x− 0.50) δ, 0.25 ≤ x ≤ 0.50,
0, 0.50 < x < 0.75,
4(x− 0.75)β, 0.75 ≤ x ≤ 1.00,

wini(x) ≡ 0.

(6)

The parameters α and β come from the boundary condi-
tions (3), and their use in (6) guarantees that the initial
conditions are consistent with the boundary conditions;
therefore there are no boundary layers in the solutions,
and we can focus our attention on the internal layers.
The design in (6) produces linear functions in u and v
at their respective Dirichlet boundary conditions and one
parabolic hump for u and v each in the interior of the
spatial domain, such that u and v are not non-zero simul-
taneously. For the parameters that affect the steady-state
solution, we pick α = 1.6, and β = 0.8. For the values γ
and δ that control the height of the humps of u and v in
(6), we choose γ = δ = 0.25. For the final time, we select
tfin = 20; experiments show that this time is sufficient
to reach the steady-state solution using the criterion that
the location x∗ of the internal layer at steady-state is ap-
proximated up to the resolution achievable by the spatial
discretization.

Simulation results for the model with reaction coeffi-
cient λ = 106 are shown in Figure 1. Figures 1 (a), (b),
and (c) show waterfall plots of the concentrations u(x, t),
v(x, t), and w(x, t), respectively, vs. (x, t). As seen at
time zero in the waterfall plots of Figures 1 (a) and (b),

u and v are initially non-zero in complementary regions
in the interior of Ω = (0, 1). Figure 1 (c) shows the third
species w, which is an intermediate of the reaction path-
way with two reactions. It grows from zero initially to
a positive steady-state value, reflecting the fact that the
slower second reaction cannot consume it faster than it
is created. Figure 1 (d) shows the plot of the reaction
rate q = λuv vs. (x, t). We observe that q is zero in most
of the domain, as either u or v are zero there. But q is
large at the interfaces of the regions where either u or v
dominate, as a result of the diffusion that moves u and v
from their regions of dominance and brings them in con-
tact at the interfaces of these regions. Notice that w is
thus only created at the localized interfaces, but is then
present throughout Ω, as seen in Figure 1 (c), solely due
to its diffusion. We also see in Figure 1 (d) that for larger
times only one spike exists for q compared to three at the
initial time. The waterfall plot in Figure 1 (d) provides
information about the location of the interface between
regions of dominance by u or v only at selected points in
time. To visualize the interface and its movement over
time more clearly, Figure 1 (e) plots its location for all
time steps in the numerical study 0 ≤ t ≤ 20. We can
see that the interface moves slowly and smoothly to its
steady-state value of x∗ ≈ 0.6. To get a clearer picture
of the interface movement for small times, Figure 1 (f)
zooms in on the time span 0 ≤ t ≤ 0.1. This confirms
that the three interfaces present initially are located at
x = 0.25, 0.50, and 0.75. Figure 1 (f) shows how quickly
the three interfaces coalesce to one. This makes it clear
that one of the most interesting features of this problem
is the behavior of the concentration interfaces between
regions dominated by either u or v, which is why we refer
to this problem as the interface problem.

Figure 2 shows the simulation results for the model
with reaction coefficient λ = 109, with plots arranged
analogously to Figure 1. Notice in Figure 2 (d), the re-
action rate spikes are now higher and narrower than seen
for the reaction coefficient λ = 106. This is expected
given that the value λ = 109 results in a scaling of width
ε = 0.001 with height 1/ε = 1,000, compared with width
ε = 0.01 and height 1/ε = 100 for λ = 106. Notice that
on the scale of Figure 2 (d) we cannot tell the height of
q at latter times t when approaching the steady-state.
Therefore, Figure 2 (e) and (f) are again designed to pro-
vide the detailed insight into the evolution of the reactant
interfaces. Comparing their plots in Figures 1 and 2, we
observe that the interfaces behave very similarly for both
λ values.

Motivated by the the similarity of the plots of the con-
centration interfaces shown in Figures 1 and 2, Figure 3
shows overlays of these interfaces for both reaction coef-
ficients λ = 106 and λ = 109 in the (x, t)-plane. For each
value of λ, results from two numerical studies are shown
to ensure reliability of the results. The top four plots
in the figure overlay the cases in progressively decreasing
time spans. The left bottom plot shows the movement of
the left portion of the interface zoomed into 0.3 ≤ x ≤ 0.5
and 0.005 ≤ t ≤ 0.014. The right bottom plot of Figure 3
shows the movement of the right portion of the interface



(a) u vs. (x, t) (b) v vs. (x, t)

(c) w vs. (x, t) (d) q = λuv vs. (x, t)

(e) interface vs. (x, t) (f) zoomed interface vs. (x, t)

Figure 1: Simulation results for the interface problem with λ = 106. (a), (b), (c) Concentrations u, v, w vs. (x, t), respectively.
(d) Reaction rate q = λuv vs. (x, t). (e) Concentration interface in the (x, t)-plane for the entire time span 0 ≤ t ≤ 20. (f) Concentration
interface in the (x, t)-plane zoomed into the time span 0 ≤ t ≤ 0.1. These studies used N = 210 + 1 mesh points, and absolute and
relative ODE tolerances of 10−4 both.

(a) u vs. (x, t) (b) v vs. (x, t)

(c) w vs. (x, t) (d) q = λuv vs. (x, t)

(e) interface vs. (x, t) (f) zoomed interface vs. (x, t)

Figure 2: Simulation results for the interface problem with λ = 109. (a), (b), (c) Concentrations u, v, w vs. (x, t), respectively.
(d) Reaction rate q = λuv vs. (x, t). (e) Concentration interface in the (x, t)-plane for the entire time span 0 ≤ t ≤ 20. (f) Concentration
interface in the (x, t)-plane zoomed into the time span 0 ≤ t ≤ 0.1. These studies used N = 210 + 1 mesh points, and absolute and
relative ODE tolerances of 10−8 and 10−6, respectively.



zoomed into 0.5 ≤ x ≤ 0.7 and 0.05 ≤ t ≤ 0.95. We
see in Figure 3 that the computed solution representing
the motion of the concentration interfaces for λ = 106

and λ = 109 are very close in every time span and zoom
view. In [1], it was shown analytically for the station-
ary problem (5) that the error between the limit solution
and a solution for finite λ is uniformly on the order of
ε = λ−1/3. The present computational results show that
the same estimate appears to hold for the transient prob-
lem (2). Therefore, the main conclusion of this numerical
approach to asymptotic analysis is that the solution to
the problem is near the asymptotic limit λ→∞ already
for the value λ = 106. This is useful for instance for fur-
ther numerical studies for this problem, because we know
now that using λ = 106 is sufficient to simulate the crucial
features of this problem reliably and efficiently.

In Section 2, we explain the numerical method used
to compute the solutions presented and identify the pa-
rameters that are studied to ensure the reliability of the
solutions. In Section 3, we summarize the results of nu-
merical parameter studies guaranteeing the accuracy and
reliability of the solution over absolute and relative ODE
tolerances and varying mesh resolutions.

2 Numerical Method

The interface problem (2)–(4) is spatially discretized by
the finite difference method within a method of lines ap-
proach. We define a mesh with N nodes across the spatial
domain Ω = [0, 1] by xj = (j − 1) ∆x for j = 1, . . . , N
with uniform mesh spacing ∆x = 1/(N − 1). Then,
let uj(t), vj(t), wj(t) denote approximations to u(xj , t),
v(xj , t), w(xj , t), respectively. At each node xj , j =
1, . . . , N , a finite difference discretizes the spatial deriva-
tives, still leaving the time dependence of all quantities.
To write this system of ordinary differential equations
(ODEs) for functions uj(t), vj(t), wj(t) in vector form,
define the three vector functions U(t) := [u1, . . . , uN ]T ,
V (t) := [v1, . . . , vN ]T , and W (t) := [w1, . . . , wN ]T , each
with N components. We organize the equations for the
vector U in system form

dU

dt
= −K(u) y + r(u)(U, V,W ), 0 < t ≤ tfin, (7)

with initial condition U(0) = Uini. Here, K(u) ∈ RN×N
denotes the species stiffness matrix resulting from the dis-
cretization of the diffusion term and r(u) ∈ RN the dis-
cretization of the reaction terms. Similarly, we derive
analogous ODE systems for the other concentration vec-
tors V and W . A more detailed explanation of the choices
in the finite difference discretization, in particular of the
handling of the boundary conditions, is contained in [6,
Appendix A].

Combining the three species concentration vectors into
a vector function y(t) := [UT , V T ,WT ]T with 3N com-
ponents allows the problem to be posed as a single ODE
system in standard form

dy

dt
= f(t, y), 0 < t ≤ tfin, y(0) = yini, (8)

where yini := [UTini, V
T
ini,W

T
ini]

T and f(t, y) = −K y + r(y)
with

K =

 K(u)

K(v)

K(w)

 , r(y) =

 r(u)

r(v)

r(w)

 (9)

from (7) and the analogous ODE systems for V and
W . We note that the stiffness matrix K ∈ R3N×3N is
seen to be constant with non-negative diagonal and non-
positive off-diagonal entries, but is not symmetric. We
also point out that each component of the vector function
r(y) depends in general on all three vectors of unknowns
U(t), V (t) and W (t).

To guarantee the reliability of numerical simulations,
several key numerical parameters need to be carefully var-
ied over a range of possible values to give confidence in the
numerical results. Since we do not know a priori where
the internal layers are located and in order not to bias the
numerical method towards any region, we use a uniform
spatial mesh. To obtain a reliable spatial discretization, a
sufficient number of spatial mesh points N are needed. To
select the number N , we use the rule-of-thumb that the
numerical mesh should have an order of magnitude more
points than the size of the region of the internal layers.
As a guide, the asymptotic analysis of the internal layer
in the stationary problem leads us to expect a width of
ε = λ−1/3 for the internal layer. Therefore for λ = 106,
this yields ε = 0.01. The requirement that the mesh
spacing ∆x be an order of magnitude smaller than the
scaling ε width leads us to require ∆x = 1/1024 ≈ 0.001,
resulting in the choice N = 210 + 1 = 1025 for λ = 106.
Simulations with this relatively coarse mesh in one spatial
dimension are cheap and easily enable extensive param-
eter studies of the problem. By contrast, for λ = 109,
we have ε = 0.001 and the requirement from the rule-of-
thumb gives us a mesh size with N = 212 + 1 = 8193
points, for which numerical simulations are comparably
expensive. On the one hand, this explains the importance
of our result in Section 1 that the problem is already in
its asymptotic limit for λ = 106 and that simulations for
this significantly cheaper parameter value suffice. On the
other hand, we still need to demonstrate that the simula-
tion results used to draw this conclusion in Section 1 are
reliable. This is shown by the results in Section 3 that
carefully compare studies for λ = 109 across a range of
values N .

Since the problem (2)–(4) has significant transients in
time, it is vital for efficient simulations that the ODE
solver vary its time steps such that they are small dur-
ing the temporal transient for accuracy and large out-
side of the transients for efficiency. To this end, we use
Matlab’s ode15s function, which is an implementation
of the Numerical Differentiation Formulas (NDFk) [3],
a generalization of the well-known Backward Differenti-
ation Formulas (BDFk). Both methods are families of
methods with variable method order 1 ≤ k ≤ 5 and suit-
able for the solution of stiff ODE systems as they arise
from method of lines discretizations of reaction-diffusion
equations. ODE methods for stiff systems must necessar-
ily use implicit time discretizations. The implementation



in ode15s includes sophisticated automatic method order
and step size selection, based on estimating the local error
of the computed at every time step [3]. The user has con-
trol over the absolute and relative tolerance demanded of
this error estimator, where tighter tolerances are expected
to result in higher accuracy of the solution at the expense
of smaller time steps and more costly simulations. There-
fore, we have an interest in not selecting the tolerances
unnecessarily tight, but rather we wish to find the coars-
est tolerances possible for efficiency that still give reliable
numerical results. Careful studies in [6] analyzed the be-
havior of the numerical method and the reliability of the
solution across various ODE absolute and relative toler-
ance values for both relevant values λ = 106 and λ = 109

over a range of numbers of spatial mesh points N . These
studies guarantee the reliability of the simulations with
the values used in Figures 1 through 3. and these result
validate the use of the numerical solutions in our compar-
isons in Section 1.

3 Numerical Parameter Studies

The numerical solution of a problem involving an asymp-
totic parameter poses great risks, as numerical methods
are by their nature designed for problems whose solutions
and crucial quantities vary smoothly. But it is inher-
ent to asymptotic analysis that crucial quantities become
large or small as the asymptotic parameter increases to-
wards its asymptotic limit. Thus, to draw conclusions for
the asymptotic behavior of the model based on numer-
ical studies, we need to ensure the accuracy and relia-
bility of the numerical results for each fixed value of the
asymptotic parameter. We approach this issue here by
presenting the results of systematic studies of the numer-
ical parameters that control the accuracy of the numerical
method. While this should always be done before trust-
ing numerical results, this, as well as its explicit inclusion
in this paper, is particularly pertinent in the context of
asymptotic analysis.

Numerical parameter studies for both values of λ = 106

and λ = 109 in [6] analyzed which choices of ODE toler-
ances resulted in reliable numerical results for each fixed
value of the mesh resolution N . These studies were per-
formed for a range of spatial mesh resolutions N = 2ν +1
with ν = 9, 10, 11, 12 and varied the values of both abso-
lute and relative across relative (rel) and absolute (abs)
ODE tolerances. For λ = 106, the data in [6, Table 1]
shows that the numerical method is successful for rela-
tive tolerance values tighter than or equal to 10−3 for all
the values of the absolute tolerance at least as tight as
10−1. For λ = 109, we observed in [6, Table 3] that the
ODE solver breaks down before reaching the final time
tfin = 20 for the coarsest relative tolerances 10−2 and
10−4 attempted. The breakdown for these coarse toler-
ances is due to the time step not being permitted to de-
creased below the minimum value allowed. However, the
numerical method begins to succeed for relative tolerance
values tighter than or equal to 10−6 for all the values of
the absolute tolerance tighter than 10−2.

We also observed in [6, Table 3] that the computa-
tion time approximately doubles for every doubling of the
mesh resolution N . This explains our interest in analyz-
ing if reliable results can be obtained for coarser mesh
resolutions than the N = 8193 suggested by the rule-of-
thumb discussed in Section 2. If the solution is already
reliable for coarser mesh resolutions such as N = 1025,
this offers an approach to cheaper numerical simulations
for λ = 109. Thus, it is the purpose of the present sec-
tion to compare the crucial features of the solution of
the interface problem for λ = 109 across a range of mesh
resolutions N .

Following the accuracy study of the interface solutions
for convergent cases of [6, Table 3], we focus here on a
selected range of parameter values of the relative and ab-
solute ODE tolerances, namely the ones used in Figure 3.
That is, we keep the relative tolerance 10−6 and abso-
lute tolerance 10−8 fixed for each mesh size N = 2ν + 1
for ν = 9, 10, 11, 12, and we now check the accuracy of
the solution by considering plots of the concentration in-
terface motion as crucial feature of the interface prob-
lem. Figure 4 shows plots of the concentration interface
in the (x, t)-plane for the reaction coefficient λ = 109.
The top four plots overlay the cases of all N for com-
parison in progressively decreasing time spans. The left
bottom plot shows the movement of the portion of the in-
terface zoomed into 0.3 ≤ x ≤ 0.5 and 0.005 ≤ t ≤ 0.014.
The right bottom plot shows the movement of the por-
tion of the interface zoomed into 0.5 ≤ x ≤ 0.7 and
0.05 ≤ t ≤ 0.95. We observe that the interface results
for each mesh refinement track closely with each other
in every time span and zoomed view. Therefore, we see
no significant change in accuracy and the simulations for
λ = 109 are confirmed to be reliable already forN = 1025,
as used in the results in Section 1. Analogous results are
obtained for the relative tolerance 10−8 and absolute tol-
erance 10−8, the other set of values used in Figure 3.
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Figure 3: Simulation results of the concentration interface for both reaction coefficients λ = 106 and λ = 109 in the (x, t)-plane. The
top four plots overlay these cases for comparison in progressively decreasing time spans. The left bottom plot shows the movement of the
left portion of the interface zoomed into 0.3 ≤ x ≤ 0.5 and 0.005 ≤ t ≤ 0.014. The right bottom plot shows the movement of the right
portion of the interface zoomed into 0.5 ≤ x ≤ 0.7 and 0.05 ≤ t ≤ 0.95. A mesh size of N = 210 + 1 is used for both values of λ. The
data shown for λ = 106 used an absolute ODE tolerance of 10−4 and relative tolerances of 10−3 and 10−4. The data shown for λ = 109

used an absolute ODE tolerance of 10−8 and relative tolerances 10−6 and 10−8.

Figure 4: Simulation results of the concentration interface for reaction coefficients λ = 109 in the (x, t)-plane comparing cases of mesh
size N = 2ν + 1 for ν = 9, 10, 11, 12. The top four plots overlay these cases for comparison in progressively decreasing time spans. The
left bottom plot shows the movement of the left portion of the interface zoomed into 0.3 ≤ x ≤ 0.5 and 0.005 ≤ t ≤ 0.014. The right
bottom plot shows the movement of the right portion of the interface zoomed into 0.5 ≤ x ≤ 0.7 and 0.05 ≤ t ≤ 0.95. Constant values
for the absolute tolerance 10−8 and relative tolerance 10−6 are used.


