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We present a Boltzmann equation-based model for transport and reaction in micrometer-scale features such as those found in
integrated circuit fabrication. We focus on the adsorption and desorption of one species to understand the transient responses to
step changes at the reactor scale. The transport model has no adjustable parameters; the assumptions are detailed. Adsorption and
desorption reactions and rates are written as simple reversible Langmuir rate expressions. Kinetic parameter values are chosen for
demonstration. Results for the transient behavior of number density, flux to the surface, and the surface coverage are related to
those that might occur during the adsorption and purge steps in an atomic layer deposition process. We conclude that for
reasonable surface kinetics, the time scale for transport is much shorter than the time scale for adsorption and desorption and that
an analytical model provides reasonable estimates for processing times.
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In an ideal atomic layer depositidALD ) process, the deposition transients that are present on the time scale of processes, see a
of solid material on the substrate is accomplished one atomic odiscussion on programmed rate processing in Ref. 7. For a discus-
molecular layer at a time, in a self-limiting fashion; this property is sion on the dimensionality of transport modeling relative to the di-
responsible for the recent interest in ALD. To accomplish this, amensionality of surface representation, see Ref. 8.
representative ALD process consists of repeating a sequence of re- We describe the model in the next section, then outline the nu-
actant flows and reactor purges. In the first step of a cycle, a gaseouserical approach in the following section. We then present and dis-
species(A) is directed into the reactor, arfileally) one monolayer ~ Cuss some simulation results for the adsorption and purge steps of an
adsorbs onto the surface. After purging the reactor, a second gaseod4-D process. Preliminary results for adsorption without considering
reactant(B) is directed through the reactor. A self-limiting chemical desorption and with different choices of reference quantities and
reaction forms the next layer of deposited film. By repeating thiswith a less precise estimate for the equilibrium fluxes have been
cycle of reactant flows and purges, a film of ideally uniform and presented.
controlled thickness is depositéd. o _ The Model

Although ALD has the potential to deposit films of uniform
thickness, to keep average rates at reasonably high levels, high The domain—The domain,(}, of the feature scale model in-
switching frequencies of reactants and purges are desired. A pulseludes the interior area of one feature and a small part of the gas
frequency that is too high may lead to nonuniform film deposition domain above and around the feature mouth; a schematic of a two-
on the feature scale, on the wafer scale, or both. As a start towargdlimensional(2-D) domain chosen as a cross section of a typical
understanding species transport in features during ALD, we modefeature is shown in Fig. la. The differential equation needs to be
the adsorption of species A and the desorption that occurs during th@ccompanied by boundary conditions aldifg, which is comprised
following purge in one cycle of a ALD process. We use a Boltzmannof three parts with different boundary conditionss(}
equation-based transport model with no adjustable parameters. The I'y, U I'; U I'g. Here,I',, denotes the portion of the boundary
chemical reaction model used for the adsorption and desorptioralong the solid wafer surfacé&, is the top of the domain that forms
rates are those found in typical mechanistic representations ofhe interface to the bulk of the reactor, afigdenotes the union of
simple reversible Langmuir adsorption. the portions of the boundary on the sides of the domain.

We consider the case in which the flux of reactive species f.rom-l-he differential equations in the gaseous domaifihe flow of a

lected val "t dealize farefied gas is described by the Boltzmann equétiéhfor each
at zero or at some selected value. Essentially, we idealize the trar:?aseous species

sients at the reactor scale, and focus on modeling feature scale pro-
cesses in response to these idealized steps in concentration above the 9f M ) . o
wafer surface. More general boundary conditions at the interface -t vV, 0 = Z Q;(f1, ) i=01 (1]
between the wafer surface and the reactor volume are possible, but =0
the results presented below provide considerable insight. We also . . o .
assume that the process is isothermal in time and space. The unknqwn variables are the density dlSt[IbutIOﬂ _f_unctlons
For an introduction to a deterministic approach to feature scalef’(X.v.t), i.e, the number of molecules of specieat positionx
transport and reaction modeling and simulation that has been used (X1.X2.Xs) € Q C R®with velocityv = (v, v, vs) € R*at
for deposition and etch processes, see Ref. 5, 6. That approach time t = 0. The f() have to be determined for all poinssin the
valid for processes for which a pseudo-steady assumption higds; domainQ C R and for all possible velocities ¢ R®. The distri-
for which changes on the feature scale are slow relative to the rebution functions are scaled such that
distribution of fluxes in the feature. On the other hand, transients are
central to ALD, and we need to start with a transient model. In this Ci(X,t):f fO(x,0,t)dv i=0,1 [2]
paper, we consider cases for which the fluxes to the wafer surface R3
are constant with timdwith the exception of step changes-or
gives the molar concentration of specieat x € () at timet. As
written, Eq. 1 is appropriate for ALD with one inert background
* Electrochemical Society Active Member. species | with index = 0 and reactive species A with= 1. The
2 E-mail: gobbert@math.umbc.edu left side describes the transport of spediebhe right side describes
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Table I. Physical constants, operating conditions, and species ref-
erence quantities.

Universal gas constant

Universal Boltzmann constant
Avogadro’s number

Physical constants
R, = 8.3145 J/(K mol)
= 62400(cm® Torn/(K mol)
kg = 1.3807x 10°2% J/K
N, = 6.0221X 10°¥mol

Operating conditions

-0.75

- -0.25 0.25
(0, -AL) Point 3 X, [ml%rons]

Figure 1. (a) Schematic of a two-dimensional domain defining lerigénd
aspect ratioA. (b) Numerical mesh for the feature with = 0.25 pm and
aspect raticA = 4.

the effect of collisions among molecules of all species, in which the

Ambient temperature
Total pressure

Reference quantities for inert background species= (0)

Mole fraction

Partial pressure
Reference concentration
Molecular weight
Thermal average speed

T =500 K
Piota = 1 Torr
Xg = 0.90
Po = 0.90 Torr

ci¥' = 28.8x 10°° molicn?
wo = 4 g/mol
vy = 10.0X 10* cm/s

Reference quantities for reactive speciesi A=(1)

collision operatorsQ; model the collisions between molecules of ggﬁ;fafggg e X1 - 0.10

specied andj. The following paragraphs show how we treat colli- Referer?ce c:ncentration Prelf: 910 Tor[g e

sional transport of reactive species in a background gas. This deri- X ¢, = 3.2X 107 molfc
Molecular weight w; = 104 g/mol

vation is important to arrive at the appropriate dimensionless formu-
lation of the Boltzmann equation for free molecular flow.

Assuming that the reactive species= 1 is an order of magni-
tude less concentrated than the background gas 0, it can be shown
that it is justified to keep only the collision operat@s and neglect af® w "
Qi1 in every equation = 0, 1. If we also assume that the back- ot +o%fT = Qu(f)
ground gas is uniformly distributed in spacg{® = 0), at equi-
librium (af(®/at = 0), and inert(does not react with the species i the linear collision operatoR; (F) == Q,o(f, M. Notice

S . o - o
j = 1), then the equation _fOf( Vis decoupled from the remaining  that decoupling from the background gas relied materially on the
one for the reactive species and consists in facQgf(f(?,f(®) assumption that it is an inert gas.

= 0 only, which has as a solution a Maxwelltar* Define a reference Maxwellian also for the reactive species by

|v|?

2(v7)?

Thermal average speed vy = 20X 10* cm/s

[7]

[v?

fOx,t) = Mglv):= %)
0

CBef ?Lef
= =273 X 35 eXp —
[21T(UO) ] [2,“_(1)10)2]3/2
wherecl" andvj denote a reference concentration and the thermo- . .
0 vo wherec?® andv; denote again a reference concentration and the

dynamic average speed, respectively. The reference concentraticmermod namic average speed for the species. They are chosen simi-
can be chosen from the ideal gas law as Yy ge sp X P : y
larly as for the background species, see Table I.
=) The reference quantities for the nondimensionalization procedure
ref _ 0 . . .
O TRT are listed in Table Il. The reference concentratadnand reference
9 speedv* are chosen equal to the corresponding quantities for the
reactive species. After defining the reference length appropriate for
the domain size ak* = 1 pm, we obtain on one hand the refer-
ence time for transport frot = L*/v*. The mean free path is
about 100um at the operating conditions listed in Table | and de-

) (3] M) = (8]

(4]

where the partial pressure of species 0 is givenPRy= XgPiotal
based on the given mole fractiog, andR, denotes the universal
gas constant; see Table I. The temperaflrim this paper is the
constant and spatially uniform temperature in Table I. The thermal
average speed, which is used in the Maxwellian, is given by

5 = VBT = \Je2T = o0

based on the molecular weight,. The universal gas constaRy
and the universal Boltzmann constakg are related through
Avogadro’s numberN, by R; = Nukg; see Table I. Writing
(v3)? = R,T results in another common representation of the Max-

Table Il. Reference quantities.

(5]
For gaseous species

Reference concentration  ¢*:=cP' = 3.2 x 10°° mol/cn?

Reference speed v*:=v7 = 20X 10* cm/s

For transport
Reference length L* =1 um= 10" cm

wellian

Reference time for transport t* = L*/p* = 5 X 10°° s= 5 ns

ref — —
Mo (v) (2R, T)%? eXp( ZROT)

Note that the Maxwellian is designed to have the same units as the

density functionsf@.

Using the explicit solution for the background species, we solve

the linear Boltzmann equation for the reactive species

(6]

For collisions
Mean free path N =100 um = 1072 cm
Reference time for collisionst* = \/p* =5 X 107 s

For reactions
(Forma) reference flux
Total concentration of
surface sites

Sy = 10°° mol/cn?

M*:=c*v* = 6.4x 10°° mol/(s cnf)
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Table Ill. Dimensionless variables. Table IV. Dimensionless groups.
) . For species Ai(= 1)
Time t=w Dimensionless reference concentration ¢ = 1.0
. Dimensionless reference speed o7 =1.0
Lengths K= —
L For transport and collisions
- v vy Knudsen number Kn:=\/L* = 100
Velocities 0= . 0 = —
ref For reactions
Concentrations L R Reaction coefficients for Reaction 1 L= sk,
Ci o (:,r = Y1 .
. . b_ STib
gtop — C'_Op gini " kel n*kl
1 * 7 1 * * 4%
(v*)3 =21~ 032x 10
Density distributions Fi) = _ £ Prefactor p S,
c
3
flop — ﬂf@op
I C* 1 i i X
*y3 vides a good vehicle through which to demonstrate our transport and
finl — (v_*f:"'i reaction modeling methodology, and it provides useful insight re-
¢ . garding modeling requirements.
Maxwellians e — (*) et The total molar concentration of surface sites available for depo-
: ce sition is denoted bys;, see Table Il. IfS, denotes the concentration
Collision operators A (%)% of adsorbed molecules of A, the differenSg — S, is the concen-
L i tration of vacant sites, and the reaction rate can be written as
5 = W R, = Ki(S; — Symy — kIS 13
= o : 1= ki(Sr AT 1 1°A [13]
Fluxes. reaction rates S Ry wheren); denotes the flux of species to the surface, which is related
’ M= T s to the distribution function of Eq. 1 by
) Sa
Fract | surf =2
ractional surface coverage SN s ny(x.1) = f v - v’|f(l)(x,v’,t)dv’ xeT, [14]
v-v'>0

termines a reference time for collisiofthe mean collision timeby
7 = Nv*. The ratio of those times or lengths is equal to the
Knudsen number K= N/L* = 7%/t*.
The choices of dimensionless variables are listed in Table 11l
They result in the dimensionless Maxwellian
1 |o]?
" 2w TN 2677

where the dimensionless group$’ and o] are included in Table

éref

(9]

IV. The dimensionless Boltzmann equation is obtained by introduc-
ing the dimensionless variables in Table Ill. Notice that the left-hand
side is nondimensionalized with respect to transport, while the right-
hand side is nondimensionalized with respect to collisions. This re-

Here,I',, denotes the points at the wafer surface ard v(x) is the
unit outward normal vector at e I'y,. Notice that the integral is
over all velocities pointing out of the domain due to the condition
v - v’ > 0. The evolution of the concentration of sites occupied by

_A at every point x at the wafer surfadg, is given by

dSa(x,t)

—ar Ry(x,t)

x el [15]

Notice that this model assumes that there is no significant movement
of molecules along the surface.

If we nondimensionalize the reaction rate with respect to the
reference fluxn* and introduce the fractional surface coverapge
= Sa/S; € [0,1], we obtain the dimensionless reaction rate

Ry = vi(1 — d)A; — vi0a [16]

sults in the Knudsen number appearing in the dimensionless Boltz-

mann equation for the reactive species
af®
— to-
at

N 1. .
GEY = Q) [10]
Kn
Since Kn for gaseous flow on the feature scale is largeKh (see
Table 1V); we obtain the equation of free molecular flow

o
— Tt
ot

Vi =0 [11]

The surface reaction modetWe model the adsorption of mol-

ecules of A as reversible adsorption on a single*3ite
A+ v=A, [12]

whereA, is adsorbed A, and stands for a surface site available for

adsorption. Although there are additional reaction steps for ALD and
other practical processes, this adsorption/desorption reaction pro-

with the dimensionless coefficients given in Table IV. Making the
differential equation foiS, dimensionless, we obtain

ddA(R,1)
dt

= aRy(%1) X eT, [17]

with the prefactora, = (n*t*)/S;. This differential equation is
supplied with an initial condition that represents the fractional cov-
eragedly at the initial time.

Note that it is in general impossible to find a closed-form solu-
tion I (1) to the differential equation Eq. 17, because the coeffi-
cients involvingn ; are not constant. But if this flux is constant, then
Eq. 17 becomes a first-order linear ordinary differential equation
with constant coefficients and can be solved analytically. Specifi-
cally, at each point on the feature surface, we have the problem

ddat)
dt

= —apbda(l) + apyifin  9a(0) = X [18§]
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with a, = (n*t*)/Srandb = yif; + ¥4, which has the solution cP [{ lv]? )

f — flop,_
TR R NETCHE

v-o<0 xel, [27]

da) = 951 — e o) + pile ot [19]

with the equilibrium limit
Using the dimensionless variables in Table Il results in the dimen-

9% = f?’flﬁl . [20] sionless boundary condition
Y1+ V1 gtop 5|2
00D = 1= o exp( o 2)
provided thatf, is constant. Clearly o(t) — 9% ast — =, hence [2m(01)7] 2(01)
the name for the constait, . Note that this assumes that the spe- v-0<0 Xxely [28]
cies fluxes from the source above the wafer are constant. Equation
20 is also the solution of Eq. 16 witR; set to zero(equilibrium. On the sides of the domaifis, which are perpendicular to the

mean wafer surface, we use specular reflection for the boundary
condition to simulate an infinite domain. This condition can imme-
diately be stated in dimensionless form as

Boundary conditions for the Boltzmann equatie\t the wafer
surfaceI',,, we use the boundary condition

fO(x,0,1) = [11(x,1) = Ri(x,)]C1(x)MF(v)
v-v<0 xely [21]

fO%0,1) = V%0’ v-0<0 Xelg [29

with

wheren is the flux of species 1 to the surface d@rdis the reaction
rate of Reaction 1. The boundary condition assumes diffusive emis- ' =0 = 2v(v - D) [30]
sion of moleculesj.e., with the same velocity distribution as the
reference Maxwelliad®!? In the absence of a reactio®{ = 0), Finally, we assume that the initial distribution of gas is given by
the inflowing part off™ is then proportional to the flux to the i 5
surfacen, because all molecules are being re-remitted. In the pres- fD(x,p,1) = fini,_ 1 ex [v]
ence of a reaction though, the rate of reemission differs from the e Y 2w (vD)?]3? 2(v)?
incoming flux by the reaction raf®;, which could have either sign.

The factorC, is chosen as xeQt=0 (31

-1 . . . . . . . . .

_ ref with a Maxwellian velocity distribution; in particular, the choice of

Calx) = (Jv ) V<O|v - v[M¥ U)dv) [22] cy" = 0 results in no gas of species 1 in the domain initially. The
dimensionless initial condition is then

to guarantee mass conservation in the absence of reactions, that is, aini 152
we require that influx equal to outflux f&?, = 0 FO(xp.1) = fni = 1 e
! | : *0.0 =1 = rapae @ 26072
1 1
f [v - o] fV(xp,t)dv = f [v - v|fP(x0,t)do x e t=0 [32]
v - v<0 v - v>0
[23]

If the reference concentration in the reference Maxwellian is
chosen ag® = c!° and there are no surface reactions, the refer-
ence Maxwellian will be the exact equilibrium solution of the model
by construction.

Notice thatC,(x) depends on the positior € I',, via the unit
outward normal vector(x).

Using the reference flux*, formally chosen a:* = c*v*
(see Table I, the dimensionless boundary condition attains the Numerical

same form as the dimensional one as . . . . .
This paper reports on numerical results obtained in two dimen-

(1) e A2 e A Aoa s et sions, and the numerics are stated in 2-D form here; the generaliza-
%00 = [M1(%D ~ RiZDICEOME(D) tion to three dimensions is straightforward, but considergbly more
v-0<0 el [24] computationally intense. To simplify notation, the carets)(used

to indicate dimensionless variables are omitted in this section.

The solutionf®(x,v,t) to the kinetic equation Eq. 11 together
with the boundary conditions Eq. 24, 28, and 29, and the initial
. AN RDe ar Bgn e condition Eq. 32 depends on« Q C R? v € R? andt = 0.
n1(X1) = . O|" - O/[FP(R07,1)dD [25] Neglecting also the superscript 6f% in this section to simplify

v notation, Eqg. 11 forf(x,v,t) in two dimensions reads explicitly

with the dimensionless flux to the surface

and with of of of

— W 4+ p@2— =9 33
-1 at U axg U ax [33]

Ciu(x%) = U v B[ME(D)dD [26]
v - v<0

wherev® andv(® denote the components of the velocity vector

v = (D, v@) e R? in thex, andx, directions, respectively.

We approach the problem by discretizing the components of the

locity vector in Cartesian coordinates bf&), kp=0,...,Kq

The top of the domain of the feature scale moBHeforms the
interface to the bulk of the gas domain in the reactor, and we assume
that the distribution of ) is known there. More precisely, we as- ve
sume that the inflow has a Maxwellian velocity distribution, hence — 1, in thev™® variable and by;(ki), kn»=0,...,K, — 1inthe
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Figure 2. Adsorption step: dimensionless number density for a feature with aspecfratial for yfl = 1.0 andy'{ = 0.01 at timega) 10.0 ns,(b) 40.0 ns,
(c) 80.0 ns,(d) 1.0 ms,(e) 2.0 ms,(f) 3.0 ms. Note the different scales on theand thex, axes.

v@ variable. The velocity discretization is then defined by K2
= (vf(i),v(k?), k=0,...,K— 1, withK = K,K,, using the for- f(x,v,t) = IZO fX.He(v) [34]

mulask; = k — Kk, andk, = |k/K4].
Now expand the unknowhfor the reactive species in velocity

space where thep,(v), k = 0, 1,...,K — 1, form an orthogonal set of
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Figure 3. Adsorption step: dimensionless number density for a feature with
aspect ratioA = 4 for v} = 1072 andy? = 10™* at times(a 10.0 ns,(b) Figure 4. Adsorption step: dimensionless number density for a feature with
40.0 ns,(c) 80.0 ns. Note the different scales on theand thex, axes. aspect ratioA = 4 for y§ = 107* andv? = 107 at times(a) 10.0 ns,(b)

40.0 ns,(c) 80.0 ns. Note the different scales on theand thex, axes.

basis functions in velocity space with respect to some inner product fo(X,1)
(-, )c, namely, (¢, e c = o # 0 for all k and (¢|,p)c F(x,t) = : [35]
= O foralll # k. Following ideas in Ref. 14, it is possible to make fro1(x,t)

a judicious choice of basis functions such that it also holds that

(WWer,00c = QKU(ki) and(vPey,ei)c = QKU(ki) for all k as well

as(vWo;,e)c = 0 and(v@¢;,@)c = 0 forall | # k. the expansiori(x,v,t) = S (x,t)¢(v) from Eq. 34 is inserted
To obtain an equivalent system of equations for the vector ofinto Eq. 33 and the resulting equation is tested agaipsin the

coefficient functions scalar product - , - )c. This Galerkin approach yields
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= 1072, (¢) y| = 107 The solid diamonds irfb) and (c) show the ana-
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Using the properties of the basis functions from above, this system
of linear hyperbolic equations can be written in vector form as
i + A(l)LF + A(Z)i
ot d%q dXy

=0 [37]



G468 Journal of The Electrochemical Society49 (8) G461-G473(2002

& 1 P PSR Rk ik viaiiiaink gas to reach point 3. The fluxeg and the fractional coverages,
1‘:’, L0 ' SRR RS are shown as functions of time at these representative locations.
Eo.8H The adsorption step-We assume for the adsorption step that no
% gas of species A is initially present in the domain by choo<itlg
=4 = 0.0, and that it is fed with a Maxwellian distribution at the top of
§O.6 the domain by choosing?® = 1.0. This is a spatially uniform step
8 function along the boundary between the feature and the source
§ (reactoy volume. Initially, there are no adsorbed molecules of A on
204 : : the surface of the feature, hence, the fractional coverage is initially
8 H zero: 9y = 0.0.
E : After running the simulator using a zero sticking facto,rfl(
§0-2 o R p— ratio = 171000 = % = 0.0), to make sure that the solution was a uniform flux to
gk ‘ -== ratio=1/100 each point on the surface, we selected several other values. To fur-
g : e ratio=1/10 ther validate the simulation method, and to gain insight into the
0 ! : : i basic behavior of the process, we consider the limiting adsorption
0 0.2 0.4 0.6 0.8 1 - P R f
flux to surface [dimensionless] coefficient of y; = 1.0. We also considery; = 10°° and v;

= 104, as they seem more representative of surface chemistries
Figure 7. Langmuir isotherms according to analytical solution given by Eq. likely to be used in ALD. For the simulations in this paper, we use
19 for any value ofy} and for various ratios of%/~} . v2 = y1/100.
Figure 2 shows plots of computédimensionlessnumber den-
sity of species A computed using Eq. 2 as a function of position in
with diagonal matricesA®, A ¢ RK*K that have the entries the domain( at severalredimensionalizedpoints in time. Figure
Al = v and AlY = v{?. First mathematical results based on 2a plots&,(x,t) at timet = 10.0 ns; it shows that the transport
this approach can be found in Ref. 15, 16. from the interface to the bulk of the gas phase to the flat wafer
This system of linear hyperbolic equations is now posed in stan-surface is very fast, as it essentially represents molecular speeds and
dard form amenable for numerical computations. However, due toshort distances. Figures 2b and ¢ shpvat timest = 40.0 and 80.0
its large sizeK, the irregular structure of the domain, and the re- ns. Observe that the interior of the feature is not completely filled
quirement to compute for long times, it still poses a formidable with gas at these times. The reason is that the gas gets consumed as
challenge. It is solved using the discontinuous Galerkin methodg result Of-yfl = 1.0, wherever it hits the wafer surface that has no
implemented in the code D& which is well-suited to the task. See adsorbate. Hence, these molecules do not reemit from the surface
Ref. 18, 19 for more detailed information on the numerical method. 54 reach the bottom of the feature. Figures 2d, e, and f $haw
The demonstration results presented in this paper are computeamest = 1.0, 2.0, and 3.0 ms, respectively. As these plots show, it

using four discrete velocities in eaoh andx, direction; hence, takes about 3.0 ms for the feature to fill completely with gas.
there areK = 16 equations. Most results were checked against dis- Figure 3 showst;(x,t) for the value ofyl = 1072 at timest
NANAT] 1~

cretizations using six discrete velocities in each direction, and good . ; .
agreement was found for each of these comparisons. The spatial 10.0, 40.0, and 80.0 ns. Figure 3a again demonstrates that it takes
ss than 10.0 ns for gas to reach the flat parts of the wafer surface.

domain was meshed coarsely to save on computation time. Th . o ; oy
mesh for the domain is shown in Fig. 1b. As shown below, the However, for this more realistic value of the adsorption coefficient

coarse mesh and the valuelofare sufficient to show that the time Y:. comparably few gas molecules stick to the surface, and nearly
scale for transport is much faster than the time scale for adsorptioll molecules get remitted from the boundary. Figure 3c demon-
for reasonable adsorption chemistries. In turn, this leads to a signifistrates that it takes only on the order of 80.0 ns for the entire feature
cantly simpler model that has the analytical solution of Eq. 19 for to be filled with gas.

the surface fractions. Figure 4 shows the corresponding results for the adsorption co-
efficientyf1 = 10*. Comparing Fig. 3c and 4c, observe that the

) ) ) ] feature is filled slightly more rapidly than forfl = 1072. This is

In this section, we report some simulation results for the adsorpyeasonable, as even fewer molecules adsorb on the feature surface

tion step and the purge step that might be part of an ALD cycle. They, for the case off, = 1072, So, for reasonable adsorption rates
model is given by the dimensionless equations presented in the P& atures fill on the tilme scale of f'ibout 100 ns '

i ion. Som rameter val reli in Table IV. In"" _. . - - .
vious section. Some parameter values used are listed in Table Figure 5 shows plots of th@imensionlessflux 7, of species A

addition, we need to specify tlidimensionlessreaction parameters ; . )
in Eq 1é. they are spepcifiefzi/ l:tﬁelow To comp))slete the n?odel we need® the surfacerss. time for the three values of the adsorption coeffi-

to choose the initial condition for th@dimensionlessgas concen-  cienty . Figures 5a, b, and ¢ show plots fgf = 1.0, 102, and

tration throughout the domaié" and for the fractional coverage 10, respectively. The fluxes to the surface at points 1, 2, and 3

A as well as the coefficient in the boundary condition at the toptend to the same steady-state value of aligit= 0.444, indepen-

of the domaire’®?; these values are different for the adsorption step dent of the value ofy! ; this precise value fofi is taken from the

and the purge step, and are specified in the following subsections.data files, from which the plots in Fig. 5 are produced. This is the
In order to analyze the behavior of the flgx to the surface and fIl_Jx of species A to the wafer surface_a_n_d through_ the feature mouth.

of the fractional surface coverage, over time, three points on the Figures 5a, b, and ¢ show that the initial behavior depends on the

wafer surface are chosen as shown in Fig. 1a. Point 1 is located oMalue ofy], in agreement with the corresponding Fig. 2, 3, and 4,

the flat area of the wafer surface atQ.79.,0); during adsorption,  respectively. Observe that the feature fills with gas and the flux tends

we expect the fractional coverage to increase fastest at this pointo a constant, spatially uniform value on the time scale of a ten

Point 2 is located half-way down the trench and Rasoordinate ~ milliseconds.

—0.5AL; it initially sees less of the gas and take longer to reach full ~ Figures 6a, b, and ¢ show plots of tf@imensionlesscoverage

coverage. Point 3 is located at the bottom of the feature-&l(, 0); ratio 9, vs.time up tot = 30.0 ms fory} = 1.0, 102, and 104,

for features with large aspect ratios, it takes yet longer times for therespectively. Figure 6a shows that the fractional coversage

Results
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ns, (d) 1.0 ms,(e) 2.0 ms,(f) 3.0 ms. Note the different scales on theand thex, axes.

increases up to its equilibrium value relatively quickly fef 2f. Figures 6b and c show that the fractional coverage increases
= 1.0. The time lags for points 2 and 3 are explained by the factmore slowly fory} = 1072 and 10, respectively. This is the case
that it takes time for gas molecules to reach those areas inside thdespite the fact that the feature is filled with gas much faster for
feature. Note that it takes about 3.0 ms to achieve coverage at athese smaller values o;ffl. The development of the coverage ratio
three points, which is another way to view the results shown in Fig.also indicates that the time to reach equilibrium coverage might be
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. i 5 b A Figure 10. Purge step: dimensionless number density for a feature with
pectratioA = 4 fory; = 10 < andy; = 10" “ at times(a) 10.0 ns,(b) 40.0 Lo f a4 b A6 e
ns, (c) 80.0 ns. Note the different scales on theand thex, axes aspect ratioh = 4 fory; = 10 * andy; = 107 at times(a) 10.0 ns,(b)
' ' ' 2 ’ 40.0 ns,(c) 80.0 ns. Note the different scales on theand thex, axes.

inversely proportional to the value qfl, by comparing Fig. 6a and We can estimate the equilibrium coverage from the analytical

b; Fig. 6¢ shows , still in its initial linear phase and cannot be used solution in Eq. 19or using Eq. 16 wittR, = 0) as
for this comparison.

f~
. . . . . . A " Y1iM 1 R
_ The observations in Fig. 5 a_md 6 ju_stlfy th?wapprommatlompf Ia(t) — 9% = = 11 5= — asi— o [38]
in Eq. 18 by the constant, spatially uniform flti{ = 0.444. Using Yim: t V1 14 Y1
this value in Eqg. 19 with initial conditioly' = 0.0, we are able to Y11

obtain an analytical representationf(t). This analytical predic- _ - . -
tion is incorporated into the Fig. 6b and ¢ as the solid diamonds.Notice that the equilibrium value depends only®pat equilibrium
Observe the good agreement with the simulation results. and on the ratiOy?/yfl, but not on the value o#yfl itself. In this
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Figure 11. Purge step: dimensionless flux to the surfaseime at the three
observation point¢see Fig. 1afor v = vf/100 with (a) v§ = 1.0, (b) v
= 1072, (c) v} = 107

study,f; — 0.444 andy®/y! = 1/100, and we calculate the value

95 ~ 0.977974, which is in excellent agreement with the observed
values of 0.977975 and 0.977817 from the data used to generate Fig.
6a and b, respectively.

Also based on the analytical result, we can predict the time to

togg = —In(0.0D WT*

S, 1

= b
Yim: t v1

Figure 12. Purge step: fractional coverage time at the three observation
points(see Fig. lafor v2 = yf/100 with (a) v} = 1.0, (b) v{ = 1072, (o)

yfl = 107*. The solid diamonds itib) and (c) show the analytical solution
given by Eg. 19. Notice the different scales on the vertical axes.

reach 99% of equilibrium coverage by requiring thé (o o9
= 0.99 to find (in redimensionalized time

[39]
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Processing time for adsorption is depicted up to 99% of equilibrium coverage.

provided thatyfl < 1.0. Using7, = 0.444 andyl{ = yf1/100, we Figure 12 shows the evolution of the dimensionless fractional

find tgge ~ 0.016 s= 16.0 ms fory’! = 1072 This time is in ex- ~ coveraged, vs.time up tot = 30.0 ms. As Fig. 12a shows, the

cellent agreement with the results shown in Fig. 6b. Rdr coverage can decrease to zero within a matter of milliseconds for the

= 1074, we obtain in the same walgqo~ 1.6 s, which agrees ngeitdvaluhe of ttrrl]et(iﬁsorptlop rate _ﬁO?fflc::?ntrconS|?ir$#. Frlr?ulqer

with the observation that the time to reach equilibrium is inversely | a fci SV\;SOAa defg\ée Sge_m 'I?ZO ecrease ? Ie T afe

proportional tovfl for yfl < 1.0 andy? < Vfl' :‘/;c?etshg yrla_hs do ?]r(]Jt exte‘nd uttoltlt;,:,]l e(r)1osuo r?q?i:ﬁestgwsxrqovr\: the
To analyze the influence of the ratig/v', Fig. 7 shows the ’ grap J g

0 isoth £ th ilibri " h . approach ofy, to zero. However, it is clear thdt, decreases with
(Langmuip isotherms of the equilibrium coveragg, vs.the equi-  time, hence, the purge time must be limited in order to prevent too
librium flux 11 according to the analytical solutidor using Eq. 16 muych desorption.

with R, = 0) for any ! and for various ratios/%/y{. The plots From the observation that the flux decreases to almost zero

indicate that equilibrium coverage depends strongly on the ratio ofquickly relative to desorption for small values ¢f, it is again
desorption rate parameter to adsorption rate parameter. It also dgpossible to use the analytical solution Eq. 19 to approximate the
pends on flux, particularly at low equilibrium coverages; at high long-term behavior of9,. Therefore, with; ~ 0.0 and B
coverages, the flux dependence decreases as the maximum surfage 99682, plots of the analytical solution are incorporated in Fig.
coverage is approached. 12b and c, and agree very well with the simulation results.

The purge step—At the beginning of the purge step after adsorp- __ 10 estimate the time to allow a decrease of the covefagéo
tion, the domain is filled uniformly with gaseous molecules, hence 90% of its initial coverage for the purge step, we require that
¢ = 1.0 is set. But no more gas is fed from the top, hetf®  Ya(togd = 0.909," = (0.90)(0.9682)= 0.87138 to find(in redi-
= 0.0. As the initial condition for the fractional coveragd', we mensionalized time
assume thaty, has reached 99% of its equilibrium value in the S 1
preceding adsorption stepg., we choose as initial condition for the togo= —IN(0.90 — —p [40]
purge simulations the valug,' = (0.99)(0.977974)= 0.9682. We nov1
assume this value to be spatially uniform for demonstration pur-
poses. The desorption rate coefficiey@tis again taken as a constant For yfl =102 and «/E = 107%, this vyields togy~ 0.016 s
ratio relative to the adsorption rate coefficientds= v{/100 in = 16.0 ms. This is in excellent agreement with Fig. 12b. The cor-
these simulations. responding estimate for*yfl =10* and «/l{ =10° is tygg

The following results for the purge step are organized in the~ 1.6 s. Observe that the tinigq,depends only on the desorption
same way as those for the adsorption step in the previous subsectioBeefficienty®, but not on the adsorption coefficienf .
Figures 8, 9, and 10 show the time evolution of the dimensionless  Figyre 13 combines the analytical solutions for the adsorption
concentratiort, for v} = 1.0, 102, and 10, respectively. In all  and purge steps to give a picture of processing time. Here, the pro-
casest; decreases to zero over time, because it is not being fed intaessing time for adsorption is depicted up to 99% of equilibrium
the domain. The only source is from desorption. Observe that thecoverage. Observe that the processing times depend stronglg/,on
desorption from the wafer surface for the caseybf= 1.0 andy} while the value ofy? mostly affects the purge time. Note that the
= 0.01 is fast enough to explain the relatively slow decreadis of time to reach 99% of equilibrium during adsorption takes less time
in Fig. 8, relative to the faster decreasestofshown in Fig. 9 and  for v2/y! = 1/10, because there are more vacant sites available as
10, virtually independent of the particular valuedf < 1.0. equilibrium is approached; this is also reflected in Eq. 39, because

Figure 11 shows the evolution of the dimensionless flux to the'\/f1 is a significant fraction of the denominator in this case.
surfacen ;. The flux to the surface decreases to zero along with the ]
concentration¢; in agreement with the figures for the concentra- Conclusions
tions. For small values 01‘/?, the flux to the surface is essentially A model and numerical method are presented that are used to
zero after 5 ms. simulate the transient adsorption and desorption that would occur
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during ALD over micrometer scale features during integrated circuit
fabrication. The assumptions for the Boltzmann equation-based
model are presented, and no adjustable parameters are used.
simple reversible Langmuir adsorption model is used; kinetic pa-

the source volume to the wafer surface is constant in time, either at

zero or at some selected valués., we idealize transients at the 6

reactor scale, to focus on modeling feature scale transients. More

general boundary conditions at the interface between the wafer sur-7'

face and the reactor volume are certainly possible.
We present results for transients in number density, flux, and

time scale for transport~100 ng is much shorter than the time
scale for adsorption and desorptigmilliseconds to seconglsThis

has significant implications for integrated multiscale process simu-
lation, as it allows the resolution in time to be of the same order as

process transients. Thus, previous integrated multiscale procesg

simulation efforts can be extended to model pattern scale effects

during transienté®?? These transients can be intrinsic or pro- 12.

grammed to optimize some process or product proferty.
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