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Transient Adsorption and Desorption in Micrometer Scale
Features
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We present a Boltzmann equation-based model for transport and reaction in micrometer-scale features such as those found in
integrated circuit fabrication. We focus on the adsorption and desorption of one species to understand the transient responses to
step changes at the reactor scale. The transport model has no adjustable parameters; the assumptions are detailed. Adsorption and
desorption reactions and rates are written as simple reversible Langmuir rate expressions. Kinetic parameter values are chosen for
demonstration. Results for the transient behavior of number density, flux to the surface, and the surface coverage are related to
those that might occur during the adsorption and purge steps in an atomic layer deposition process. We conclude that for
reasonable surface kinetics, the time scale for transport is much shorter than the time scale for adsorption and desorption and that
an analytical model provides reasonable estimates for processing times.
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In an ideal atomic layer deposition~ALD ! process, the deposition
of solid material on the substrate is accomplished one atomi
molecular layer at a time, in a self-limiting fashion; this property
responsible for the recent interest in ALD. To accomplish this
representative ALD process consists of repeating a sequence o
actant flows and reactor purges. In the first step of a cycle, a gas
species~A! is directed into the reactor, and~ideally! one monolayer
adsorbs onto the surface. After purging the reactor, a second gas
reactant~B! is directed through the reactor. A self-limiting chemic
reaction forms the next layer of deposited film. By repeating t
cycle of reactant flows and purges, a film of ideally uniform a
controlled thickness is deposited.1-4

Although ALD has the potential to deposit films of uniform
thickness, to keep average rates at reasonably high levels,
switching frequencies of reactants and purges are desired. A p
frequency that is too high may lead to nonuniform film deposit
on the feature scale, on the wafer scale, or both. As a start tow
understanding species transport in features during ALD, we mo
the adsorption of species A and the desorption that occurs during
following purge in one cycle of a ALD process. We use a Boltzma
equation-based transport model with no adjustable parameters
chemical reaction model used for the adsorption and desorp
rates are those found in typical mechanistic representation
simple reversible Langmuir adsorption.

We consider the case in which the flux of reactive species fr
the source volume to the wafer surface is constant with time, ei
at zero or at some selected value. Essentially, we idealize the
sients at the reactor scale, and focus on modeling feature scale
cesses in response to these idealized steps in concentration abo
wafer surface. More general boundary conditions at the inter
between the wafer surface and the reactor volume are possible
the results presented below provide considerable insight. We
assume that the process is isothermal in time and space.

For an introduction to a deterministic approach to feature sc
transport and reaction modeling and simulation that has been
for deposition and etch processes, see Ref. 5, 6. That approa
valid for processes for which a pseudo-steady assumption holdsi.e.,
for which changes on the feature scale are slow relative to the
distribution of fluxes in the feature. On the other hand, transients
central to ALD, and we need to start with a transient model. In t
paper, we consider cases for which the fluxes to the wafer sur
are constant with time~with the exception of step changes!. For
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transients that are present on the time scale of processes, s
discussion on programmed rate processing in Ref. 7. For a dis
sion on the dimensionality of transport modeling relative to the
mensionality of surface representation, see Ref. 8.

We describe the model in the next section, then outline the
merical approach in the following section. We then present and
cuss some simulation results for the adsorption and purge steps
ALD process. Preliminary results for adsorption without consider
desorption and with different choices of reference quantities
with a less precise estimate for the equilibrium fluxes have b
presented.9

The Model

The domain.—The domain,V, of the feature scale model in
cludes the interior area of one feature and a small part of the
domain above and around the feature mouth; a schematic of a
dimensional~2-D! domain chosen as a cross section of a typi
feature is shown in Fig. 1a. The differential equation needs to
accompanied by boundary conditions along]V, which is comprised
of three parts with different boundary conditions:]V
5 Gw ø G t ø Gs. Here,Gw denotes the portion of the boundar
along the solid wafer surface,G t is the top of the domain that form
the interface to the bulk of the reactor, andGs denotes the union of
the portions of the boundary on the sides of the domain.

The differential equations in the gaseous domain.—The flow of a
rarefied gas is described by the Boltzmann equation10-12 for each
gaseous species

] f ~ i!

]t
1 v¹xf ~ i! 5 (

j50

1

Qij~ f ~ i!, f ~ j!! i 5 0, 1 @1#

The unknown variables are the density distribution functio
f (i)(x,v,t), i.e., the number of molecules of speciesi at positionx
5 (x1 ,x2 ,x3) P V , R3 with velocity v 5 (v1 , v2 , v3) P R3 at
time t > 0. The f (i) have to be determined for all pointsx in the
domainV , R3 and for all possible velocitiesv P R3. The distri-
bution functions are scaled such that

ci~x,t !ªE
R3

f ~ i!~x,v,t !dv i 5 0, 1 @2#

gives the molar concentration of speciesi at x P V at time t. As
written, Eq. 1 is appropriate for ALD with one inert backgroun
species I with indexi 5 0 and reactive species A withi 5 1. The
left side describes the transport of speciesi. The right side describes
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the effect of collisions among molecules of all species, in which
collision operatorsQij model the collisions between molecules
speciesi and j. The following paragraphs show how we treat col
sional transport of reactive species in a background gas. This
vation is important to arrive at the appropriate dimensionless for
lation of the Boltzmann equation for free molecular flow.

Assuming that the reactive speciesj 5 1 is an order of magni-
tude less concentrated than the background gas 0, it can be s
that it is justified to keep only the collision operatorsQi0 and neglect
Qi1 in every equationi 5 0, 1. If we also assume that the bac
ground gas is uniformly distributed in space (¹xf (0) 5 0), at equi-
librium (] f (0)/]t 5 0), and inert~does not react with the specie
j 5 1!, then the equation forf (0) is decoupled from the remainin
one for the reactive species and consists in fact ofQ00( f (0), f (0))
5 0 only, which has as a solution a Maxwellian10,11

f ~0!~x,v,t ! 5 M0
ref~v !ª

c0
ref

@2p~v0
`!2#3/2 expS 2

uvu2

2~v0
`!2D @3#

wherec0
ref andv0

` denote a reference concentration and the therm
dynamic average speed, respectively. The reference concentr
can be chosen from the ideal gas law as

c0
ref 5

P0

RgT
@4#

where the partial pressure of species 0 is given byP0 5 x0Ptotal

based on the given mole fractionx0 , andRg denotes the universa
gas constant; see Table I. The temperatureT in this paper is the
constant and spatially uniform temperature in Table I. The ther
average speed, which is used in the Maxwellian, is given by

v0
` 5 AR0T 5 AkB

m0
T 5 ARg

v0
T @5#

based on the molecular weightv0 . The universal gas constantRg

and the universal Boltzmann constantkB are related through
Avogadro’s numberNA by Rg 5 NAkB ; see Table I. Writing
(v0

`)2 5 R0T results in another common representation of the M
wellian

M0
ref~v ! 5

c0
ref

~2pR0T!3/2 expS 2
uvu2

2R0TD @6#

Note that the Maxwellian is designed to have the same units as
density functionsf (i).

Using the explicit solution for the background species, we so
the linear Boltzmann equation for the reactive species

Figure 1. ~a! Schematic of a two-dimensional domain defining lengthL and
aspect ratioA. ~b! Numerical mesh for the feature withL 5 0.25 mm and
aspect ratioA 5 4.
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] f ~1!

]t
1 v¹xf ~1! 5 Q1~ f ~1!! @7#

with the linear collision operatorQ1( f (1))ªQ10( f (1),M0
ref). Notice

that decoupling from the background gas relied materially on
assumption that it is an inert gas.

Define a reference Maxwellian also for the reactive species

M1
ref~v ! 5

c1
ref

@2p~v1
`!2#3/2 expS 2

uvu2

2~v1
`!2D @8#

wherec1
ref and v1

` denote again a reference concentration and
thermodynamic average speed for the species. They are chosen
larly as for the background species, see Table I.

The reference quantities for the nondimensionalization proced
are listed in Table II. The reference concentrationc* and reference
speedv* are chosen equal to the corresponding quantities for
reactive species. After defining the reference length appropriate
the domain size asL* 5 1 mm, we obtain on one hand the refe
ence time for transport fromt* 5 L* /v* . The mean free pathl is
about 100mm at the operating conditions listed in Table I and d

Table I. Physical constants, operating conditions, and species ref-
erence quantities.

Physical constants
Universal gas constant Rg 5 8.3145 J/(K mol)

5 62400~cm3 Torr!/~K mol!
Universal Boltzmann constant kB 5 1.38073 10223 J/K
Avogadro’s number NA 5 6.02213 1023/mol

Operating conditions
Ambient temperature T 5 500 K
Total pressure Ptotal 5 1 Torr

Reference quantities for inert background species I (i 5 0)
Mole fraction x0 5 0.90
Partial pressure P0 5 0.90 Torr
Reference concentration c0

ref 5 28.83 1029 mol/cm3

Molecular weight v0 5 4 g/mol
Thermal average speed v0

` 5 10.03 104 cm/s

Reference quantities for reactive species A (i 5 1)
Mole fraction x1 5 0.10
Partial pressure P1 5 0.10 Torr
Reference concentration c1

ref 5 3.2 3 1029 mol/cm3

Molecular weight v1 5 104 g/mol
Thermal average speed v1

` 5 2.0 3 104 cm/s

Table II. Reference quantities.

For gaseous species
Reference concentration c*ªc1

ref 5 3.2 3 1029 mol/cm3

Reference speed v*ªv1
` 5 2.0 3 104 cm/s

For transport
Reference length L* 5 1 mm 5 1024 cm
Reference time for transport t* 5 L* /v* 5 5 3 1029 s 5 5 ns

For collisions
Mean free path l 5 100 mm 5 1022 cm
Reference time for collisions t* 5 l/v* 5 5 3 1027 s

For reactions
~Formal! reference flux h*ªc* v* 5 6.4 3 1025 mol/(s cm2)
Total concentration of
surface sites

ST 5 1029 mol/cm2
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termines a reference time for collisions~the mean collision time! by
t* 5 l/v* . The ratio of those times or lengths is equal to t
Knudsen number Kn5 l/L* 5 t* /t* .

The choices of dimensionless variables are listed in Table
They result in the dimensionless Maxwellian

M̂1
ref~ v̂ ! 5

ĉ1
ref

@2p~ v̂1
`!2#3/2 expS 2

uv̂u2

2~ v̂1
`!2D @9#

where the dimensionless groupsĉ1
ref and v̂1

` are included in Table
IV. The dimensionless Boltzmann equation is obtained by introd
ing the dimensionless variables in Table III. Notice that the left-ha
side is nondimensionalized with respect to transport, while the rig
hand side is nondimensionalized with respect to collisions. This
sults in the Knudsen number appearing in the dimensionless B
mann equation for the reactive species

] f̂ ~1!

] t̂
1 v̂ • ¹x̂ f̂ ~1! 5

1

Kn
Q̂1~ f̂ ~1!! @10#

Since Kn for gaseous flow on the feature scale is large, Kn@ 1 ~see
Table IV!; we obtain the equation of free molecular flow

] f̂ ~1!

] t̂
1 v̂ • ¹x̂ f̂ ~1! 5 0 @11#

The surface reaction model.—We model the adsorption of mol
ecules of A as reversible adsorption on a single site13

A 1 v
Av @12#

whereAv is adsorbed A, andv stands for a surface site available f
adsorption. Although there are additional reaction steps for ALD
other practical processes, this adsorption/desorption reaction

Table III. Dimensionless variables.

Time t̂ 5
t

t*

Lengths x̂ 5
x

L*

Velocities v̂ 5
v
v*

, v̂i
` 5

v i
`

v*

Concentrations ĉi 5
ci

c*
, ĉi

ref 5
ci

ref

c*

ĉi
top 5

ci
top

c*
, ĉi

ini 5
ci

ini

c*

Density distributions f̂ ~ i! 5
~v* !3

c*
f ~ i!

f̂ i
top 5

~v* !3

c*
fi
top

f̂ i
ini 5

~v* !3

c*
f i

ini

Maxwellians M̂ i
ref 5

~v* !3

c*
M i

ref

Collision operators Q̂ij 5
~v* !3t*

c*
Qij ,

Q̂i 5
~v* !3t*

c*
Qi

Fluxes, reaction rates ĥ i 5
h i

h*
, R̂1 5

R1

h*

Fractional surface coverage qA 5
SA

ST
.

-

-
-

z-

d
o-

vides a good vehicle through which to demonstrate our transport
reaction modeling methodology, and it provides useful insight
garding modeling requirements.

The total molar concentration of surface sites available for de
sition is denoted byST , see Table II. IfSA denotes the concentratio
of adsorbed molecules of A, the differenceST 2 SA is the concen-
tration of vacant sites, and the reaction rate can be written as

R1 5 k1
f ~ST 2 SA!h1 2 k1

bSA @13#

whereh1 denotes the flux of species to the surface, which is rela
to the distribution function of Eq. 1 by

h1~x,t ! 5 E
n • v8 . 0

un • v8u f ~1!~x,v8,t !dv8 x P Gw @14#

Here,Gw denotes the points at the wafer surface andn [ n(x) is the
unit outward normal vector atx P Gw . Notice that the integral is
over all velocities pointing out of the domain due to the conditi
n • v8 . 0. The evolution of the concentration of sites occupied
A at every point x at the wafer surfaceGw is given by

dSA~x,t !

dt
5 R1~x,t ! x P Gw @15#

Notice that this model assumes that there is no significant movem
of molecules along the surface.

If we nondimensionalize the reaction rate with respect to
reference fluxh* and introduce the fractional surface coverageqA

5 SA /ST P @0,1#, we obtain the dimensionless reaction rate

R̂1 5 g1
f ~1 2 qA!ĥ1 2 g1

bqA @16#

with the dimensionless coefficients given in Table IV. Making t
differential equation forSA dimensionless, we obtain

dqA~ x̂,t !

d t̂
5 apR̂1~ x̂, t̂ ! x̂ P Gw @17#

with the prefactorap 5 (h* t* )/ST . This differential equation is
supplied with an initial condition that represents the fractional c
erageqA

ini at the initial time.
Note that it is in general impossible to find a closed-form so

tion qA( t̂ ) to the differential equation Eq. 17, because the coe
cients involvingĥ1 are not constant. But if this flux is constant, the
Eq. 17 becomes a first-order linear ordinary differential equat
with constant coefficients and can be solved analytically. Spe
cally, at each point on the feature surface, we have the problem

dqA~ t̂ !

d t̂
5 2apbqA~ t̂ ! 1 apg1

f ĥ1 qA~0! 5 qA
ini @18#

Table IV. Dimensionless groups.

For species A (i 5 1)
Dimensionless reference concentration ĉ1

ref 5 1.0
Dimensionless reference speed v̂1

` 5 1.0

For transport and collisions
Knudsen number Knªl/L* 5 100

For reactions
Reaction coefficients for Reaction 1 g1

f 5 STk1
f ,

g1
b 5

ST

h*
k1

b

Prefactor ap 5
h* t*

ST
5 0.323 1023
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with ap 5 (h* t* )/ST andb 5 g1
f ĥ1 1 g1

b , which has the solution

qA~ t̂ ! 5 qA
`~1 2 e2apbt̂ ! 1 qA

inie2apbt̂ @19#

with the equilibrium limit

qA
` 5

g1
f ĥ1

g1
f ĥ1 1 g1

b @20#

provided thatĥ1 is constant. Clearly,qA( t̂ ) → qA
` as t̂ → `, hence

the name for the constantqA
` . Note that this assumes that the sp

cies fluxes from the source above the wafer are constant. Equ

20 is also the solution of Eq. 16 withR̂1 set to zero~equilibrium!.

Boundary conditions for the Boltzmann equation.—At the wafer
surface,Gw , we use the boundary condition

f ~1!~x,v,t ! 5 @h1~x,t ! 2 R1~x,t !#C1~x!M1
ref~v !

n • v , 0 x P Gw @21#

whereh1 is the flux of species 1 to the surface andR1 is the reaction
rate of Reaction 1. The boundary condition assumes diffusive e
sion of molecules,i.e., with the same velocity distribution as th
reference Maxwellian.10,12 In the absence of a reaction (R1 5 0),
the inflowing part of f (1) is then proportional to the flux to the
surfaceh1 , because all molecules are being re-remitted. In the p
ence of a reaction though, the rate of reemission differs from
incoming flux by the reaction rateR1 , which could have either sign

The factorC1 is chosen as

C1~x! 5 S E
n • v,0

un • vuM1
ref~v !dv D 21

@22#

to guarantee mass conservation in the absence of reactions, th
we require that influx equal to outflux forR1 5 0

E
n • v,0

un • vu f ~1!~x,v,t !dv 5 E
n • v.0

un • vu f ~1!~x,v,t !dv

@23#

Notice that C1(x) depends on the positionx P Gw via the unit
outward normal vectorn(x).

Using the reference fluxh* , formally chosen ash* 5 c* v*
~see Table II!, the dimensionless boundary condition attains
same form as the dimensional one as

f̂ ~1!~ x̂,v̂, t̂ ! 5 @ĥ1~ x̂, t̂ ! 2 R̂1~ x̂, t̂ !#Ĉ1~ x̂!M̂1
ref~ v̂ !

n • v̂ , 0 x̂ P Gw @24#

with the dimensionless flux to the surface

ĥ1~ x̂, t̂ ! 5 E
n • v̂8.0

un • v̂8u f̂ ~1!~ x̂,v̂8, t̂ !dv̂8 @25#

and with

Ĉ1~ x̂! 5 S E
n • v̂,0

un • v̂uM̂1
ref~ v̂ !dv̂ D 21

@26#

The top of the domain of the feature scale modelG t forms the
interface to the bulk of the gas domain in the reactor, and we ass
that the distribution off (1) is known there. More precisely, we as
sume that the inflow has a Maxwellian velocity distribution, hen
n

-

-
e

is,

e

f ~1!~x,v,t ! 5 f 1
top
ª

c1
top

@2p~v1
`!2#3/2 expS 2

uvu2

2~v1
`!2D

n • v , 0 x P G t @27#

Using the dimensionless variables in Table III results in the dim
sionless boundary condition

f̂ ~1!~ x̂,v̂, t̂ ! 5 f̂ 1
top 5

ĉ1
top

@2p~ v̂1
`!2#3/2 expS 2

uv̂u2

2~ v̂1
`!2D

n • v̂ , 0 x̂ P G t @28#

On the sides of the domainGs, which are perpendicular to the
mean wafer surface, we use specular reflection for the boun
condition to simulate an infinite domain. This condition can imm
diately be stated in dimensionless form as

f̂ ~1!~ x̂,v̂, t̂ ! 5 f̂ ~1!~ x̂,v̂8, t̂ ! n • v̂ , 0 x̂ P Gs @29#

with

v̂8 5 v̂ 2 2n~n • v̂ ! @30#

Finally, we assume that the initial distribution of gas is given

f ~1!~x,v,t ! 5 f 1
ini
ª

c1
ini

@2p~v1
`!2#3/2 expS 2

uvu2

2~v1
`!2D

x P V t 5 0 @31#

with a Maxwellian velocity distribution; in particular, the choice o
c1

ini 5 0 results in no gas of species 1 in the domain initially. T
dimensionless initial condition is then

f̂ ~1!~ x̂,v̂, t̂ ! 5 f̂ 1
ini 5

ĉ1
ini

@2p~ v̂1
`!2#3/2 expS 2

uv̂u2

2~ v̂1
`!2D

x̂ P V t̂ 5 0 @32#

If the reference concentration in the reference Maxwellian
chosen asc1

ref 5 c1
top and there are no surface reactions, the ref

ence Maxwellian will be the exact equilibrium solution of the mod
by construction.

Numerical

This paper reports on numerical results obtained in two dim
sions, and the numerics are stated in 2-D form here; the genera
tion to three dimensions is straightforward, but considerably m
computationally intense. To simplify notation, the carets (•̂ ) used
to indicate dimensionless variables are omitted in this section.

The solutionf (1)(x,v,t) to the kinetic equation Eq. 11 togethe
with the boundary conditions Eq. 24, 28, and 29, and the ini
condition Eq. 32 depends on xP V , R2, v P R2, and t > 0.
Neglecting also the superscript off (1) in this section to simplify
notation, Eq. 11 forf (x,v,t) in two dimensions reads explicitly

] f

]t
1 v ~1!

] f

]x1
1 v ~2!

] f

]x2
5 0 @33#

wherev (1) and v (2) denote the components of the velocity vect
v 5 (v (1), v (2)) P R2 in the x1 andx2 directions, respectively.

We approach the problem by discretizing the components of
velocity vector in Cartesian coordinates byvk1

(1) , k1 5 0, . . . , K1

2 1, in thev (1) variable and byvk2

(2) , k2 5 0, . . . , K2 2 1 in the
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Figure 2. Adsorption step: dimensionless number density for a feature with aspect ratioA 5 4 for g1
f 5 1.0 andg1

b 5 0.01 at times~a! 10.0 ns,~b! 40.0 ns,
~c! 80.0 ns,~d! 1.0 ms,~e! 2.0 ms,~f! 3.0 ms. Note the different scales on thex1 and thex2 axes.
y
f

v (2) variable. The velocity discretization is then defined byvk

5 (vk1

(1) ,vk2

(2)), k 5 0, . . . , K 2 1, with K 5 K1K2 , using the for-

mulask1 5 k 2 K1k2 andk2 5 bk/K1c.
Now expand the unknownf for the reactive species in velocit

space
f ~x,v,t ! 5 (
k50

K21

f k~x,t !wk~v ! @34#

where thewk(v), k 5 0, 1, . . . ,K 2 1, form an orthogonal set o
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basis functions in velocity space with respect to some inner pro
^ • , • &C , namely, ^wk ,wk&C 5 qk Þ 0 for all k and ^w l ,wk&C

5 0 for all l Þ k. Following ideas in Ref. 14, it is possible to mak
a judicious choice of basis functions such that it also holds
^v (1)wk ,wk&C 5 qkvk1

(1) and^v (2)wk ,wk&C 5 qkvk2

(2) for all k as well

as ^v (1)w l ,wk&C 5 0 and^v (2)w l ,wk&C 5 0 for all l Þ k.
To obtain an equivalent system of equations for the vector

coefficient functions

Figure 3. Adsorption step: dimensionless number density for a feature w
aspect ratioA 5 4 for g1

f 5 1022 andg1
b 5 1024 at times~a! 10.0 ns,~b!

40.0 ns,~c! 80.0 ns. Note the different scales on thex1 and thex2 axes.
ct

t

f

F~x,t ! 5 S f 0~x,t !
]

f K21~x,t !
D @35#

the expansionf (x,v,t) 5 ( l 50
K21f l(x,t)w l(v) from Eq. 34 is inserted

into Eq. 33 and the resulting equation is tested againstwk in the
scalar product̂ • , • &C . This Galerkin approach yields

Figure 4. Adsorption step: dimensionless number density for a feature w
aspect ratioA 5 4 for g1

f 5 1024 andg1
b 5 1026 at times~a! 10.0 ns,~b!

40.0 ns,~c! 80.0 ns. Note the different scales on thex1 and thex2 axes.
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(
l 50

K21

^w l ,wk&C

] f l

]t
1 (

l 50

K21

^v ~1!w l ,wk&C

] f l

]x1

1 (
l 50

K21

^v ~2!w l ,wk&C

] f l

]x2
5 0 @36#

Figure 5. Adsorption step: dimensionless flux to the surfacevs. time at the
three observation points~see Fig. 1a! for g1

b 5 g1
f /100 with~a! g1

f 5 1.0,~b!
g1

f 5 1022, ~c! g1
f 5 1024.
Using the properties of the basis functions from above, this sys
of linear hyperbolic equations can be written in vector form as

]F

]t
1 A~1!

]F

]x1
1 A~2!

]F

]x2
5 0 @37#

Figure 6. Adsorption step: fractional coveragevs. time at the three obser
vation points ~see Fig. 1a! for g1

b 5 g1
f /100 with ~a! g1

f 5 1.0, ~b! g1
f

5 1022, ~c! g1
f 5 1024. The solid diamonds in~b! and ~c! show the ana-

lytical solution given by Eq. 19. Notice the different scales on the verti
axes.
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with diagonal matricesA(1), A(2) P RK3K that have the entries
Akk

(1) 5 vk1

(1) and Akk
(2) 5 vk2

(2) . First mathematical results based o
this approach can be found in Ref. 15, 16.

This system of linear hyperbolic equations is now posed in s
dard form amenable for numerical computations. However, du
its large sizeK, the irregular structure of the domain, and the
quirement to compute for long times, it still poses a formida
challenge. It is solved using the discontinuous Galerkin met
implemented in the code DG,17 which is well-suited to the task. Se
Ref. 18, 19 for more detailed information on the numerical meth

The demonstration results presented in this paper are comp
using four discrete velocities in eachx1 and x2 direction; hence,
there areK 5 16 equations. Most results were checked against
cretizations using six discrete velocities in each direction, and g
agreement was found for each of these comparisons. The sp
domain was meshed coarsely to save on computation time.
mesh for the domain is shown in Fig. 1b. As shown below,
coarse mesh and the value ofK are sufficient to show that the tim
scale for transport is much faster than the time scale for adsorp
for reasonable adsorption chemistries. In turn, this leads to a sig
cantly simpler model that has the analytical solution of Eq. 19
the surface fractions.

Results

In this section, we report some simulation results for the adso
tion step and the purge step that might be part of an ALD cycle.
model is given by the dimensionless equations presented in the
vious section. Some parameter values used are listed in Table I
addition, we need to specify the~dimensionless! reaction parameters
in Eq. 16; they are specified below. To complete the model, we n
to choose the initial condition for the~dimensionless! gas concen-
tration throughout the domainĉ1

ini and for the fractional coverag
qA

ini , as well as the coefficient in the boundary condition at the
of the domainĉ1

top; these values are different for the adsorption s
and the purge step, and are specified in the following subsectio

In order to analyze the behavior of the fluxĥ1 to the surface and
of the fractional surface coverageqA over time, three points on the
wafer surface are chosen as shown in Fig. 1a. Point 1 is locate
the flat area of the wafer surface at (20.75L,0); during adsorption,
we expect the fractional coverage to increase fastest at this p
Point 2 is located half-way down the trench and hasx2 coordinate
20.5AL; it initially sees less of the gas and take longer to reach
coverage. Point 3 is located at the bottom of the feature at (2AL, 0!;
for features with large aspect ratios, it takes yet longer times for

Figure 7. Langmuir isotherms according to analytical solution given by E
19 for any value ofg1

f and for various ratios ofg1
b/g1

f .
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gas to reach point 3. The fluxesĥ1 and the fractional coveragesqA

are shown as functions of time at these representative location

The adsorption step.—We assume for the adsorption step that
gas of species A is initially present in the domain by choosingĉ1

ini

5 0.0, and that it is fed with a Maxwellian distribution at the top
the domain by choosingĉ1

top 5 1.0. This is a spatially uniform step
function along the boundary between the feature and the so
~reactor! volume. Initially, there are no adsorbed molecules of A
the surface of the feature, hence, the fractional coverage is init
zero:qA

ini 5 0.0.
After running the simulator using a zero sticking factor (g1

f

5 g1
b 5 0.0), to make sure that the solution was a uniform flux

each point on the surface, we selected several other values. To
ther validate the simulation method, and to gain insight into
basic behavior of the process, we consider the limiting adsorp
coefficient of g1

f 5 1.0. We also considerg1
f 5 1022 and g1

f

5 1024, as they seem more representative of surface chemis
likely to be used in ALD. For the simulations in this paper, we u
g1

b 5 g1
f /100.

Figure 2 shows plots of computed~dimensionless! number den-
sity of species A computed using Eq. 2 as a function of position
the domainV at several~redimensionalized! points in time. Figure
2a plots ĉ1(x,t) at time t 5 10.0 ns; it shows that the transpo
from the interface to the bulk of the gas phase to the flat wa
surface is very fast, as it essentially represents molecular speed
short distances. Figures 2b and c showĉ1 at timest 5 40.0 and 80.0
ns. Observe that the interior of the feature is not completely fil
with gas at these times. The reason is that the gas gets consum
a result ofg1

f 5 1.0, wherever it hits the wafer surface that has
adsorbate. Hence, these molecules do not reemit from the su
and reach the bottom of the feature. Figures 2d, e, and f showĉ1 at
times t 5 1.0, 2.0, and 3.0 ms, respectively. As these plots show
takes about 3.0 ms for the feature to fill completely with gas.

Figure 3 showsĉ1(x,t) for the value ofg1
f 5 1022 at timest

5 10.0, 40.0, and 80.0 ns. Figure 3a again demonstrates that it t
less than 10.0 ns for gas to reach the flat parts of the wafer sur
However, for this more realistic value of the adsorption coefficie
g1

f , comparably few gas molecules stick to the surface, and ne
all molecules get remitted from the boundary. Figure 3c dem
strates that it takes only on the order of 80.0 ns for the entire fea
to be filled with gas.

Figure 4 shows the corresponding results for the adsorption
efficient g1

f 5 1024. Comparing Fig. 3c and 4c, observe that t
feature is filled slightly more rapidly than forg1

f 5 1022. This is
reasonable, as even fewer molecules adsorb on the feature su
than for the case ofg1

f 5 1022. So, for reasonable adsorption rate
features fill on the time scale of about 100 ns.

Figure 5 shows plots of the~dimensionless! flux ĥ1 of species A
to the surfacevs. time for the three values of the adsorption coef
cient g1

f . Figures 5a, b, and c show plots forg1
f 5 1.0, 1022, and

1024, respectively. The fluxes to the surface at points 1, 2, an
tend to the same steady-state value of aboutĥ1

` 5 0.444, indepen-
dent of the value ofg1

f ; this precise value forĥ1
` is taken from the

data files, from which the plots in Fig. 5 are produced. This is
flux of species A to the wafer surface and through the feature mo
Figures 5a, b, and c show that the initial behavior depends on
value ofg1

f , in agreement with the corresponding Fig. 2, 3, and
respectively. Observe that the feature fills with gas and the flux te
to a constant, spatially uniform value on the time scale of a
milliseconds.

Figures 6a, b, and c show plots of the~dimensionless! coverage
ratio qA vs. time up tot 5 30.0 ms forg1

f 5 1.0, 1022, and 1024,
respectively. Figure 6a shows that the fractional coverageqA
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Figure 8. Purge step: dimensionless number density for a feature with aspect ratioA 5 4 for g1
f 5 1.0 andg1

b 5 0.01 at times~a! 10.0 ns,~b! 40.0 ns,~c! 80.0
ns, ~d! 1.0 ms,~e! 2.0 ms,~f! 3.0 ms. Note the different scales on thex1 and thex2 axes.
fac
t

t a
ig

ses
e
for
io
t be
increases up to its equilibrium value relatively quickly forg1
f

5 1.0. The time lags for points 2 and 3 are explained by the
that it takes time for gas molecules to reach those areas inside
feature. Note that it takes about 3.0 ms to achieve coverage a
three points, which is another way to view the results shown in F
t
he
ll

.

2f. Figures 6b and c show that the fractional coverage increa
more slowly forg1

f 5 1022 and 1024, respectively. This is the cas
despite the fact that the feature is filled with gas much faster
these smaller values ofg1

f . The development of the coverage rat
also indicates that the time to reach equilibrium coverage migh
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inversely proportional to the value ofg1
f , by comparing Fig. 6a and

b; Fig. 6c showsqA still in its initial linear phase and cannot be use
for this comparison.

The observations in Fig. 5 and 6 justify the approximation ofĥ1

in Eq. 18 by the constant, spatially uniform fluxĥ1
` 5 0.444. Using

this value in Eq. 19 with initial conditionqA
ini 5 0.0, we are able to

obtain an analytical representation ofqA( t̂ ). This analytical predic-
tion is incorporated into the Fig. 6b and c as the solid diamon
Observe the good agreement with the simulation results.

Figure 9. Purge step: dimensionless number density for a feature with
pect ratioA 5 4 for g1

f 5 1022 andg1
b 5 1024 at times~a! 10.0 ns,~b! 40.0

ns, ~c! 80.0 ns. Note the different scales on thex1 and thex2 axes.
.

We can estimate the equilibrium coverage from the analyt

solution in Eq. 19~or using Eq. 16 withR̂1 5 0! as

qA~ t ! → qA
` 5

g1
f ĥ1

g1
f ĥ1 1 g1

b 5
1

1 1
g1

b

g1
f ĥ1

as t̂ → ` @38#

Notice that the equilibrium value depends only onĥ1 at equilibrium
and on the ratiog1

b/g1
f , but not on the value ofg1

f itself. In this

-
Figure 10. Purge step: dimensionless number density for a feature w
aspect ratioA 5 4 for g1

f 5 1024 andg1
b 5 1026 at times~a! 10.0 ns,~b!

40.0 ns,~c! 80.0 ns. Note the different scales on thex1 and thex2 axes.
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study,ĥ1 → 0.444 andg1
b/g1

f 5 1/100, and we calculate the valu
qA

` ' 0.977974, which is in excellent agreement with the obser
values of 0.977975 and 0.977817 from the data used to generate
6a and b, respectively.

Also based on the analytical result, we can predict the time

Figure 11. Purge step: dimensionless flux to the surfacevs. time at the three
observation points~see Fig. 1a! for g1

b 5 g1
f /100 with ~a! g1

f 5 1.0, ~b! g1
f

5 1022, ~c! g1
f 5 1024.
d
ig.

reach 99% of equilibrium coverage by requiring thatqA( t̂0.99)
5 0.99qA

` to find ~in redimensionalized time!

t0.99 5 2ln~0.01!
ST

h*
1

g1
f ĥ1 1 g1

b @39#

Figure 12. Purge step: fractional coveragevs. time at the three observation
points~see Fig. 1a! for g1

b 5 g1
f /100 with ~a! g1

f 5 1.0, ~b! g1
f 5 1022, ~c!

g1
f 5 1024. The solid diamonds in~b! and ~c! show the analytical solution

given by Eq. 19. Notice the different scales on the vertical axes.
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Figure 13. Fractional coveragevs. processing time for adsorption and purge together for various ratios ofg1
b/g1

f with ~a! g1
f 5 1022, ~b! g1

f 5 1024.
Processing time for adsorption is depicted up to 99% of equilibrium coverage.
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provided thatg1
f ! 1.0. Usingĥ1 5 0.444 andg1

b 5 g1
f /100, we

find t0.99 ' 0.016 s5 16.0 ms forg1
f 5 1022. This time is in ex-

cellent agreement with the results shown in Fig. 6b. Forg1
f

5 1024, we obtain in the same wayt0.99 ' 1.6 s, which agrees
with the observation that the time to reach equilibrium is invers
proportional tog1

f for g1
f ! 1.0 andg1

b ! g1
f .

To analyze the influence of the ratiog1
b/g1

f , Fig. 7 shows the
~Langmuir! isotherms of the equilibrium coverageqA

` vs. the equi-
librium flux ĥ1

` according to the analytical solution~or using Eq. 16

with R̂1 5 0! for any g1
f and for various ratiosg1

b/g1
f . The plots

indicate that equilibrium coverage depends strongly on the rati
desorption rate parameter to adsorption rate parameter. It also
pends on flux, particularly at low equilibrium coverages; at hi
coverages, the flux dependence decreases as the maximum s
coverage is approached.

The purge step.—At the beginning of the purge step after adsor
tion, the domain is filled uniformly with gaseous molecules, hen
ĉ1

ini 5 1.0 is set. But no more gas is fed from the top, henceĉ1
top

5 0.0. As the initial condition for the fractional coverageqA
ini , we

assume thatqA has reached 99% of its equilibrium value in th
preceding adsorption step;i.e., we choose as initial condition for th
purge simulations the valueqA

ini 5 (0.99)(0.977974)5 0.9682. We
assume this value to be spatially uniform for demonstration p
poses. The desorption rate coefficientg1

b is again taken as a consta
ratio relative to the adsorption rate coefficient asg1

b 5 g1
f /100 in

these simulations.
The following results for the purge step are organized in

same way as those for the adsorption step in the previous subse
Figures 8, 9, and 10 show the time evolution of the dimension
concentrationĉ1 for g1

f 5 1.0, 1022, and 1024, respectively. In all
cases,ĉ1 decreases to zero over time, because it is not being fed
the domain. The only source is from desorption. Observe that
desorption from the wafer surface for the case ofg1

f 5 1.0 andg1
b

5 0.01 is fast enough to explain the relatively slow decrease oĉ1

in Fig. 8, relative to the faster decreases ofĉ1 shown in Fig. 9 and
10, virtually independent of the particular value ofg1

f ! 1.0.
Figure 11 shows the evolution of the dimensionless flux to

surfaceĥ1 . The flux to the surface decreases to zero along with
concentrationĉ1 in agreement with the figures for the concentr
tions. For small values ofg1

b , the flux to the surface is essential
zero after 5 ms.
f
e-

ace

-

n.
s

o
e

e

Figure 12 shows the evolution of the dimensionless fractio
coverageqA vs. time up to t 5 30.0 ms. As Fig. 12a shows, th
coverage can decrease to zero within a matter of milliseconds fo
highest value of the desorption rate coefficient considered. Fig
12b and c shows that the coverage will also decrease for the sm
values ofg1

b 5 1024 and 1026, but it will do so more slowly. In
fact, the graphs do not extend to long enough time to show
approach ofqA to zero. However, it is clear thatqA decreases with
time, hence, the purge time must be limited in order to prevent
much desorption.

From the observation that the flux decreases to almost z
quickly relative to desorption for small values ofg1

b , it is again
possible to use the analytical solution Eq. 19 to approximate
long-term behavior ofqA . Therefore, with ĥ1 ' 0.0 and qA

ini

5 0.9682, plots of the analytical solution are incorporated in F
12b and c, and agree very well with the simulation results.

To estimate the time to allow a decrease of the coverageqA to
90% of its initial coverage for the purge step, we require th

qA( t̂0.90) 5 0.90qA
ini 5 (0.90)(0.9682)5 0.87138 to find~in redi-

mensionalized time!

t0.90 5 2ln~0.90!
ST

h*
1

g1
b @40#

For g1
f 5 1022 and g1

b 5 1024, this yields t0.90 ' 0.016 s
5 16.0 ms. This is in excellent agreement with Fig. 12b. The c
responding estimate forg1

f 5 1024 and g1
b 5 1026 is t0.90

' 1.6 s. Observe that the timet0.90 depends only on the desorptio
coefficientg1

b , but not on the adsorption coefficientg1
f .

Figure 13 combines the analytical solutions for the adsorpt
and purge steps to give a picture of processing time. Here, the
cessing time for adsorption is depicted up to 99% of equilibriu
coverage. Observe that the processing times depend strongly ong1

f ,
while the value ofg1

b mostly affects the purge time. Note that th
time to reach 99% of equilibrium during adsorption takes less ti
for g1

b/g1
f 5 1/10, because there are more vacant sites availabl

equilibrium is approached; this is also reflected in Eq. 39, beca
g1

f is a significant fraction of the denominator in this case.

Conclusions

A model and numerical method are presented that are use
simulate the transient adsorption and desorption that would o
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during ALD over micrometer scale features during integrated circ
fabrication. The assumptions for the Boltzmann equation-ba
model are presented, and no adjustable parameters are us
simple reversible Langmuir adsorption model is used; kinetic
rameter values are chosen for demonstration purposes.

We consider the case in which the flux of reactive species fr
the source volume to the wafer surface is constant in time, eithe
zero or at some selected values;i.e., we idealize transients at th
reactor scale, to focus on modeling feature scale transients. M
general boundary conditions at the interface between the wafer
face and the reactor volume are certainly possible.

We present results for transients in number density, flux,
surface coverage, and show that for reasonable surface kinetics
time scale for transport~'100 ns! is much shorter than the tim
scale for adsorption and desorption~milliseconds to seconds!. This
has significant implications for integrated multiscale process si
lation, as it allows the resolution in time to be of the same orde
process transients. Thus, previous integrated multiscale pro
simulation efforts can be extended to model pattern scale eff
during transients.20-22 These transients can be intrinsic or pr
grammed to optimize some process or product property.8
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