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Abstract. Proton beam radiotherapy is a cancer treatment method
that uses proton beams to irradiate cancerous tissue while simultane-
ously sparing doses to healthy tissue. In order to optimize radiational
doses to the tumor and ensure that healthy tissue is spared, many re-
searchers have suggested verifying the treatment delivery through real-
time imaging. One promising method of real-time imaging is through a
Compton camera, which can image prompt gamma rays emitted along
the beam’s path through the patient. However, the images reconstructed
with modern reconstruction algorithms are often noisy and unusable for
verifying proton treatment delivery due to limitations with the camera.
This paper demonstrates the ability of deep learning for removing false
prompt gamma couplings and correcting the improperly ordered gamma
interactions within the data for the case of Double events.

1 Introduction

Proton beams’ primary advantage in cancer treatment as compared to other
forms of radiation therapy, such as x-rays, is their finite range. The radiation
delivered by the beam reaches its maximum, known as the Bragg peak, at the
very end of the beam’s range. Little to no radiation is delivered beyond this point.
By exploiting the properties of the Bragg peak, it is possible to only irradiate
cancerous tissues, avoiding any damage to the healthy surrounding tissues [1].
However, without some way to image proton beams in real time, limitations
exist in our ability to take full advantage of the dose delivery properties of the
proton Bragg peak. This is due to uncertainties in the beam’s position in the
body relative to important organs that should not be irradiated.

The Compton camera is one method for real-time imaging, which works by
detecting prompt gamma rays emitted along the path of the beam. By analyzing
how prompt gamma rays scatter through the camera, it is possible to reconstruct
their origin. However, the raw data that the Compton camera outputs does not
explicitly record the sequential order of the interaction data, which represents
scatterings of a single prompt gamma ray. In addition, it often records false
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events, which mislabel scatterings of distinct prompt gamma rays as originat-
ing from a single ray. These problems make reconstructions based on Compton
camera data noisy and unusable for practical purposes [1].

We approach these problems by leveraging deep learning techniques. We use
neural networks, which, in general, represent data transformations. The net-
work is trained by passing data through it, then updating it systematically so as
to reduce the loss of its output compared with some desired output. Doing this
properly can create a model that exploits subtleties in the data which traditional
models are unable to use [2]. We show how this can be done in the following sec-
tions. Additional discussion about the impact of the approach on the application
area can be found in [3].

The remainder of the paper is organized as follows. Section 2 discusses the
biomedical application for this research. Section 3 describes a Compton camera
and how we use it to collect data for our neural network. The network is then
described in Section 4, where we discuss parts of the network’s architecture.
The model is tested on data in Section 5, where the resulting classifications are
used for reconstruction. Section 6 makes general conclusions and proposes future
directions for the research.

2 Proton Beam Therapy

To a first order approximation, the radiation dosage emitted by a proton beam
is inversely proportional to the kinetic energy of the particles within the beam.
Because the beam’s particles lose kinetic energy as they traverse the patient, the
amount of radiation delivered by the beam is low at its entry point, gradually
rising until the beam nears the end of its range, at which point the delivered
dosage rapidly reaches its maximum. This point of maximum dosage is called
the Bragg peak. Little to no radiation is delivered beyond the Bragg peak. These
characteristics of proton beam therapy give it a distinct advantage over x-rays.
Exploiting its finite range, medical practitioners can confine the radiation of
the beam to solely areas affected by cancerous tumors. Vital organs beyond the
tumor can be spared [1].

While the characteristics of proton beam therapy explained above would in
principle greatly reduce the negative effects of radiation therapy, there are still
practical limitations. In current practice, the patient’s body is imaged before
undergoing treatment in order to map the position of the tumor. Because proton
beam therapy consists of multiple sessions over a period of one to five weeks, the
relative size and position of the tumor within the patient’s body may change as
surrounding tissues swell, shrink, and shift as a response to radiation. Therefore,
whenever using proton beams, a safety margin must be added to the position
of the Bragg peak in order to fully irradiate the tumor. This rules out certain
beam trajectories that would otherwise minimize damage to healthy tissue [1].

Figure 1 compares two possible beam trajectories through a cross-section
of the chest [1]. In this case, the heart, outlined in purple is positioned at the
top-center of the figure and a tumor, outlined in green is located next to it.
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Fig. 1: (a) Optimal proton beam trajectory. (b) Suboptimal trajectory necessary
to protect heart.

The optimal trajectory, shown in the left image, uses a single beam, which is
represented as the space between the dashed white lines, to fully irradiate the
tumor while stopping before reaching the heart. However, due to uncertainty in
the exact location that the Bragg peak occurs (and the beam stops), a safety
margin is added to the end of the optimal beam path to ensure the tumor
always receives the prescribed dose even in the presence of day-to-day changes
in patient setup and patient internal anatomy. This safety margin is represented
in the figure as an orange strip at the end of the beam. This margin partially
overlaps with the heart, which would mean a portion of the heart would receive
the full treatment radiation dose. Since the heart is highly sensitive to radiation
damage, it is very important that the radiation dose received by the heart is
kept to a minimum. Therefore, in practice, the optimal trajectory is not used
for treatment and instead the trajectory in the right image with two separate
beams is used. Using two beams reduces the dose to the heart, but is considered
suboptimal as these beams result in more radiation being delivered to a larger
amount of healthy lung tissue. However, although suboptimal, it is considered
preferable for treatment, since the beams avoid the heart [1].

If we were able to provide real-time information on the proton beam as
it passes through the patient during live treatment, then we could ensure it
is covering the tumor as intended, and safety margins (used to ensure tumor
coverage) could be smaller and, thus, the more optimal treatments could be used.
For instance, with proper real-time monitoring of the proton beam delivery, the
optimal single beam treatment shown in Figure 1 (a) could be used without
delivering high radiation doses to the heart while minimizing radiation to the
lungs.

3 Compton Camera Imaging

3.1 Introduction to the Compton Camera

In order to exploit the full advantages of proton therapy, many researchers are
investigating methods to image the beam in real time as it passes through the
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patient’s body [1]. One proposed method for real-time imaging is by detect-
ing prompt gamma rays that are emitted along the path of the beam using a
Compton camera.

As the proton beam enters the body, protons in the beam interact with atoms
in the body, emitting prompt gamma rays. These prompt gamma rays exit the
body, some of which enter the Compton camera. Modules within the Comp-
ton camera record interactions with energy levels above some trigger-threshold.
These modules have a non-zero time-resolution during which all interactions are
recorded as occurring simultaneously. For each interaction (that is, Compton
scatter) an (x, y, z) location and the energy deposited are recorded. The collec-
tion of all interaction data that a camera module collects during a single readout
cycle is referred to as an event [4].

In principle, it is possible to use the data that the Compton camera outputs
(paired with a suitable reconstruction algorithm) to image the proton beam,
however, this has been shown to only be feasible at low energy levels. At the
higher energy levels more typical of proton beam therapy, reconstructions of the
beam are far too noisy to be helpful. This is a result of two main limitations in
how the Compton camera records events.

At the higher energy levels typically used in treatment, proton beams emit a
larger number of prompt gamma rays per unit time, increasing the likelihood of
false events. Also, prompt gamma rays are more likely to scatter at higher energy
levels, leading to more multi-scatter events which will be unordered. These two
effects greatly diminish the accuracy of Compton camera reconstructions at high
energy levels, making them unusable as explained further in [4].

There are several prompt gamma image reconstructions which can be used in
conjunction with Compton camera data, such as the shifted histogram method
seen in [5], but they produce bad results and thus cannot be effectively used
with raw Compton camera data. The algorithms have a base assumption that
the data has no false events and no misorderings. The order of interactions is
directly connected to the path the prompt gamma took from the origin point.
If the order of the interactions is shuffled, then the origin point of the prompt
gamma will change and no longer be representative of the proton beam. These
algorithms assume that the data they are working on is mostly perfect and all
events within are suitable for use. If the Compton camera data could be denoised
in an accurate, fast, and systematic way, then the Compton camera would be a
viable method for prompt gamma image reconstruction.

3.2 The Representation of Events

Multi-scatter events can be classified into five categories: False Triples, False
Doubles, Double to Triple, True Triples, and True Doubles. A False Triple event
consists of three interactions which all originate from separate prompt gamma
rays that happened to enter the same module of the camera at the same time.
These should be removed from the data before reconstruction. Similarly, False
Double events contain two interactions originating from separate prompt gamma
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rays. These too should be removed. A Double to Triple event contains two in-
teractions corresponding to the same prompt gamma ray, and one interaction
from a different prompt gamma ray. The non-corresponding interaction should
be removed before reconstruction. The two remaining categories of events are
True Double and True Triple events, which, once properly ordered, can be used
for reconstruction. Detecting the correct ordering for the interactions of true
events is, by itself, a non-trivial task. The studies in this paper focus solely on
True and False Double events. However, the general neural network architecture
used for the Double events in this paper is also used on the other multi-scatter
event categories [6].

Fig. 2: An illustration of events.

Figure 2 shows a schematic of the Compton camera as it records events.
The left side shows events produced at low energy levels and the right shows
higher energy levels. Each row represents an independent module of the camera.
The red arrows represent scatters, with those originating from the same prompt
gamma ray being connected by a dotted line. A raised pulse represents a single
readout cycle within a module of length TA. The value n is how many interactions
occur during the readout cycle. Looking at just the left side, the first two rows
show a True Double and True Triple event, respectively. The third row shows a
False Double event consisting of two scatters originating from different prompt
gamma rays. The fourth and fifth rows show two True Single events that consist
of separate scatters by the same prompt gamma ray. The right side representing
higher energy levels shows a far greater proportion of false events.

The raw data output but the Compton camera for each interaction is of the
form (ei, xi, yi, zi), where for i = 1, 2, 3, ei is the energy level, and xi, yi, zi are
the x-, y-, and z-coordinates respectively. It is important to note that for any
event i could be 1, 2, or 3 as each event can have up to 3 interactions included.
For events with less than 3 interactions, for the values of i that are not included
in the event, the corresponding (ei, xi, yi, zi) would be left empty or as NaN.



6 Gerson C. Kroiz et al.

To improve the performance of our networks, we find it useful to append
two extra values to the raw Compton camera data. In this version, we add
the distances δri,j between the ith and jth interactions, where i, j = 1, 2, 3.
Since these values have physical significance with regards to the ordering of
interactions, explicitly including them in the data makes it easier for the networks
to learn.

4 Deep Learning

There is often the question whether or not deep learning is needed. If simpler,
faster, easier to use methods exist, then one should just opt for those methods
instead. In the context of our problem, there is currently no adequate physical
model which will quickly and accurately determine the ordering of the Compton
camera interactions. Since there is no physical model which we can use, then the
next question is whether simpler and more accurate machine learning models
can be used. In [6] we did a hyperparameter study using random forests with a
maximum depth of 30 and 1400 estimators. Random forests near maximum depth
yielded little benefit over faster to train, shallower, random forests with a depth
of 6 or 7. The accuracy of all of our trained forests did not surpass 35% for a true
event validation set. Shallow fully connected neural networks were used in limited
capacity in [7] to classify a single interaction for a true triple. The work showed
promising results but expanding beyond one interaction resulted in many issues
in regards to output interpretation, loss calculations, and underfitting. When
we incorporated false data and double to triples, the accuracy of prediction fell
sharply for true events. This sharp drop in true event ordering detection coupled
with heavy underfitting, when using the shallower networks, pushed us toward
shallow but more complex fully connected neural networks. Additional studies
with the shallow, complex, many neurons per layer, fully connected networks
continued to produce poor validation scores for true scattering data which pushed
us to deeper fully connected networks which maintained the same complexities,
discussed in Section 4.1, but with fewer neurons per layer. Only in using deeper
complex fully connected neural networks did we see the rampant underfitting
eliminated leading to better accuracy for triple ordering detection noted in [6].

In this work, we train a neural network to eliminate false events while also
correctly ordering true double events present in the Compton camera data. This
cleaner dataset would allow prompt gamma image reconstruction algorithms to
have more accurate prompt gamma travel paths with which to do their recon-
structing. This more accurate image reconstruction provides the ability to better
visualize the path of the proton beam within the patient, with the ultimate goal
to make real-time adjustments to patient treatment plans.

The network contains three main components: an input layer which accepts
the data, hidden layers which each perform some transformation on the data,
and an output layer which returns the transformed data in some prescribed
format [2]. We would like to train the neural network to transform the provided
data in some useful way. In the case of the data output by the Compton camera,
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we would like the neural network to transform each multi-scatter event so that
it contains only interactions originating from the same prompt gamma ray, and
so that these interactions are in the correct order.

To improve the network’s performance, it is typical to train the network on
all available data multiple times. One pass through all the training data, or data
isolated specifically for training the model, is referred to as an epoch. Often,
the network will be trained for hundreds or thousands of epochs. It is standard
practice to set aside some data with which to evaluate the network after each
epoch. These data are called the validation data. By evaluating the network
at the end of each epoch, it is possible to plot how the network’s performance
improves over the training process, giving insight into whether or not the network
has been fully trained. After the network has finished training, a final data set
separate from the training data and validation data is used to test the network.
This data set is referred to as the test data.

4.1 Fully Connected Residual Blocks

Fig. 3: A fully connected residual block takes an input and passes it through n
layers eventually adding it to the output of the n layers.

The network used in Section 5 is a deep fully connected neural network.
Neural networks, especially fully connected ones, break down once they start
becoming notably deep and complex. One of the first problems is that the val-
ues start to become very small during the forward propagation process. This
leads to zeros and like-zero values becoming more prominent as you go deeper
and deeper. A fix to this forward propagation issue is to opt to use Leaky ReLU
over the traditional ReLU. However, the second problem occurs during back
propagation. During back propagation we start to see the gradient becoming
like-zero causing little to no update to existing weights which causes learning
stagnation. This phenomenon is discussed more intimately in [8] where they
detail these effects. The major breakthrough to this problem inspired by ideas
in [8] where they create ResNet, a network built from “residual blocks”. A visual
representation of a residual block can be seen in Figure 3. Consider some record
x. We pass it as an input to a small group of n layers with their own activators.
The result of the layer digestion we can call y. Finally, we concatenate x and y.
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The concatenation in our case, and the case of the original ResNet, is addition.
This addition operation helps push non-zero values through the forward prop-
agation process which helps keep input data to each block fresh and non-zero.
This also helps prevent vanishing gradients during the back propagation process.
Residual blocks were originally used with convolutional layers whereas we are
using fully connected layers. We also create a fully connected network which has
considerably more layers than neurons per layers which yields a a super deep,
yet thin, neural network.

4.2 Network Design

We used Tensorflow 2.5 with the bundled Keras module for our neural network
backbone. The network design is built on the fully connected residual blocks
described in Section 4.1. The architecture starts with an input layer with 10
neurons. The hidden layers are comprised of 128 fully connected residual blocks.
Each block is made up of 2 layers, each consisting of 128 neurons with Leaky
ReLU serving as the inter-layer activation function for the hidden layers. This
gives us 256 hidden layers in total. Lastly, the output layer to the model consists
of 3 neurons with a softmax activation function. The network training process
used Keras’ provided Adam optimizer with binary crossentropy loss. The training
was done using Keras’ Model.fit method on two NVIDIA K20 GPUs.

We conduct hyperparameter studies in [7] and [6] to optimize the architecture
of the network and hyperparameters for training the model. Section 5 is based
on these neural networks.

5 Results

After training the neural network, we want to test how accurate the model is with
classifying the different forms of Doubles events and how these classifications can
influence the reconstruction process of the proton beam.

5.1 Data and Hardware Configuration

The training and testing of the neural network alongside the reconstruction pro-
cess use the distributed-memory cluster taki in the UMBC High Performance
Computing Facility (hpcf.umbc.edu). In particular, the networks were trained
and tested on a hybrid CPU/GPU node with two NVIDIA K20 GPUs (2496 com-
putational cores over 13 SMs, 4 GB onboard memory), two 8-core Intel E5-
2650v2 Ivy Bridge CPUs (2.6 GHz clock speed, 20 MB L3 cache, 4 memory
channels), and 64 GB of memory.

For our studies, we use 150MeV (Mega electron Volt) beams with three dif-
ferent dosage rates: 0kMU (kilo Monitor Unit), 100kMU, and 180kMU. The
larger kMU values correspond to more intense dosage rates. For the dosage rates
0kMU, 100kMU, and 180kMU, our test data set consisted of 165,000, 50,000,
and 28,000 samples, respectively.

hpcf.umbc.edu
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5.2 Neural Network Results

0kMU 100kMU 180kMU

12 21 44 12 21 44 12 21 44

12 84.3 8.8 6.9 12 84.2 9.0 6.8 12 84.7 8.3 7.0
21 8.8 84.7 6.5 21 9.2 84.2 6.6 21 8.3 84.8 6.8
44 5.9 5.9 88.2 44 5.6 5.9 88.5 44 5.4 5.9 88.7

Fig. 4: Confusion matrices for three different dosage rates. The fully connected
network was trained on 150MeV beams with True and False Doubles data using
a step-scheduler over 5000 epochs.

The results for how the neural network performed on the Doubles data is
shown in Figure 4. Figure 4 displays three confusion matrices, one for each
of the different dosage rates. The leftmost column is the correct input class
and the number in each following column represents the percentage of data put
into the class at the top of the column. Each cell within the matrix is shaded
proportionally to the maximum matrix value.

The shading is based on the accuracy of the cell, where higher accuracies
result in darker shades of green. The darkest entry in each row is the dominant
classification of the input class. Within the matrices, there are three different
labels: 12, 21, and 44. Note that since the data only includes Doubles, each label
has two digits, one for each interaction. Label 12 represents the case where both
interactions are correctly ordered and no adjustments need to be made. Label
21 represents the scenario where the second interaction should be first and the
first interaction should be second. The 44 label is for False events indicating
that the events should be thrown away. This is because the interactions originate
from separate prompt gamma rays, and as such we cannot derive any meaningful
conclusions from the two single interactions with regards to either gamma origin.

For each of the confusion matrices, the dominant classification for each input
class is the class itself, where the accuracies range from 84.2% to 88.7%. This
indicates that the model was trained successfully and is able to correctly classify
most samples. In other words, given an unlabeled set of Doubles data, the model
would be able to classify around 85% of the samples correctly. The matrix values
between the dosage rates do not appear to change by more than 1%, where higher
dosage rates have slightly higher accuracies. We see that the neural network
classifies false events with around a 4% higher accuracy for all three dosage
rates compared to the two true Double events 12 and 21.

5.3 Reconstruction Results

Based on the classifications of the data from the neural network, we created a
new dataset of cleaned data, where events classified as False events were removed.
In other words, the cleaned dataset consists of the classifications of the samples
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(a) Uncleaned (b) Cleaned (c) Dose

Fig. 5: Comparison of gamma ray images reconstructed with (a) uncleaned data
and (b) cleaned data to the (c) dose delivered by the proton beam.

from the neural network. We reconstructed the proton beam using three version
of the data, as shown in Figure 5. Figure 5 (a) shows the reconstruction image
from the uncleaned data. Figure 5 (b) shows the reconstruction image from the
cleaned data. Ultimately, we want the reconstruction images to resemble the
Bragg Peak as shown in Figure 5 (c). When comparing the Figure 5 (a) and (b),
we see that the cleaned data has removed a significant portion of the noise seen
in the uncleaned reconstruction. However, relative to Figure 5 (c), there still is
visual noise in the reconstruction using the cleaned data.

This is due to a combination of things. First the accuracy of the network
is between 80% and 90% which means that between 10% and 20% of the re-
construction data consists of bad events. These incorrectly classified events will
result in incorrect reconstruction for those prompt gamma rays. Additionally,
the nature of reconstructing a proton beam based on scattering data is inher-
ently difficult and not without its own challenges. The nature of reconstruction
itself is beyond the scope of this work and can be seen in [1].

6 Conclusions

The results of the neural network when trained and tested on the Doubles data
were quite promising, with testing accuracies in the mid-80s. This tells us that
the neural network is capable of learning the structure and patterns that exist
within the data at a reasonable level. When put to use, we can visually see
changes in image quality when comparing the quality of the uncleaned versus
cleaned reconstruction. The unclean data shows large amounts of noise and a
rough shape whereas the clean data gives a thinner and more accurate profile
when compared to the original dose. This demonstrates that we have significantly
improved reconstruction quality by reducing the noise present in the data using
our neural network.

There are several directions to take this research. First and foremost, the
results in this paper are decent but can be improved. In-depth hyperparame-
ter studies can be conducted to further improve network accuracy, which di-
rectly can reduce noise in the image reconstructions. Additionally, the work



Deep Learning for Proton Radiotherapy 11

here only looked into fully connected neural networks. However, there are many
deep learning models which may produce higher accuracies and better image
reconstructions. We can explore other models such as convolutional or recurrent
neural networks. Another approach for future research is to look into using deep
learning techniques for the reconstruction algorithm. Using similar deep learning
techniques like the ones shown in this work, we can study regression models that
can accurately predict initial energy values for individual gamma rays. Improv-
ing the estimated initial energy values with the regression model will result in
more accurate image reconstruction, which in practice can reduce the amount
of uncertainty of the region influenced via the proton beam.
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