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Abstract

Stochastic precipitation generators can simulate dry and wet rainfall stretches for
long durations. Generated precipitation time series data are used in climate projec-
tions, impact assessment of extreme weather events, and water resource and agricul-
tural management. Daily precipitation is specified as a semi-continuous distribution
with a point mass at zero and a mixture of Exponential or Gamma distributions for
positive precipitation. Our generators are obtained as hidden Markov models (HMM)
where the underlying climate conditions form the states. Maximum likelihood estima-
tion for HMMs has historically relied on the Baum-Welch algorithm. We implement
variational Bayes as an alternative for parameter estimation in HMMs. In our simula-
tion study for a 3-state HMM with positive rainfall specified as a mixture of 2 Expo-
nential distributions, we get good posterior estimates when the model is initialized with
the correct number of states and mixture components. We also fit a similar model to a
single grid point within the Chesapeake Bay watershed based on GPM-IMERG remote
sensing data for the wet season between July to September from 2000-2019. Synthetic
data generated from the fitted model is able to replicate the monthly proportion of dry
days at the location, as well as the total monthly precipitation.

1 Introduction

The modeling and forecasting of seasonal and inter-annual variation in precipitation is used to
determine water allocation and resource management for regions dependent on precipitation
as a primary water source. To this end, precipitation generators are constructed to produce
time series of synthetic data representative of the general rainfall patterns within the region.
In particular, stochastic precipitation generators aim to replicate key statistical properties
of the historical data like dry and wet stretches, spatial correlations, and extreme weather
events. Stochastic precipitation generators are used to downscale numerical weather models



Figure 1: Graphical representation of a hidden Markov model.

and for climate projections, flood and drought assessments, and in studies pertaining to
agriculture, food security, as well as public and veterinary health (Breinl et al., 2017).

Hidden Markov models (HMM) is one common approach for building a stochastic weather
generator. An HMM is a doubly stochastic process {Sk, Yi}x>0 where {Si} is a Markov
chain, and conditional on it, {Y};} is a sequence of independent random variables such that
the distribution of Y} depends only on Sy. However, {Si} is unobservable, and only {Y}} is
observed. {Y}} could be distributed as a discrete, continuous, or a mixture distribution, and
could be multivariate. {Sk} is known as the state process and {Y} is called the emission
process. A graphical representation of an HMM is shown in Figure 1.

HMDMs have been applied to a wide class of problems such as speech recognition (Rabiner,
1989), DNA sequencing (Boys and Henderson, 2004), finance (Rydén et al., 1998), and
precipitation modeling (Hughes and Guttorp, 1994). In modeling precipitation as an HMM,
the underlying climate conditions form the state space. Furthermore, daily precipitation
data usually contains a large number of zeros corresponding to dry days. We therefore
consider a semi-continuous emission distribution with a point mass at 0 for no rainfall and
multiple exponential distributions for positive rainfall. Gamma distributions have also been
used as alternatives (Bellone et al., 2000). The groundwork for modeling precipitation using
HMDMs was laid out in Hughes and Guttorp (1994), and extended by Robertson et al. (2006).
Parameter estimation for HMMs has historically relied on the Baum-Welch algorithm, a
modification of the Expectation Maximization (EM) algorithm, which provides maximum
likelihood estimates. However, maximum likelihood methods for graphical models like HMMs
can lead to overfitting and tractability problems (Attias, 1999). Bayesian approaches are
often used to counter these issues; while Markov chain Monte Carlo (MCMC) methods use
sampling to find the posterior distribution, variational Bayes (VB) uses optimization to
obtain an approximate posterior. The approximate posterior is referred to as the variational
posterior, and is computed using an iterative EM-like algorithm which always converges
(Attias, 1999). The variational posteriors have analytical forms and can be used to perform
Bayesian inference. (Blei et al., 2017) provides a review of variational inference, and work
focusing on the theoretical properties of the posteriors can be found in Zhang and Gao
(2020); Wang and Blei (2019); Pati et al. (2018); Yang et al. (2020).

The rest of this article is organized as follows. A brief outline of variational inference is
presented in Section 2. Section 3 introduces the HMM for precipitation at a single location
with a semi-continuous emission distribution and its parameter estimation using variational
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Figure 2: Variational inference represented as an optimization problem

Bayes. Section 4 contains a simulation study, as well as a study for daily precipitation at
a single grid point within the Chesapeake Bay watershed based on remote sensing data.
Section 5 provides concluding remarks and future directions.

2 Variational Bayes for Approximating the Posterior
Distribution

The variational Bayes (VB) algorithm provides an alternative to MCMC methods by approx-
imating the posterior of the latent variables and parameters with a family of distributions
Q, referred to as the variational family. @Q is indexed by its own variational parameters, and
we look for the best approximation to the true posterior within Q. The Kullback-Liebler
(KL) divergence serves as a measure of how well the variational posterior approximates the
true posterior, and the optimum satisfies

q(-) = argmin, ()oK L(q(2) || p(zly)). (2.1)

The optimum values of the hyperparameters are found using an EM-like algorithm; Figure
2 contains a visual representation of variational inference. Note that the true posterior is
typically not in the variational family Q.

The objective function in (2.1) involves the posterior p(z|y) which is often difficult to
compute in practice. However, the minimization in (2.1) is equivalent to the maximization
of a quantity known as the evidence lower bound (ELBO), defined as

ELBO(q) = E[log p(z, y)] — E[log ¢(z)]. (2.2)

The equivalence follows from the identity

logp(y) = KL(q(2) || p(2]y)) + ELBO(q), (2.3)
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and the fact that the evidence log-likelihood log p(y) is a function of only the data and
therefore fixed. All expectations in (2.3) are taken with respect to the variational posterior
distribution ¢(z). Since the KL divergence is non-negative, it follows that the ELBO is indeed
a lower bound; Jordan et al. (1999) obtained the inequality directly by applying Jensen’s
inequality to logp(y). The methodology for using VB optimization to estimate HMM pa-
rameters is outlined in MacKay (1997) for a discrete emission process, and in Ghahramani
and Beal (2000) for emissions arising from a conjugate exponential family. Ji et al. (2006)
have used the VB algorithm on HMMs where the emissions are continuous mixtures, and
McGrory and Titterington (2009) have discussed model selection in variational HMMs using
the Deviance Information Criterion (DIC) when the size of the model is unknown.

3 VB-HMM for Univariate Semi-Continuous Emissions

We now develop VB estimation for HMMs with a univariate semi-continuous emission dis-
tribution. We refer to it as a VB-HMM and will use it to estimate the parameters of an
HMM for precipitation at a single location. Let y1.7 = {1, ..., yr} be the precipitation time
series of length T, with y, > 0. The data is generated by a set of underlying hidden states
st = {S1,...,5t,...,57}, where each state s; € {1,..., K}. Further, for each state j we
define an indicator variable to connect the underlying state to the emission distribution:

Ttjm =1{y: comes from the m'™ mixture component |s; = j}, m =0,1,..., M,

where 74 = (740, 1, - - - Ttjm) 1S encoded as a one-hot vector with ;o indicating no-rainfall
events. We assume that the number of states (K) and mixture components (M+1) in the
HMM are known. For each state j, r;; follows a categorical distribution which corresponds
to a single draw from a multinomial distribution, given by

M
pi(rijlej, st =7) = Hc;:f;bm, m=0,1,..., M, (3.1)
m=0
where p;(+|-) = p(-|-, ss = j) corresponds to the distribution for state j, ¢; = (¢jo, ..., ¢jm)

are the mixture probabilities parameterizing r;, with ¢;,, > 0 for all m, and Z%:O Cjm = 1.
If we assume that positive rainfall for the m! mixture component (where m > 0) from state
j follows an exponential distribution with rate Aj;;,,, the distribution of an observation from
state 7 is given by

(e Ti5|Njs ¢y 80 = ) = prejles, s = J) - p(Yel Aj, 1, s¢ = J)

e 3.2
=i H [CimAjm exp{=Njmy}] ™. (3.2)
m=1

The complete data likelihood is given by

p(y7 S, 7,|(9> = p(y7 T"S, @) ’ p(5|@)7



where p(s|©) is the distribution of the states which factorizes into the distribution of the
initial state m; = p(s;) and the distribution of the state transitions p(s;y1|s;). For j, k =
1,...,K, m; = Pr[s; = j| are the initial state probabilities and aj; = P[s;11 = k|s; = J]
are the transition probabilities. A = ((a;x)) is the K x K transition probability matrix, and
C = ((¢jm)) is the K x (M + 1) matrix of mixture probabilities. Similarly, A = ((Ajn))
is a K x M matrix whose elements are the independently distributed rate parameters of
the exponential distributions which are part of the semi-continuous emissions in each state.
Taken together, © = (A, C, A, m) parameterizes the HMM. We assign a prior on © which
factorizes into a product over its components. That is,

p(0 ) = p(m) - p(4) - p(C) - p(A),

where v are the hyperparameters. We assign independent Dirichlet priors to the rows
of A, and to the rows of C. Similarly, a Dirichlet prior is assigned to m;. Note that if the
elements making up the parameter vector of a Dirichlet distribution are equal, it constitutes
a symmetric Dirichlet distribution. The sum of the elements of the parameter vector is
known as its concentration. A symmetric Dirichlet distribution indicates no prior knowledge
favoring one component over another. Finally, independent Gamma priors are assigned to
each element of A. That is,

p(m) = Dz’m’chlet(m’f(o))’
K
— H Dirichlet(aj|%('0))v

j=1

K
= H Dz'rz'chlet(cj\gj(o)),

j=1
K M

and p(A) = H H Gamma( ]mhjm, ]?,)L)
j=1m=1

0 0 (0) 0 0
where a; = (aj,...,ajk), 7T1 = (7?11,.. L TK ), Cj() = (Cjo ... C( )) j = (a§-1),...,oz§[2),
and ¢© = (5%0), e E?) fyjm and (5 are the shape and rate parameters of the Gamma

distribution respectively. The hyperparameters (73('0)7 5J(-0), ¢ 0 O

i ,€0) are known.
The complete data likelihood can be expressed as

T-1 K K

K
i€ = [T= TTT L@} TLTT I ae}
j=1

t=1 j=1 t=1 j=1k=1

T K
= exp{z s1;logmyj + Z Z {Z StjTim (108 Cjm + 108 XNjm — Yt Ajm)  (3.3)

t=1 j=1 "m=1

K K
E E SthtJrl,klOgajk}a

t=1 j=1 k=1

-1
+ stj7tj0 log Cj0:| +
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where s;; = [{s; = j} denotes the daily state and s;;s:+1 denotes a typical state transition.
Similarly, we write the prior as

p(©v ) = p(m) - p(\) - p(C) - p(A)

K
= exp{Z{ 1)logm; + Z S Aim + (Vi = 1) 1og Ay

(C( ) 1)logcjo + Z (0) 1) log cjpm + Z(aﬁ) —1)logaj} — log h(o)},
k=1

(3.4)

where h®) = (1) is the normalizing constant for the prior. Comparing this expression
with the canonical form for the conjugate exponential family, we arrive at the following
expressions for the natural parameters ¢(0), their sufficient statistics wu(s,y,r), and the
hyperparameters v():

_ - _ - [ (0) T

log T 815 5](0) 1

log ¢jo 8t§Ttj0 CJ(%) -1

log c; S¢iTi ¢ —1
0) = Jm u(s,y,r) = Joam O = | Sm 3.5
2O)= 1o 2,0, Sy =1 B (3.5)

Ajm YeStiTtim 53(,22
| log ajy | | StjSt+1,k | O‘J('?g) 1

form=1,...,.M,7=1,..., K,k = 1,..., K. The variational family Q is constrained to
distributions which are separable in the following manner:

1:(2) = qo(O) - g5 (s,7),
where go(0) = q(m1) - ¢(A) - q(C) - q(A).

Note that ¢o(©) and g,,(s,r) are coupled in (3.6), and the optimization problem in (2.1)
cannot be solved analytically. Instead, it is solved numerically by iteratively optimizing
qo(0) and g; (s, ) using a variational Bayesian generalization to the EM algorithm (VBEM).
The results in MacKay (1997) and Ghahramani and Beal (2000) for belief networks form
the basis of our approach. In the variational M-step, ¢s,(s,7) is fixed and ¢o(O) is updated,
with the posterior taking the same form as the conjugate prior. Since we assume gg(©) to
decompose as in (3.7), each of its components can be updated individually. In the variational
E-step, we seek to update ¢s, (s, ) while holding go(©) fixed. Since the HMM’s states are
first order Markov, we need to take the temporal dependency into consideration if we want
meaningful estimates for the latent variables. We accomplish this by adapting the Forward-
Backward algorithm, a central part of the Baum-Welch algorithm, into our VBEM. McGrory
and Titterington (2009) have described the variational Forward-Backward algorithm for



univariate Normal distribution emissions. We lay out the steps for our VBEM algorithm
which closely follow the estimation for mixture marginal emissions described in Rabiner
(1989).

Variational M-step (VBM): With the variational posteriors on hidden variables fized
at qs»(s,7), update the variational posterior qo(©) on the model parameters.

Since qo(0O) is conjugate to the prior, the posterior distribution for each component of
#(©) in (3.5) is obtained by updating the coordinates of v(?) with the expected values of the
corresponding sufficient statistics u(s,y,r). To this end, we denote the expectations of the
latent variables in (3.3) under ¢, (s,r) as

= E(s15),
= E(s),
Gtjm = E(rtjm),
and qjk = (St]5t+1 k)

where j,k=1,...,K and m = 0,1,..., M. The variational updates at each iteration of the
VBM step are then given by

0
& :f](' ) + q1j,

T
0
Go = C](o) + Z 3 G150,

t=1

T
0
ij - Cj(nz + Z qeiqtim,
/y]m + Z QtJQtjrm

0
Ojm = 53(772 + Z Gt QtgmYt;

t=1
T-1
_ (0)
Qg = Oy’ + E 4k,
t=1

where j,k=1,..., Kandm=1,..., M.

Variational E-step (VBE): With the variational posterior on the model parameters
qo(0) fized, update the variational posterior qs,(s,r) on the latent variables.

The variational posterior g, ,(s,7) has the same form as the known parameter posterior,
ie.

T K M T-1 K K
o) s L T v T s s
=1 j=1m=0 t=1 j=1k=1

j=1 i=1 k=



with the natural parameters ¢(©) replaced by their expectations under go(©). Comparing
with (3.3), we get

ay; = exp{EQ logmj} = exp{\Il(gj) — \I/(f.)},
and aj;, = exp{EQ log ajk} = exp{\I/(ajk) — \Il(aj,)},
where U(-) is the digamma function and & = Z]K=1 &, a; =30 aj.
B exp{EQ log [cjo]} ifm=20,
exp{Eqlog[cjmf(ye|\jm)]}  if m > 0.

The expectations of the individual terms in b}

Similarly, b;

tim

tjm are:

M
Cim = exp{EQ log cjm} = exp{\I/(ij) — \I/(C])}, where (; = Z Cim,
m=0

N = exp{Eqlog \jm } = exp{ ¥ (35m) — log jm },
Nim = EQXjm = Vim/Ojm.

W(Cio) — W(;. it m=20
Therefore, 5, = exp{ (o) — ¥(¢;)} Lo hm=0
exp{ ¥ (¢jm) — V() + U (Yjm) — 10g 0jm — Yes }oifm>0.

Here aj; estimates the initial state probabilities, a}, estimates the transition probabilities

from state j to state k, and by; = Z b;‘]m estimates the emission probability distribution

conditional on the system being in state j at time ¢. They can now be used as part of
the Forward-Backward algorithm described in Appendix A to get our desired variational
posterior estimates for the state probabilities as well as the cluster assignment probabilities.
The updates to the variational posterior on the latent variables are

qj = ay,
Fy - By
Zf:l Ftk : Btk>
Fyj-al biyy g Bk
Zjl'; ZkK:1 th Sy b:—&-l,k : Bt+1,k.

where th and Btj are the scaled Forward and Backward variable respectively. The posterior
for the mixture assignments is given by

1 itm=0,y=0
Gtjm X 4 0 iftm>0,y, =0orm=0,y, >0
(yt|)\]m7 m) lfm > ant > O

qi; =

qjk =

where c7,, (yt|)\3m, im) = exp{\IJ Cim) — V(G.) + Y (Vjm) — log jm — /% m}
NOte that when there is exactly one mixture component for positive rainfall (M = 1),
observations are assigned to mixture components in a deterministic manner, fixing ;.
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Assessing convergence

Using Equations (3.3)—(3.8), we can rewrite the ELBO as
ELBO(q) = Eysy log p(y, s,7) 4+ Eqe) log p(©) + H (q(s,7)) — Ege) log ¢(©),

where H (q(s, 7‘)) is the entropy of the variational posterior distribution over the latent vari-
ables. Beal (2003) and Ji et al. (2006) have shown that this simplifies to

ELBO(q) = logq(y|©) — KL(q(m) || p(m1)) — KL(a(A) || p(A))
— KL(q(C) [ p(C)) = KL(q(A) || p(A)).
where the first term on the right hand side is calculated as part of the Forward algorithm

in (A.1). This relationship is used to compute the ELBO at each iteration, and we declare
convergence once the change in ELBO falls below a desired threshold.

(3.9)

4 Applications for Simulated and Real Data

4.1 Simulation Study

We simulated 1800 time-steps from an HMM with 3 states (K=3), each with a dry component
and 2 wet components (M=2), corresponding to 1800 days of daily precipitation data. For
the simulation, we consider the initial probability vector to be m; = (0.7,0.2,0.1) and

0.45 0.35 0.20 0.3 0.5 0.2 0.08 1
A= 1030 0.40 0.30 C=103 03 04 A= 10.60 5
0.30 0.30 0.40 0.5 0.2 0.3 1.00 8

where A, C, and A are the matrices of transition probabilities, mixture assignment proba-
bilities and exponential rate parameters for precipitation respectively.

We keep our prior specifications as broad as possible, and assign symmetric Dirichlet
priors for 1 and A. p(m;) has a concentration of 1, and each row of p(A) has a concentration
of 10. Low concentration values are preferred since we do not want the prior to dominate the
data. Without loss of generality, we order the states to correspond to heavy, medium and
low rainfall respectively. Further, we order the exponential distributions within each state
as follows:

3.0 4.0 3.0 0.5 2
(@ =130 35 35 O =115 9
4.0 3.0 3.0 2.0 16

The rate parameter for each of the Gamma priors is set to 2. This assignment follows the
reasoning that wetter states will have lower exponential rates and higher mixture probabilities
for exponential components, while drier states will have higher rates and more weight placed
on the dry component corresponding to m = 0.

9
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Figure 3: Histogram of the proportion of dry  Figure 4: Histogram of mean positive rain-
days in 1800 days of data simulated using the es- fall (mm) in 1800 days of data simulated using
timated parameters from each of the 1000 simu-  the estimated parameters from each of the 1000
lation studies. The blue line at 0.36 denotes the  simulation studies. The blue line at 3.97 mm
Monte Carlo estimate of the true proportion of  denotes the Monte Carlo estimate of the true
dry days. mean of rainfall on wet days.

We average the posterior estimates obtained from the 1000 simulations of the VB-HMM.
The posterior for the initial state probability is 73 = (0.38,0.27,0.35). Similarly,

) 0.43 0.30 0.27 ) 0.29 0.50 0.21 ) 0.08 0.92
A= (031 0.33 0.36 C=1032 029 0.39 A= 10.60 4.62
0.30 0.33 0.37 0.47 0.21 0.32 1.00 8.09

We see that for the mixture probabilities and the exponential rate parameters where we
weigh our prior concentrations based on how weather states tend to be, the posteriors are
quite close to the true values. But for the initial probability and the state transitions which
have symmetric priors, the posteriors are not as close to the true values. We also found
that while we can make the Dirichlet prior for the mixture probabilities symmetric without
significant loss of accuracy in the posterior, the model is sensitive to the Gamma prior’s
hyperparamters.

For each of the 1000 simulations, we also generated 1800 days of data based on that
iteration’s estimated parameters to verify whether some of the key statistical characteristics
of the HMM are captured. We compute the proportion of dry days and mean rainfall for
wet days from each of these 1000 datasets. They are compared with Monte Carlo estimates
derived from the true parameters. Figure 3 shows a histogram of the monthly proportion of
dry days based on 1000 estimates. The blue line is an estimate of the true proportion 0.36.
The 1000 estimates have a root mean square error (RMSE) of 0.02. We notice a slight neg-
ative skew in our histogram, suggesting the proportion of dry days is being underestimated.
Similarly, Figure 4 plots a histogram of mean rainfall for wet days; the blue line at 3.97 mm

10
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Figure 5: Land cover classes within the Figure 6: Total rainfall for Jul-Sep over the
Chesapeake Bay watershed in the East coast Chesapeake Bay watershed based on GPM-
of the USA. IMERG data for 2000-2019.

is an estimate of the true mean. The 1000 estimates have an RMSE of 0.36 mm, and have
a slight positive skew. However, neither histogram shows noticeable bias.

4.2 Precipitation over the Chesapeake Bay watershed

Our region of interest is the Chesapeake Bay watershed which includes parts of six states and
nine major river systems on the East Coast of the USA. Figure 5 shows the watershed and the
different land cover classes within it. The watershed has a diverse, interconnected ecosystem
which is affected by extreme weather potentially related to climate change (Chesapeake
Bay Program, 2012), and has been targeted for restoration as an integrated watershed and
ecosystem. Daily remote sensing precipitation data is available for the watershed from the
Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM-IMERG)
dataset (Huffman et al., 2019), and we focus on the months of July to September for 2000
2019 for our study. With a 0.1° x 0.1° spatial resolution, the IMERG dataset covers the
64,000 square mile watershed with 1927 grid points. Figure 6 depicts seasonal rainfall for the
months of Jul-Sep over the watershed based on GPM-IMERG data. We choose a grid point
at random within the watershed for parameter estimation using the VB-HMM algorithm,
and simulate synthetic data for the location.

The randomly selected grid point is located approximately at 38°16" N, 76°27" W. We have
found that 4-6 state HMMs with 3 mixture components tend to be sufficient when modeling
precipitation over the entire watershed (Majumder et al., 2020). Since we are working with
a single location, we fit a 3 state HMM to the data. We assign a symmetric Dirichlet prior
to the mixture probabilities with a concentration of 12 for each state. The shape parameters
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Figure 7: Convergence of the ELBO to local optima for 20 random restarts of the VBEM algorithm
for a 3 state HMM with 3 mixture components.

for the Gamma priors are randomly chosen. Within each state, the first shape parameter
is sampled from a Uniform(0,1) distribution, and the second shape parameter sampled from
a Uniform(1,20) distribution. The remaining priors are identical to what we used in our
simulation study.

One difference in our data compared to the simulation study is the presence of breaks.
Since we use 3 months of data for 20 years, each year’s precipitation is effectively an indepen-
dent chain generated from the same HMM. We modify our VBEM algorithm to accommodate
for this, following the outline in Rabiner (1989). Further, different initializations may lead
to different local optima of the ELBO (Blei et al., 2017). Figure 7 demonstrates the conver-
gence of the ELBO for 20 random restarts of the model by plotting the first 200 iterations of
the ELBO for each restart. The restarts correspond to different 4(®) matrices which contains
the shape parameters for the Gamma priors. We choose the solution which converges to the
best local optimum in these 20 runs as our final model.

The VB-HMM provides the posterior estimate 77; = (0.51,0.15,0.34), and

3 0.39 0.39 0.22 ) 0.16 0.60 0.24 3 0.74 16.56
A= 1032 0.49 0.19 C = 10.09 0.87 0.04 A= {0.09 5.10
0.29 0.16 0.55 0.92 0.01 0.07 0.02 11.22

We see that the third state is the driest, with a probability 0.92 of zero precipitation. The
second state is the wettest with a probability 0.87 of precipitation from an exponential
distribution with a rate parameter of 0.09. The first state is an intermediate state which
would have lower rainfall than state 2 and fewer dry days compared to state 3. It is also the
initial state for our HMM.

We simulated 20 years of synthetic precipitation from this fitted model to compare with
the historical IMERG data for 2000-2019. Our synthetic data also contains 3 months of
data for each year. Figure 8 compares the distribution of the proportion of dry days for each

12
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Figure 8: Boxplots of the monthly propor- Figure 9: Boxplots of total monthly precipi-
tion of dry days in historical IMERG data tation in historical IMERG data (2000-2019)
(2000-2019) and synthetic HMM data. and synthetic HMM data.

month in our IMERG and synthetic data. Even though both distributions have the same
median of 0.3548, the synthetic data tends to underestimate the monthly proportion of dry
days. Similarly, Figure 9 compares the distribution of monthly precipitation for IMERG
and our synthetic data. The IMERG data has a median monthly precipitation of 110 mm,
whereas the synthetic data has a median of 102 mm. In both figures, we notice that the
variability in the synthetic data is higher than the IMERG data. The code and datasets
for the simulation study as well as the HMM for IMERG data over the Chesapeake Bay
watershed can be found at https://github.com/reetamm/VB-HMM.

5 Conclusions

The VB-HMM for precipitation at a single location can estimate the true parameters under
general prior specifications. In particular, we found that as long as we assume an ordering of
the positive rainfall and set reasonable priors for the mixture components and exponential
rates, our corresponding posteriors are quite close to the true values. The posterior is farthest
from the true values for the initial probability distribution and some entries of the transition
probability matrix. For the initial distribution, the variational update depends only on one
data point, and unless the Dirichlet prior has very low concentration or is asymmetric, it
will dominate in the posterior.

In our preliminary study for remote sensing precipitation data at a single grid point
over the Chesapeake Bay watershed, our estimated parameters showed clear dry, wet, and
intermediate states, even when the model is initialized with very general priors. Further, syn-
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thetic data simulated using the estimated HMM parameters were able to replicate monthly
precipitation as well as monthly proportions of dry days.

Future work will focus on HMMs with 4-7 states which are quite common in precipitation
modeling. Under this setup, we want to explore the algorithm’s sensitivity to initial values.
Rabiner (1989) notes that the Baum-Welch algorithm is sensitive to the initial values of
the emission distribution parameters, and suggests using a combination of Viterbi decoding
(Viterbi, 1967) and k-means clustering to assign a state and a mixture component to each
observation while initializing the algorithm. We believe a similar approach would benefit the
VB-HMM as well. Additionally, we want to relax the assumption of known K and M, and
initialize the model with a larger number of states or mixture components compared to the
true model. Variational methods have been shown to identify the correct number of states in
HMMs (McGrory and Titterington, 2009), and the correct number of mixture components
for mixture models (McGrory and Titterington, 2007), but has not been tested for HMMs
with semi-continuous emissions. The Deviance Information Criterion (DIC) can be used for
model selection in such cases.

Finally, we will use precipitation over the Chesapeake Bay watershed during the rainy
season as our demonstrative example for modeling multi-site rainfall. The current model
specification extends naturally to multi-site precipitation, where precipitation at each lo-
cation is considered independently distributed conditional on the daily state. EM based
methods tend to underestimate spatial correlations for such models when working with re-
mote sensing data over large areas, and Gaussian copulas can be used to capture the spatial
correlation within the data (Majumder et al., 2020) if the VB-HMM cannot capture the spa-
tial correlation adequately. Additionally, we will focus on efficient and scalable computation
by replacing our current coordinate ascent optimization with stochastic gradient methods,
and using the message passing interface (MPI) protocol for parallelizing our code wherever
possible.
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Appendices

Appendix A The Forward-Backward Algorithm for VB

The Forward Variable is defined as the joint probability of the partial observation sequence
up to a time £, and the state s; at that time point

th:p(yla"'ayt78t:j)'

It is calculated for every time point using recursion. To prevent underflow errors, we scale
the Forward Variable at every step. Rabiner (1989) has shown that scaling at each step is
equivalent to scaling the entire sequence by the sum of all states at the end.

1. Initialization: For all j = 1,..., K, define

Flj =TT ‘P(y1|81 = j)7

1 .
¢1 = —z—— and normalize
Zj:l Flj
Flj =C1- Flj-
2. Recursion: for t = 2,...,T and for each state k = 1,..., K, use the recursion

K
F, = [Z Fy1j-p(si = k|si_1 = ) | p(w]s, = k) and normalize

=1
th = Ct - Ftk where
1

- K
Ej:l th

Note that th = (Hi:1 ¢;)Fy;. Using the definitions provided, this gives us

110) =3 fry = — (A1)

T )
j=1 | g

where ¢(y|©) is the normalizing constant for the variational posterior gy, (s,r) in (3.8).
The Backward Variable is defined as the probability of generating the last 7-¢ observa-
tions given that the system is in state j at time ¢

Btj = p(yt+1, e 7yT|5t = j)'

The Backward Algorithm has similar steps but works its way back from the final time point.
Additionally, we use the same scaling factors that we derived in the Forward Algorithm.
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1. Initialization: For each state j, set

BTj =1 s and

BTj = BTj - Cr.

2. Recursion: for t =T — 1,...,1 and each state j, calculate
K
Btj = ZP(StH = k’|5t = j) : Bt+1,k ‘p(yt+1|5t+1 = /f)7
k=1
Btj = Btj * Ct.

The two algorithms can be run in parallel. Once both variables are calculated, we get

QS(St = j‘yla cee 7yT) X th : Btj> and
qs(St =7J,5¢41 = /f) X th 'p(8t+1 = k|5t = j) 'p(yt+1|5t+1 = k) ) Bt+1,k~
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