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Many production steps used in the manufacturing of integrated circuits involve
the deposition of material from the gas phase onto wafers. Models for these
processes should account for gaseous transport in a range of flow regimes,
from continuum flow to free molecular or Knudsen flow, and for chemi-
cal reactions at the wafer surface. We develop a kinetic transport and reac-
tion model whose mathematical representation is a system of transient linear
Boltzmann equations. In addition to time, a deterministic numerical solution
of this system of kinetic equations requires the discretization of both position
and velocity spaces, each two-dimensional for 2-D/2-D or each three-dimensional
for 3-D/3-D simulations. Discretizing the velocity space by a spectral Galerkin
method approximates each Boltzmann equation by a system of transient linear
hyperbolic conservation laws. The classical choice of basis functions based on
Hermite polynomials leads to dense coefficient matrices in this system. We use a
collocation basis instead that directly yields diagonal coefficient matrices, allow-
ing for more convenient simulations in higher dimensions. The systems of conser-
vation laws are solved using the discontinuous Galerkin finite element method.
First, we simulate chemical vapor deposition in both two and three dimensions
in typical micron scale features as application example. Second, stability and
convergence of the numerical method are demonstrated numerically in two and
three dimensions. Third, we present parallel performance results which indicate
that the implementation of the method possesses very good scalability on a dis-
tributed-memory cluster with a high-performance Myrinet interconnect.
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continuous Galerkin method; cluster computing; chemical vapor deposition.
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1. INTRODUCTION

Several production steps in the manufacturing of integrated circuits (ICs)
involve gas flow at pressures that range from very low to atmospheric [16].
The Boltzmann transport equation from gas dynamics [5, 16] is appro-
priate to model such processes on the micron length scales of patterned
features that populate the wafers during IC fabrication. For atomic layer
deposition (ALD), we introduced a kinetic transport and reaction model
(KTRM) that consists of a linear Boltzmann equation without collision
term in two spatial dimensions [10, 14]. We extended it to multiple species
in [12, 13] and three spatial dimensions in [24, 25]. Extending the KTRM
to include the effect of collisions, for the case where the gas flow is dom-
inated by an inert carrier gas, gives the system of transient linear Boltz-
mann equations for the ns reactive species

∂f (i)

∂t
+ v ·∇xf

(i)= 1
Kn

Qi(f
(i)), i=1, . . . , ns, (1.1)

with the linear collision operators

Qi(f
(i))=

∫
R3
σi(v, v′)

[
M(i)(v)f (i)(x, v′, t)−M(i)(v′)f (i)(x, v, t)

]
dv′, (1.2)

stated here in dimensionless form. See also [11] for additional details on
the derivation of the model and its non-dimensionalization.

The left-hand side of (1.1) describes the convective transport of the
gas molecules, and the collision operators (1.2) on the right-hand side of
(1.1) describe the effects of molecular collisions. Here, σi(v, v′)=σi(v′, v)>0
is a given function that treats the collision events and M(i)(v) denotes the
Maxwellian distribution of species i. The unknown in this kinetic equation
is the scaled probability density f (i)(x, v, t), which we call kinetic density
in the following to distinguish it from other densities, for the molecules of
species i to have a position x and velocity v at time t in an infinitesimal
volume dx dv in phase space.

The model (1.1) is stated in dimensionless form, as indicated by the
appearance of the Knudsen number Kn. Kinetic models take both trans-
port and collisions of molecules into account, and these require different
reference quantities for their non-dimensionalization. Specifically, the trans-
port involves the characteristic length scale L∗ of the spatial domain, while
the collision effects are characterized by the mean free path λ (average
distance traveled by a molecule between collisions) of the molecules, which
is largely determined by the pressure in the chemical reactor. In the
non-dimensionalization, the ratio of these characteristic lengths arises and
is defined as the Knudsen number Kn :=λ/L∗ that characterizes the relative
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dominance of inter-molecular or molecule–wall collisions in kinetic models
[16]. See [12, 14] for the full details of our non-dimensionalization. In the
hydrodynamic regime for Kn�1.0, inter-molecular collisions dominate and
gas flow is fluid-like. In the transition regime for Kn ≈ 1.0, inter-molecular
and molecule–wall collisions balance. In the Knudsen regime for Kn �1.0,
the effects of inter-molecular collisions are negligible and the flow is domi-
nated by convective transport. Notice that while the set of equations repre-
sented by (1.1)–(1.2) above for each species appear decoupled, the solutions
for all reactive species will in general be coupled to each other through the
boundary conditions at the wafer surface. These boundary conditions are
crucial for our applications and involve coupling to general models for how
the gas phase species interact with the surface, including chemical reactions
that occur at the surface. While we are interested in a method that can han-
dle a wide range of Knudsen numbers including up to 0.01 � Kn �∞, the
focus is on application problems in the transition regime with Kn ≈ 1.0, in
which the use of kinetic models is most needed [16].

The numerical solution of the linear Boltzmann equation (1.1)–(1.2)
presents a challenge for numerical methods due to the large number of
independent variables present in a kinetic equation: For 3-D/3-D prob-
lems, the three-dimensional spatial domain Ω ⊂ R

3 for x and the three-
dimensional velocity vector v ∈ R

3 need to be discretized at every time t .
Even for 2-D/2-D problems, we need to discretize the four dimensions
of the two-dimensional spatial and two-dimensional velocity domains at
every time step t . Both two-dimensional and three-dimensional mod-
els are of interest in practice; to make the notation concrete, we use
three-dimensional notation throughout this paper.

One classical application of the linear Boltzmann equation is neutron
transport [5, Chapter IV]. The linearity of this equation is the result of
considering the background medium through which the neutrons travel to
be significantly more dense and thus neutron–neutron collisions can be
neglected. Another classical application of the linear Boltzmann equation
is charge transport in semiconductor devices [17]. Here, transport is mod-
eled by the linear Boltzmann equation with forcing term coupled to the
Poisson equation, see [4, 22] and the references therein.

Various numerical methods have been designed for these models; see
[4] for a detailed review. Two broad categories into which numerical solu-
tions of the Boltzmann equation may fall are stochastic methods and
deterministic methods. The most popular of the stochastic approaches are
Monte Carlo methods [1]. These methods utilize random sampling and
if the number of averaging particles is not chosen large enough, they do
not accurately describe transient behavior and equilibrium states. In [4], a
deterministic method for the Boltzmann–Poisson system is developed by
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transforming the linear Boltzmann equation to a system of conservation
laws which is linear when ignoring the coupling with the Poisson equation.
This system is solved by a WENO finite difference method with explicit
Runge–Kutta time-stepping. Extensive numerical evidence is presented to
demonstrate the advantages of an efficient deterministic scheme over exist-
ing Monte Carlo methods, whose advantages include “faster speed, noise-
free resolution, and easiness for arbitrary moment evaluations” [4]. These
conclusions are also supported in [9].

In the spirit of [4, 9], in order to have direct access to the kinetic den-
sity f (i)(x, v, t) as functions of both x and v in a transient model and
to avoid the stochastic variability associated with Monte Carlo methods,
we develop here a deterministic numerical method for the system of lin-
ear Boltzmann equations in (1.1). We choose to use (a modification of) the
numerical method found in [22] for the semiconductor Boltzmann equation,
because the KTRM in (1.1)–(1.2) can be formulated in a similar way. How-
ever, the numerical challenges associated with our KTRM lie in different
aspects of the problem: The fundamental challenge of the semiconductor
Boltzmann equation results from its coupling with a Poisson equation that
is driven by an applied voltage whose values vary over a huge range. But
the spatial domain of a transistor channel is often reasonably approximated
by a one-dimensional domain, and symmetry considerations can reduce the
dimension of the velocity space. In our KTRM, we have a simpler trans-
port term and no coupling to another equation (in the gas phase), but
we are keenly interested in developing a model and numerical method that
can handle fully three-dimensional spatial domains of irregular shape with
associated three-dimensional velocity discretizations. The crucial coupling
for our applications involves the reaction models at the wafer surface and
affects the solution of (1.1) via the boundary conditions there. Moreover,
we need models for several reactive species in practice, giving us the system
of transient linear Boltzmann equations in (1.1).

Our interest in models in higher dimensions is the reason why we
use a modification of classical Galerkin methods for the linear Boltzmann
equation: To discretize the velocity space, Galerkin methods approximate
the kinetic density f (i)(x, v, t) for each species i by an expansion in
basis functions in velocity space, whose expansion coefficients depend on
position and time. The Galerkin ansatz of inserting the expansion for
f (i)(x, v, t) in (1.1) and testing against the basis functions approximates
each linear Boltzmann equation by a system of transient linear hyperbolic
conservation laws. The classical choice of basis functions uses Hermite
polynomials [7, 15, 21–23], which result in dense coefficient matrices in
the hyperbolic systems. We use here an alternative choice of basis func-
tions, a collocation basis, that results in diagonal coefficient matrices. This
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makes simulations in higher dimensions substantially more convenient in
practice, as diagonalization of the coefficient matrices is no longer neces-
sary and because the inflow part of the boundary for each equation in the
system can be directly identified. Our method can be related to the clas-
sical method and analytic results from [22] still apply to guarantee stabil-
ity and convergence of the velocity discretization. For the solution of the
systems of linear hyperbolic conservation laws, we choose to use the dis-
continuous Galerkin method (DGM), implemented in the code DG [20],
because the method is perfectly suited for the resolution of irregular spa-
tial domains. The DGM was first introduced by Reed and Hill [19] for
solving similar sets of equations. See, for instance, [8] for more informa-
tion about the method. In the studies here, we use linear basis functions
on each element and first-order explicit time-stepping (Euler); this presents
only the initial step designed to focus on the assessment of the code’s par-
allel performance and obtain reference solutions, before using automatic
mesh refinement and coarsening already available in DG and higher-order
finite elements.

The focus of this paper is to explain our numerical method in detail
and to demonstrate (i) that it can solve realistic application problems in
two and three dimensions, (ii) that it exhibits convergence for reasonable
resolutions in two and three dimensions, in extension of one-dimensional
studies in [22, 23], and (iii) that its parallel implementation scales well on
a distributed-memory cluster with high-performance interconnect. First,
we present a brief outline of our model extension to the process of chem-
ical vapor deposition (CVD) in Section 2, already in dimensionless form.
Second, Section 3 introduces our numerical method in detail, contrasts
it with existing series expansion methods, and discusses its convergence.
Third, our numerical studies cover three aspects: Section 4.1 presents tran-
sient studies for single-species CVD that demonstrate that problems of
interest can be solved and that it is useful to be able to access the kinetic
density f (i)(x, v, t) itself, focusing on the transition regime with Kn =1.0.
Section 4.2 contains the numerical demonstrations of stability and conver-
gence in two and three dimensions for a wide range of Kn from 0.01 to
∞. Finally, Section 4.3 provides performance studies of our implementa-
tion on a parallel computer with 64 processors to show the speedup pos-
sible for our method on such a platform.

2. THE APPLICATION AND ITS MODEL

2.1. The Application: Microelectronics Manufacturing

The starting point for the manufacturing of ICs is most commonly a
silicon wafer. Repeatedly during the manufacturing process, the surface of
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the wafer has a microstructure of millions of trenches, via (round holes),
and/or other structures, generically called ‘features,’ that were etched into
the surface in a previous production step. The class of processes of inter-
est here involves the deposition of films that either partly or completely
fill these features. Two types of processes are particularly relevant: atomic
layer deposition (ALD) and chemical vapor deposition (CVD). Depending
upon the application, the deposited material, which forms due to reactions
of gas phase species on the surface, may be either an insulating layer of,
say, silicon dioxide SiO2, or conductive metal, say, copper Cu.

Figure 1 shows prototypical examples of two- and three-dimensional
spatial domains for the processes under consideration, both of which are
of interest for practical simulations. Specifically, Fig. 1(a) shows the two-
dimensional cross-section of a trench that is modeled as infinite in the third
dimension. The mathematical domain Ω ⊂ R

2 of our model is the region
filled by gas inside and just above the feature. The domain boundary is
comprised of three distinct sections: ∂Ω =Γw ∪Γt ∪Γs . Here, Γw denotes
the solid wafer surface indicated by the hash marks in Fig. 1(a), Γt is the
top boundary of the domain that forms the interface with the bulk gas in
the reactor chamber, and Γs denotes the union of the portion of the bound-
ary on the left and right sides of the domain above the wafer surface; by
construction, all segments that comprise Γs are orthogonal to one of the
coordinate axes. The length L denotes the width of the feature mouth and
can be 0.25µm or less in typical applications today. The number A specifies
the feature aspect ratio (depth over width of the feature).

Fig. 1. Schematics of (a) two-dimensional and (b) three-dimensional domains defining the
feature width L and aspect ratio A.
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Figure 1(b) sketches the corner of a trench designed to analyze the
three-dimensional effects of a sharp corner on the behavior of the manu-
facturing process. Each trench is modeled as semi-infinite in the direction
away from the corner. L and A denote again the width and aspect ratio
of the feature. The domain Ω⊂R

3 of our model comprises the gas-filled
area inside and just above the surface. Again, the boundary of Ω is com-
prised of three distinct sections: ∂Ω =Γw ∪Γt ∪Γs . Here, Γw denotes the
solid wafer surface indicated by the gray shading in Fig. 1(b), Γt is the top
of the boundary of the domain that forms the interface with the bulk gas
in the reactor chamber (at the top of the figure), and Γs denotes the union
of the remaining portions of the boundary; by construction, the segments
of Γs are orthogonal to one of the coordinate axes.

Figure 2 shows a schematic to demonstrate the evolution of the depo-
sition of a thin initial layer during chemical vapor deposition. The figure
shows a single-species model with the (generic) reactive gas A fed from
the bulk gas above the wafer surface. Upon reacting at the wafer sur-
face, a layer of solid material deposits. Starting with an empty trench in
Fig. 2(a), deposition starts in areas that ‘see’ most of the gaseous reactant,
the flat wafer areas to the left and right of the trench and the bottom of
the trench as well as its side walls in (b). As deposition continues in (c), it
becomes clear that the corners at the bottom of the trench take the longest
time to cover with solid, so that by that time already additional layers of
solid have deposited on the areas to the left and right of the trench in (d).

The operating conditions of a typical reactor are high temperature
T = 500 K (approximately 400 ◦F) and total pressures Ptotal ranging over
a wide range of values. For our simulations, we assume a fixed tem-
perature T and vary the total pressure Ptotal. A low total pressure of
Ptotal = 1 Torr (atmospheric pressure is 760 Torr) corresponds to a mean
free path (the average distance that a molecule of gas travels between
collisions) of about λ= 100µm = 10−4 m. Higher total pressures such as

Si

A

Si

A

Si

A

Si

A(a) (b) (c) (d)

Fig. 2. Schematic of the evolution of deposition of a thin initial layer during chemical
vapor deposition.
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Ptotal =102 and 104 Torr correspond to smaller mean free paths of about
λ=1µm=10−6 m and λ=10−2 µm=10−8 m, respectively. Models of inter-
est range from feature scale models designed to represent individual fea-
tures as sketched in Fig. 1 with a typical length scale of L∗ = 1µm =
10−4 cm to mesoscopic scale models of several hundred or several thou-
sand features with typical length scales of L∗ = 0.01 to 0.1 cm. Here, we
focus on the feature scale and thus fix the length scale of interest L∗.
Therefore, with L∗ fixed, varying the total pressure in the reactor changes
λ and hence the Knudsen number Kn. We directly use Kn as the param-
eter that controls the transport regime represented by the dimensionless
model (1.1)–(1.2), from the near-hydrodynamic regime (Kn=0.01) through
the transition regime (Kn =1.0) to the Knudsen regime (Kn =∞).

2.2. The Model Equations

As discussed in the Introduction, we use the Boltzmann equation
of gas dynamics as our starting point for modeling processes such as
atomic layer deposition or chemical vapor deposition, for Knudsen num-
bers above 0.01. More precisely, we formulate a system of Boltzmann
transport equations for all gaseous species present in the reactor. In addi-
tion to the reactive species i= 1, . . . , ns , this includes an inert carrier gas,
denoted by i=0, that is present in the processes under consideration. Then
the appropriate model is a system of equations for all of the distribution
functions f (i)(x, v, t), i= 0,1, . . . , ns . Following the approach suggested in
[5, Chapter II], we obtain a system of Boltzmann transport equations for
all gaseous species

∂f (i)

∂t
+ v ·∇xf

(i)= 1
Kn

ns∑
j=0

Qij (f
(i), f (j)), i=0,1, . . . , ns, (2.1)

with the collision operators given by

Qij (f
(i), f (j))

=
∫

R3

∫ 2π

0

∫ π/2

0

[
f (i)(v′)f (j)(v′

∗)−f (i)(v)f (j)(v∗)
]
Bij (ϑ, |V|) dϑ dε dv∗.

(2.2)

We state the model already in dimensionless form here, as indicated by the
factor 1/Kn. Here, Bij (ϑ, |V|) models the details of the collisions between
molecules of species i and j . The short-hand notation under the integral
implies the same position x and time t for all f (i) and f (j).

As stated, (2.1)–(2.2) is a system of coupled, non-linear Boltzmann
transport equations for all gaseous species and is challenging to solve
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numerically, because of the high dimensionality of the space (x, v)∈Ω ×
R

3, because of the fivefold integral in the collision operators, and because
of the non-linearity in the integral. Using properties of the applications
considered here, which results in a system of linear Boltzmann equations
for the reactive species only, it is possible to alleviate the latter two chal-
lenges significantly.

We make four realistic assumptions about the class of processes con-
sidered: We observe that (i) the reactive chemical species present in the
reactor are typically an order of magnitude less dense than the inert car-
rier gas. This is common operating practice, in order to keep the reac-
tant species from interacting in the gas phase, which could cause gas
phase reactions. Such gas phase reactions in general are detrimental. Gen-
eralizing [5, Chapter IV] to multiple species, the dominant collisions are
then given by those involving the carrier gas j = 0 on the right-hand
side of (2.1), and it is therefore justified for all equations i = 0,1, . . . , ns
to consider only the collision operators Qi0 and to neglect the collision
operators Qij , j = 1, . . . , ns [11, 12, 14]. In other words, only collisions
between molecules of each reactive species with molecules of the carrier
gas are considered. We also observe that (ii) since the carrier gas is inert,
i.e., it does not react with the reactive species, its equation i = 0 decou-
ples completely from the remaining equations for i= 1, . . . , ns ; the inert-
ness is materially needed here to justify the decoupling in the reaction
boundary condition. Additionally, we make the reasonable model assump-
tions that the carrier gas (iii) is itself in steady-state (∂f (0)/∂t = 0) and
(iv) is uniformly distributed in space (∇xf

(0) = 0) [5]. Then the equa-
tion for i = 0 in (2.1) reduces to Q00(f

(0), f (0))= 0 only, which has as
its solution a Maxwellian f (0)(x, v, t)=M(0)(v) [5, 6]. We note that our
formulation of the KTRM also tacitly assumes that reactions among the
reactive species in the gas phase are even less likely to occur than collisions
among them; this assumption is appropriate for processes of interest here
[11, 16].

Retaining only the collision operators Qi0 and using the solution for
f (0) in the equations for the reactive species i=1, . . . , ns in (2.1) yields the
problem (1.1) with the linear collision operator Qi(f

(i)) :=Qi0(f
(i), f (0)).

Following again [5, Chapter IV], we can rewrite the linear collision opera-
tor in the form given in (1.2) that contains the known solution f (0)(v) of
species i= 0 inside σi(v, v′) that can be precomputed or modeled directly
[11]. The scattering term σi(v, v′) is a positive function satisfying the sym-
metry relation σi(v, v′)= σi(v′, v) due to the principle of detailed balance
[5, Chapter IV]. Besides being a traditional formulation of the linear col-
lision operator in this context, we are interested in writing it in this form,
because it facilitates the application of the numerical method below.
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2.3. Boundary Conditions and Initial Condition

In this section, we discuss the boundary and initial conditions for our
application. For simplicity, we use a scalar f (x, v, t) in this section, appro-
priate for a single-species example. Recall from Section 2.1 that the bound-
ary ∂Ω is composed of three distinct sections, ∂Ω=Γw ∪Γt ∪Γs , where a
different boundary condition will be prescribed for each of the three por-
tions. In the following, n=n(x) denotes the unit outward normal vector at
a surface point x ∈ ∂Ω.

At the inflow boundary along the interface to the bulk of the gas
phase at the top of the domain Γt , we assume that the distribution
of f is known; specifically, the inflow of the reactants is prescribed by a
Maxwellian distribution:

f (x, v, t)= ctop

[2π(v∗)2]3/2
exp

(
− |v|2

2(v∗)2

)
, x ∈Γt , n · v<0. (2.3)

Here, v∗ is chosen to be the thermodynamic average speed and ctop repre-
sents the (dimensionless) concentration at the top of the domain [12, 14].

At each portion of the vertical boundaries above the mean wafer sur-
face Γs , specular reflection is used

f (x, v, t)=f (x, v′, t), x ∈Γs, n · v<0, n · v′>0, (2.4)

with v = v′ −2n(n · v′).
The crucial boundary condition for the two applications under con-

sideration is the one at the wafer surface Γw that results in the deposition
of the solid film. The general form is given as

f (x, v, t)=α(x, t)M(v), x ∈Γw n · v<0. (2.5)

Observe that the separation of variables indicates that the molecules will
re-emit from the wafer surface with a Maxwellian distribution, M(v). The
term α(x, t) contains all details of any conserved quantities, reaction rates,
etc., and depends on the application. For atomic layer deposition, we refer
to [12, 14] and references therein for specific details of this boundary con-
dition. For chemical vapor deposition, we pose the following single-species
model; see [11] for more details and a generalization to multi-species mod-
els. A model for the deposition rate R(x, t) at the wafer surface for chem-
ical vapor deposition can be written as R(x, t) = γ0 η(x, t), where γ0 is
the constant, dimensionless sticking factor representing the percentage of
molecules that “stick” to the wafer surface and η(x, t) is the flux of the
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gaseous species to the surface

η(x, t)=
∫

n·v′>0
|n · v′|f (x, v′, t) dv′, x ∈Γw. (2.6)

At the wafer surface, then, we use the boundary condition

f (x, v, t)=C [η(x, t)−R(x, t)]M(v), x ∈Γw, n · v<0. (2.7)

With R(x, t)=γ0η(x, t), we obtain

f (x, v, t)=C [1−γ0]η(x, t)M(v), x ∈Γw, n · v<0, (2.8)

with the scaling factor C chosen such that, in the absence of reactions
(R(x, t)=0), mass conservation is guaranteed. In other words, we demand
that influx must equal outflux for R=0:

∫
n·v<0

|n · v|f (x, v, t) dv =
∫

n·v>0
|n · v|f (x, v, t) dv. (2.9)

Finally, at the initial time t=0, the distribution of the gaseous species
is again assumed known with a Maxwellian distribution

f (x, v,0)=fini := cini

[2π(v∗)2]3/2
exp

(
− |v|2

2(v∗)2

)
x ∈Ω, v ∈R

3, at t=0,

(2.10)

where cini denotes a constant. For instance, cini =0 models the situation in
which no reactive gas is present at the beginning of the simulation.

Our boundary conditions are a special case of those in [22] and allow
us to use the analytical results of that work later. Specifically, using the
notation from [22], we have ∂Ωin =Γt with boundary condition

f (x, v, t)=fin(x, v, t), x ∈ ∂Ωin, n · v<0, (2.11)

and ∂Ωre =Γw ∪Γs with

f (x, v, t)=
∫

n·v′>0
r(x, v, v′)f (x, v′, t) dv′, x ∈ ∂Ωre, n · v<0. (2.12)

As in [22], we make the following assumptions about r(x, v, v′) on the
reflecting boundary ∂Ωre:

M(v)=
∫

n·v′>0
r(x, v, v′)M(v′) dv′, x ∈ ∂Ωre, n · v<0, (2.13)



248 Gobbert, Webster, and Cale

and

|n · v| r(x, v, v′)M(v′)=|n · v′| r(x,−v′,−v)M(v), x ∈ ∂Ωre, n · v<0, n · v′>0.

(2.14)

Equation (2.13) implies the preservation of the steady-state distribution.
Equation (2.14) implies that the number of molecules reflected from the
wall from a velocity range of (v′, v′ +dv′) to a velocity range of (v, v +dv)
is equal to the number of molecules reflected from the wall from a veloc-
ity range of (−v,−v − dv) to a velocity range of (−v′,−v′ − dv′) [5], i.e.,
the microscopic behavior at the boundary is time reversible. Additionally,
we require that for the initial and inflow data

∫
Ω

∫
R3
f 2

ini
dv
M(v)

dx � Bini<∞, (2.15)
∫
∂Ωin

∫
n·v<0

|n · v|f 2
in
dv
M(v)

dS � Bin<∞, (2.16)

for constants Bin,Bini for all t . These assumptions are reasonable for the
application under consideration.

3. THE NUMERICAL METHOD

For clarity of the presentation, we explain and analyze the numeri-
cal method for a single-species model (ns =1) and drop the species super-
scripts. The generalization to several reactive species is straightforward,
since we plan on using explicit time-stepping to evaluate the boundary
conditions and right-hand side at the old time step. Hence, the concrete
equation to be solved for f (x, v, t) with x ∈Ω⊂R

3 and v ∈R
3 reads

∂f

∂t
+v(1) ∂f

∂x1
+v(2) ∂f

∂x2
+v(3) ∂f

∂x3
= 1

Kn
Q(f ), (3.1)

where v(1), v(2), and v(3) are the components of the velocity vector v in the
x1-, x2-, and x3-directions, respectively, and Q(f )(x, v, t) is the linear colli-
sion operator for a single-species model. In this section only, we use super-
scripts for the components of the velocity vector v= (v(1), v(2), v(3)) to have
the subscripts available for the indexing of the velocity mesh.

3.1. Series Expansion Methods Based on Hermite Polynomials

In this section, we detail classical series expansions and the cor-
responding choice of basis functions following [22, 23]. However, our



Simulation of the Transient 2-D/2-D and 3-D/3-D Linear Boltzmann Equation 249

notation is different in a number of ways. In particular, we introduce a
mapping from the indices in three dimensions to a one-dimensional count-
ing scheme instead of using a vector-valued index in 3-D; this choice
makes the implementation of the velocity discretization in computer code
more convenient.

An approximation to the kinetic solution is obtained through a series
expansion of the form

f (x, v, t)≈fK(x, v, t) :=
K−1∑
k=0

f̃k(x, t)ψk(v), (3.2)

where ψk(v), k = 0,1, . . . ,K − 1, form an orthonormal set of basis func-
tions in velocity space with respect to the weighted L2-inner product

〈f, g〉G :=
∫

R3
f (v) g(v)

dv
M(v)

, (3.3)

whose weight function 1/M(v) is motivated by theoretical considerations for
the linear Boltzmann equation [18, 23]. This choice of weight function leads
naturally to a family of orthonormal basis functions defined by ψk(v)=
M(v)H (1)

k1
(v(1))H

(2)
k2
(v(2))H

(3)
k3
(v(3)) which uses products of a Maxwellian

with one-dimensional (modified) Hermite polynomials H
(δ)
kδ
(v(δ)), kδ =

0, . . . ,Kδ − 1, δ= 1,2,3, as underlying orthonormal basis functions. This
approach was already proposed by Grad [15] and used in early work on this
problem by Chorin [7].

To construct these basis functions, the weight function e−(v(δ))2 of the
conventional Hermite polynomials is transformed to the one-dimensional
Maxwellian M(δ)(v) = exp(−(v(δ))2/2)/√2π for v(δ) ∈ R in each of the
dimensions δ=1,2,3. Then the set {H(δ)

i (v(δ)), i=0,1,2, . . . } forms a fam-
ily of orthonormal polynomials, where H(δ)

i (v(δ)) is a polynomial of degree
i and H

(δ)
i (v(δ)) and H

(δ)
j (v(δ)) satisfy

∫ +∞

−∞
M(δ)(v(δ))H

(δ)
i (v(δ))H

(δ)
j (v(δ)) dv(δ)= δij for all i, j ∈{0,1,2, . . . }.

Here, δij denotes the Kronecker delta function, which is 1 for i= j and 0
for i �=j . We use these modified Hermite polynomials to define the follow-
ing Gaussian quadrature rule for a function p(v(δ))

∫ +∞

−∞
M(δ)(v(δ))p(v(δ)) dv(δ)≈

Kδ−1∑
�=0

q
(δ)
�

(
M(δ)(v

(δ)
� )

)2
p(v

(δ)
� ) (3.4)
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with (modified, factored) quadrature weights q(δ)� . By choosing the roots of
the Kδth degree Hermite polynomial H(δ)

Kδ
(v) as the collocation points v(δ)� ,

�=0, . . . ,Kδ−1, and the quadrature weights q(δ)� , �=0, . . . ,Kδ−1, appro-
priately, this approximation will be a unique Gaussian quadrature and
exact for polynomials up to degree 2Kδ − 1. The collocation points v(δ)�
will be symmetric about 0, that is, v(δ)� =−v(δ)

Kδ−1−� for all �=0, . . . ,Kδ−1.
We would now like to write a three-dimensional quadrature rule

based on a Cartesian product of three of the one-dimensional quadra-
ture rules (3.4). Denote by v(δ)µδ and q(δ)µδ ,µδ=0, . . . ,Kδ−1, the nodes and
weights in the xδ-direction in (3.4) for δ= 1,2,3. We can now write the
quadrature rule for a function p(v)=p(v(1), v(2), v(3)) as

∫
R

∫
R

∫
R

M(1)(v(1))M(2)(v(2))M(3)(v(3))p(v(1), v(2), v(3)) dv(1)dv(2)dv(3)

≈
K1−1∑
µ1=0

K2−1∑
µ2=0

K3−1∑
µ3=0

q(1)µ1
q(2)µ2

q(3)µ3
(M(1)(v(1)µ1

))2(M(2)(v(2)µ2
))2(M(3)(v(3)µ3

))2p(v(1)µ1
, v(2)µ2

, v(3)µ3
).

(3.5)

We would like to define a more compact notation for both the nodes
and weights of this quadrature rule. Therefore, define the nodes vk ∈
R

3 as vk = (v
(1)
k1
, v
(2)
k2
, v
(3)
k3
) for kδ = 0, . . . ,Kδ − 1, δ = 1,2,3. The index

k then must range from 0 to K − 1 with K := K1K2K3. As notation
for this transformation, introduce a mapping π(·) that maps the set
{0, . . . ,K − 1} to {0, . . . ,K1 − 1} × {0, . . . ,K2 − 1} × {0, . . . ,K3 − 1} such
that (k1, k2, k3)=π(k). We will also write component-wise k1 =π1(k), k2 =
π2(k), and k3 = π3(k), i.e., π = (π1, π2, π3). Since the mapping is one-to-
one, an inverse mapping π−1(·, ·, ·) exists, and k can be computed from
(k1, k2, k3) as k=π−1(k1, k2, k3). The mapping π−1 is explicitly defined as
k=π−1(k1, k2, k3)=k1 +K1k2 +K1K2k3.

We can now write the quadrature rule (3.5) for a function p(v) more
compactly as

∫
R3
M(v)p(v) dv ≈

K−1∑
µ=0

qµ
(
M(vµ)

)2
p(vµ) (3.6)

if we also define qµ=q(1)µ1 q
(2)
µ2 q

(3)
µ3 with (µ1,µ2,µ3)=π(µ). This quadrature

is exact for functions p(v) that are products of polynomials in each com-
ponent v(δ) up to degree 2Kδ−1 for δ=1,2,3. Similarly, we can now write
the basis functions ψk(v) :=M(v)Hk(v) for k=0, . . . ,K−1 with M(v)=
M(1)(v(1))M(2)(v(2))M(3)(v(3)) and Hk(v) := H

(1)
k1
(v(1))H

(2)
k2
(v(2))H

(3)
k3
(v(3))
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for kδ = 0, . . . ,Kδ−1, δ = 1,2,3. By construction, the basis functions are
orthonormal with respect to the inner product 〈·, ·〉G.

To obtain an approximation of (3.1) by the spectral Galerkin ansatz,
replace f (x, v, t) by fK(x, v, t)=

∑K−1
�=0 f̃�(x, t)ψ�(v) and test against ψk(v)

with respect to the inner product 〈·, ·〉G to obtain

∂f̃k

∂t
+

K−1∑
�=0

〈
v(1)ψ�,ψk

〉
G

∂f̃�

∂x1
+
K−1∑
�=0

〈
v(2)ψ�,ψk

〉
G

∂f̃�

∂x2

+
K−1∑
�=0

〈
v(3)ψ�,ψk

〉
G

∂f̃�

∂x3
= 1

Kn

K−1∑
�=0

〈Q(ψ�),ψk〉G f̃�,

where the orthonormality of the basis functions has already been used.
Introducing the coefficient matrices Ã(δ), B̃ ∈ R

K×K for δ = 1,2,3 with
components of the coefficient matrices Ã

(δ)
k� := 〈

v(δ)ψ�,ψk
〉
G

and B̃k� :=
〈Q(ψ�),ψk〉G, we obtain the following system of conservation laws

∂F̃

∂t
+ Ã(1) ∂F̃

∂x1
+ Ã(2) ∂F̃

∂x2
+ Ã(3) ∂F̃

∂x3
= 1

Kn
B̃F̃ , x ∈Ω, t >0 (3.7)

for the vector of coefficient functions F̃ (x, t) := (f̃0(x, t), . . . , f̃K−1(x, t))T .
Observe that (3.7) is a first-order hyperbolic system of conservation laws
where one must prescribe boundary conditions on that part of ∂Ω that
comprises the inflow boundary. The fact that the constant coefficient
matrices Ã(δ) are not diagonal makes it difficult to identify which part of
∂Ω constitutes the inflow boundary for each f̃k.

In [22], the choice of a transformation matrix is based on the insight
that the summation in the quadrature rule

∑K−1
µ=0 qµψk(vµ)ψ�(vµ) can be

split into “equal” parts to define an orthogonal matrix P = (Pk�) that is
shown to simultaneously transform all coefficient matrices Ã(δ), δ=1,2,3,
to diagonal ones.

Lemma 1. Let A(δ)k� =v(δ)kδ δk�,Pk�=ψk(v�)
√
q�, (P

T )k�=ψ�(vk)√qk for
k, �= 0, . . . ,K − 1. Then PPT = I and Ã(δ) can be simultaneously diago-
nalized as Ã(δ)=PA(δ)P T for all δ=1,2,3.

Applying this transformation P to (3.7) results in the transformation of the
system for the transformed unknown ˜̃

F(x, t) :=PT F̃ (x, t). A straightforward
computation shows that
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˜̃
f k(x, t)=

K−1∑
µ=0

(P T )kµf̃µ(x, t)=
K−1∑
µ=0

√
qk ψµ(vk)f̃µ(x, t)=√

qk fK(x, vk, t),

(3.8)

where ˜̃
f k(x, t) is the kth element of the transformed vector of coefficient

functions given by ˜̃
F(x, t)= ( ˜̃

f 0(x, t), . . . ,
˜̃
f K−1(x, t))

T . The fact that direct
evaluation of the approximation fK(x, vk, t) at one of the discrete veloci-
ties v=vk does not give us f̃k(x, t) demonstrates that the application of the
initial and boundary conditions could be made simpler. In the next sec-
tion, we introduce a transformation which allows us to obtain the coeffi-
cient functions of a suitable expansion directly from the evaluation of
fK(x, v, t) at the velocity vector vk without any extraneous factor.

Stability and asymptotic convergence of the numerical solution fK
obtained by the transformation described in Lemma 1 can be shown, which
we quote here for later reference [22]. First, define the norm ‖f ‖2

G
:=〈f,f 〉G

induced by the weighted L2-inner product (3.3) that depends on x and t if
f =f (x, v, t). Then, also define the following G(t)-norm

‖f ‖2
G(t)

:=
∫
Ω

‖f ‖2
G
dx =

∫
Ω

∫
R3
f 2 dv
M(v)

dx, t�0, (3.9)

which is solely a function of time t if f =f (x, v, t) [22].

Theorem 2. The solution of the system obtained by transforming (3.7)
with initial condition and boundary conditions with (2.15)–(2.16) satisfies

‖fK‖2
G(t)

�Bini +
∫ t

0
Bin dτ for all t ∈ [0, tfin]. (3.10)

The proof in [22] follows in the spirit of Boltzmann’s H -Theorem by bound-
ing the discretized ‖fK‖

G(t)
. A convergence result is also available [22].

Theorem 3. Let f (x, v, t) denote the solution of (3.1) and fK(x, v, t)
the solution of the system (3.7). If f is assumed to be sufficiently smooth,
then the error between the two solutions satisfies

‖f −fK‖
G(t)

→0 as K→∞. (3.11)

The proof of this asymptotic convergence result is only available in the
case when the reflecting boundaries are assumed orthogonal to a coordi-
nate axis with specular reflection [22].
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3.2. A Series Expansion Method Based on a Collocation Basis

In this section, we show that it is possible to choose alternative basis
functions ϕk(v) in a series expansion

f (x, v, t)≈fK(x, v, t)=
K−1∑
k=0

fk(x, t) ϕk(v) (3.12)

that lead directly to a diagonal system of conservation laws and explicit
identification of the boundary conditions. To demonstrate that such a
choice is feasible, consider again the system of conservation laws with non-
diagonal coefficient matrices (3.7). It was shown in Lemma 1 that the non-
diagonal coefficient matrices Ã(δ) could be simultaneously diagonalized;
however, the transformed unknowns ˜̃

f k(x, t) in (3.8) could not be com-
puted by direct evaluation of fK(x, v, t) at a particular vk. The follow-
ing lemma holds, which shows that another choice of the transformation
matrix P leads to the same diagonal matrices A(δ) and the computation of
the unknown coefficient functions fk(x, t) in (3.12) by direct evaluation of
fK(x, v, t) at the discrete velocity vk.

Lemma 4. Let A
(δ)
k� = v

(δ)
kδ
δk�,Pk� = q�ψk(v�), (P−1)k� = ψ�(vk) for

k, �= 0, . . . ,K − 1. Then PP−1 = I and Ã(δ) can be simultaneously diag-
onalized as Ã(δ)=PA(δ)P−1 for all δ=1,2,3.

Proof. Since the polynomial degree of the product v(δ)H (δ)
�δ
(v(δ))H

(δ)
kδ

(v(δ)) is never larger than 2Kδ − 1, the quadrature rule (3.6) is exact and
the components of Ã(δ) can be computed as

(PA(δ)P−1)k� =
K−1∑
µ=0

K−1∑
ν=0

(
qµψk(vµ)

) (
v(δ)µδ δµν

)
(ψ�(vν))

=
K−1∑
µ=0

qµv
(δ)
µδ
ψk(vµ)ψ�(vµ)

=
K−1∑
µ=0

qµ
(
M(vµ)

)2
v(δ)µδ H�(vµ)Hk(vµ)

=
∫

R3
M(v) v(δ)H�(v)Hk(v) dv

=
∫

R3
v(δ)ψ�(v)ψk(v)

dv
M(v)

=
〈
v(δ)ψ�,ψk

〉
G

= Ã(δ)k� .
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To verify that PP−1 = I , we compute, using (3.6),

(PP−1)k� =
K−1∑
µ=0

qµψk(vµ)ψ�(vµ)=
K−1∑
µ=0

qµ
(
M(vµ)

)2
H�(vµ)Hk(vµ)

=
∫

R3
M(v)H�(v)Hk(v) dv =

∫
R3
ψ�(v)ψk(v)

dv
M(v)

= 〈ψk,ψ�〉G= δk�.

If we now consider the transformed unknown F(x, t) :=P−1F̃ (x, t), direct
computation shows

fk(x, t)=
K−1∑
µ=0

(P−1)kµf̃µ(x, t)=
K−1∑
µ=0

f̃µ(x, t)ψµ(vk)=fK(x, vk, t). (3.13)

Observe that this is the analogous result to (3.8) without the scaling fac-
tor

√
qk. Thus, the coefficient functions fk(x, t) can be computed by eval-

uating fK(x, vk, t) and the unknowns fk(x, t) are exactly the unknowns in
(3.12) we would like to solve for.

The fact that fk(x, t) = fK(x, vk, t) dictates that we must construct
basis functions with the property ϕk(vµ)= δkµ. This condition implies that
the basis functions ϕk(v) are the collocation basis functions based on the
Gaussian quadrature roots with respect to the Maxwellian weight func-
tion defined above. We construct the basis functions ϕk(v) again as a prod-
uct of a Maxwellian M(v) and polynomials based on these roots, which
ensures that span{ψk}= span{ϕk}. This guarantees that both methods pro-
duce the same numerical solution fK(x, v, t), that is, we have

fK(x, v, t)=
K−1∑
µ=0

f̃ (x, t)ψµ(v)=
K−1∑
µ=0

f (x, t)ϕµ(v). (3.14)

This equivalence immediately guarantees stability and convergence from
Theorems 2 and 3, respectively. Additionally, since the Gaussian quadra-
ture is exact for all needed integrals, the basis functions have the following
properties.

Lemma 5. For all k, �=0, . . . ,K−1, the basis functions ϕk(v) satisfy
the properties 〈ϕ�, ϕk〉G=qk δk� and

〈
v(δ)ϕ�, ϕk

〉
G

=qk v(δ)kδ δk� for δ=1,2,3.
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To obtain an approximation of (3.1) by the spectral Galerkin ansatz,
insert the approximation fK(x, v, t) = ∑K−1

�=0 f�(x, t)ϕ�(v) into (3.1) and
test against ϕk(v) with respect to the inner product 〈·, ·〉G to obtain

〈ϕk, ϕk〉G
∂fk

∂t
+

K−1∑
�=0

〈
v(1)ϕ�, ϕk

〉
G

∂f�

∂x1
+
K−1∑
�=0

〈
v(2)ϕ�, ϕk

〉
G

∂f�

∂x2

+
K−1∑
�=0

〈
v(3)ϕ�, ϕk

〉
G

∂f�

∂x3
= 1

Kn

K−1∑
�=0

〈Q(ϕ�), ϕk〉G f�.

Introducing the coefficient matrices A(δ)∈R
K×K, δ=1,2,3, and B ∈R

K×K
with components A(δ)k� := 〈

v(δ)ϕ�, ϕk
〉
G
/qk = v

(δ)
kδ
δk�, δ = 1,2,3, and Bk� :=

〈Q(ϕ�), ϕk〉G /qk, we obtain the following system of linear hyperbolic par-
tial differential equations

∂F

∂t
+A(1) ∂F

∂x1
+A(2) ∂F

∂x2
+A(3) ∂F

∂x3
= 1

Kn
BF, x ∈Ω, t >0, (3.15)

for the vector of coefficient functions F(x, t) := (f0(x, t), . . . , fK−1(x, t))T .
Observe that the matrices A(δ) are exactly those that we would have
obtained through the diagonalization procedure in Lemma 1. Since the
coefficient matrices in (3.15) are diagonal and constant allows us in turn
to rewrite the system in conservation form

∂fk

∂t
+∇x · (akfk)= 1

Kn
bk, k=0, . . . ,K−1, (3.16)

with constant vectors ak := (A
(1)
kk ,A

(2)
kk ,A

(3)
kk )

T = (v
(1)
k1
, v
(2)
k2
, v
(3)
k3
)T = vk for

all k = 0, . . . ,K − 1 and the right-hand side functions bk(x, t) :=∑K−1
�=0 Bk�(x, t)f�(x, t).

Another advantage of ϕk(v) is that they lead directly to the appropri-
ate treatment of the boundary conditions. Each hyperbolic partial differ-
ential equation for fk(x, t) in (3.15) or (3.16) needs to be supplied with
boundary conditions on that part of ∂Ω that constitutes its inflow bound-
ary Γ −

k :={x ∈ ∂Ω : n(x) ·ak <0} with ak in (3.16) and where n(x) denotes
the unit outward normal vector at x ∈ ∂Ω. Consider a generic kinetic
boundary condition at x ∈ ∂Ω for the inflow part of the density function
f (x, v, t), that is,

f (x, v, t)=f−(x, v, t), x ∈ ∂Ω, n · v<0, (3.17)

with a given function f−(x, v, t). Using the fact that ϕ�(vk)= δk�, we have
f (x, vk, t)=fk(x, t), and we obtain by letting v = vk in (3.17)

fk(x, t)=f−(x, vk, t), x ∈ ∂Ω, n · vk <0. (3.18)
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Since ak = vk for all k= 0, . . . ,K − 1, this condition is exactly the desired
condition at the inflow boundary Γ −

k . That is, for each equation in (3.16),
we have the boundary condition

fk(x, t)=f−(x, vk, t), x ∈Γ −
k , (3.19)

given exactly on the inflow part of Γ −
k ⊂ ∂Ω defined above.

3.3. Spatial Discretization and Parallel Implementation

Considering either the system (3.15) or the conservative form (3.16),
the problem is now posed in standard form amenable for numerical
computations. However, due to the large size K of each system, the
irregular shape of the spatial domain Ω ⊂ R

3, and the requirement to
compute for long times in transient simulations for realistic application
examples, they still pose a formidable challenge. We choose to use the dis-
continuous Galerkin method (DGM) [8], implemented in the code DG
[20], applied to the conservation form (3.16) to solve each system, because
it is perfectly suited for the resolution of problems in conservation form
on domains with potentially very irregular shape. In the studies here, we
use linear polynomials on each element. This work does not focus on the
time discretization and explicit Euler time-stepping is used at present.

For the parallel computations, the domain Ω is partitioned in a pre-
processing step, and each parallel processor is assigned one subdomain.
Certain pairs of disjoint subdomains will share edges for two-dimensional
domains and faces for three-dimensional domains, and the processors on
which they reside will have to communicate with each other at every time
step to pass information on fluxes across their shared element edges or
faces, respectively. Since we wanted to focus on the performance of the
parallel implementation, we do not use automatic mesh refinement and
coarsening at present, which would incur additional work and result in
additional communications to redistribute elements for load balancing.

The domains in Fig. 1 are in fact relatively regular in shape, and we
use quadrilateral elements in 2-D and brick elements in 3-D for them;
however, DG also implements, for instance, tetragonal elements in 3-D;
see [11] for an example. For our convergence studies and parallel per-
formance studies, the shape of the elements is of minor relevance. In
2-D, the degrees of freedom are the values of the K solution components
f
(i)
k (x, t), k=0, . . . ,K−1, for each reactive species i=1, . . . , ns on all four

vertices of each of the Ne quadrilaterals; hence the complexity of the com-
putational problem is given by 4NensK degrees of freedom. In 3-D, we use
brick elements with eight vertices, resulting in 8NensK degrees of freedom.



Simulation of the Transient 2-D/2-D and 3-D/3-D Linear Boltzmann Equation 257

Hence, the complexity of the computational problem is proportional to
the number of elements Ne, to the number of species ns , and to the system
size K.

4. NUMERICAL RESULTS

All computational results presented are for single-species simulations
(ns =1) of chemical vapor deposition (CVD) in both two and three spatial
dimensions on the computational domains of Fig. 1 with the width of the
feature mouth L=0.25 µm and an aspect ratio A=3. The problem is given
by (1.1)–(1.2) with i = 1, and we drop the species index in all variables
f (i),M(i), σi , etc. We use a relaxation time approximation for the collision
operator by choosing σ =1/τ with relaxation time τ =1 in a dimensionless
single-species model [11, 21, 23, 24]. Section 4.1 demonstrates the capa-
bilities of the KTRM and its implementation for an application example
both in two and three dimensions. For both choices of the spatial dimen-
sion, the evolution over time of two quantities is shown: the dimension-
less concentration c(x, t)= ∫

f (x, v, t) dv as a function of x ∈Ω and the
kinetic density f (x, v, t) as a function of v at a selected point x ∈Ω. The
application example has operating conditions in the transition regime with
Kn = 1.0 that justifies the use of a kinetic model. Additional results for
different Kn are available [24]. Section 4.2 demonstrates the numerical sta-
bility and convergence for the velocity discretization of our method for a
wide range of Kn from 0.01 to ∞ in two and three dimensions. These
studies are important, because they demonstrate that the asymptotic con-
vergence predicted by the analytical results is attainable for reasonable res-
olutions. Finally, Section 4.3 contains parallel performance studies for the
implementation of our numerical method. The studies use Kn=∞, which
is the most conservative case, as no calculations are required for the right-
hand side in (1.1).

4.1. Application Results

The purpose of CVD is to deposit material in features: either a thin
film (liner or layer), or to fill them. This is accomplished by feeding a reac-
tive gas stream over the surface of the silicon wafer. Specifically, we simu-
late just the initial, transient layer of deposition, as opposed to feature fill
of the entire trench. Such a simulation is particularly relevant to processes
designed to deposit thin films of material (a few tens of nanometers thick
in practice).

We assume that no reactive gas is present in the feature initially:
f (x, v,0) = 0. The reactive gas is then fed into the top of the domain



258 Gobbert, Webster, and Cale

with a Maxwellian distribution M(v). When the gas reaches the wafer sur-
face, a fraction of the molecules “stick” to the surface and react with
the silicon surface. The fraction of the molecules that stick to the wafer
surface is given by the sticking factor γ0, which can range from 0 (all
particles re-emit) to 1 (all particles stick to the wafer surface). We model
the re-emission of the remaining molecules as a Maxwellian distribution,
as given by the wafer surface boundary condition (2.8). The sticking fac-
tor is chosen as γ0 = 0.01, which is a typical values for processes under
consideration [3]. This choice indicates that approximately 1% of the gas
molecules stick and react with the wafer surface; the remaining molecules
are re-emitted with a Maxwellian velocity distribution.

4.1.1. Two-Dimensional Application Studies

In this subsection, we report results for the evolution of dimension-
less concentration and kinetic density for the 2-D/2-D simulations in the
domain sketched in Fig. 1(a). Figure 3 shows the dimensionless concentra-
tion of the reactive species for Kn =1.0 at six (re-dimensionalized) points
in time. In Fig. 3(a), the dimensionless concentration is shown for the ini-
tial state t = 0 ns. Since none of the reactive gas is present, c= 0 every-
where. Figure 3(b, c) shows that after t=1 ns the gas has already reached
the feature and after t = 5 ns the gas has reached the bottom of the fea-
ture, respectively. We also see an increase in concentration just above the
flat areas of the wafer surface, which is due to re-emission of molecules
from the surface. The feature fill is relatively rapid in this regime, but the
concentration profile is not very smooth; in particular, the jumps at the
sharp corners in Figure 3 are expected in this regime [2]. Figure 3(d, e)
shows the further increase in concentration through t=20 ns. Finally, Fig-
ure 3(f) shows that at approximately t = 40 ns the feature is nearly filled
with the reactive species.

One of the advantages of deterministically solving the Boltzmann
equation is the direct access to the kinetic density f (x, v, t). In addition
to being able to compute c(x, t) as a function of x, this also allows for
the ability to analyze f (x, v, t) as a function of v at a chosen point x∈Ω.
We choose the point x= (0.0,0.0) at the center of the mouth of the feature
to avoid the effect of re-emissions from the flat areas of the wafer surface,
since we are particularly interested in understanding the directionality of
the flow observed in the concentration results.

Figure 4 shows the kinetic density f (x, v, t) for Kn = 1.0 as a func-
tion of v ∈R

2 at the same times as the concentration plots in Fig. 3 with
x = (0.0,0.0) at the mouth of the feature. The plots in this figure are
oriented analogously to the concentration plots in Fig. 3, such that flow
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Fig. 3. Dimensionless concentration c(x, t) as function of x ∈Ω for Kn = 1.0 at selected
(re-dimensionalized) times.

downwards into the feature, to the right in Fig. 3, corresponds to a kinetic
density with larger values also on the right of a plot. Figure 4(a) confirms
the initial condition f = 0. As Fig. 4(b) shows, molecules have already
reached the position x by t = 1 ns in this regime, but the kinetic density
distribution is skewed in the negative v2-direction (the right side of the
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Fig. 4. Kinetic density f (x, v, t) as function of v ∈ R
2 for Kn = 1.0 at selected

(re-dimensionalized) times. Coordinates of spatial point at the feature mouth: x = (0.0,0.0).

plot). This indicates that the flow is directional. This is due to the fact that
the molecules have not been re-emitted from the wafer surface and have
not been randomized by collisions yet in this regime. In Figure 4(c), one
sees a continued increase in the kinetic density for v2 < 0 (the right side
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of the plot), however, one also sees an increase in density in the v2 > 0
direction (the left side) due to re-emission from the surface. An exam-
ination of the concentration in Fig. 3 shows that the gas reaches the
mean wafer surface after only a few nanoseconds. Thus, re-emission in the
positive v2-direction is seen and, hence, an increase in the corresponding
components of the kinetic density. Observe in Fig. 4(d–f) that the den-
sity becomes apparently uniform about the origin due to collisions and re-
emission with a Maxwellian velocity distribution; actually, the density is
not uniform, but an inspection of the individual numbers reveals that its
upward velocity components are slightly smaller than the downward com-
ponents due to the deposition of material at the wafer surface.

In summary, the flow for Kn=1.0 gives rapid feature fill, yet the gas
profile is relatively rough. This corresponds to a less collisional flow in
the transition regime. The directionality of the flow is clearly visible in the
plots of the kinetic density f and explains our interest in directly access-
ing f (x, v, t) as function of v.

4.1.2. Three-Dimensional Application Studies

In this subsection, we report results for the evolution of dimensionless
concentration and kinetic density for the 3-D/3-D simulations in the domain
sketched in Fig. 1(b). Figure 5 shows slice plots of the dimensionless con-
centration of the reactive species for Kn=1.0 at several (re-dimensionalized)
points in time. The slices are four horizontal cross-sections of the domain Ω
at heights x3 =−0.75,−0.50,−0.25, and 0.00. The shapes of the three lower
slices indicate the shape of the trench corner domain, while the top slice
at x3 =0.0 includes the flat areas of the wafer surface. The different shades
of gray indicate the value of the dimensionless concentration 0� c(x, t)�1.
The lightest shade of gray corresponds to c=0 and the darkest shade indi-
cates c= 1. We do not show the initial concentration c= 0 at t = 0 ns.
Figure 5(a) shows that the concentration has started reaching the flat parts
of the wafer surface at x3 =0.0 already after 1 ns. Examining Fig. 5(b), one
sees that a high concentration on the flat parts of the wafer surface has
already been attained after only 2 ns. Less concentration is still seen above
the mouth of the L-shaped trench, as the molecules continue to travel down
into the feature there. But after just 5 ns, some molecules have reached the
bottom of the feature in Fig. 5(c). Figure 5(d, f) shows the evolution of
the concentration up to t = 40 ns, at which point all slices show significant
levels of concentration. The short transport time is a function of the less
collisional flow in this regime.

We now study the kinetic density f (x, v, t) in three dimensions.
Figure 6 shows the kinetic density f (x, v, t) in the transition regime for
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Fig. 5. Slice plots of the dimensionless concentration c(x, t) as function of x ∈ Ω for
Kn = 1.0 at selected (re-dimensionalized) times. The horizontal slices are at heights x3 =
−0.75,−0.50,−0.25, and 0.00. Gray scale from light color for c=0 to dark color for c=1.

Kn =1.0 as a function of v ∈R
3 with x at the mouth of the feature in the

corner with the physical point x = (0.375,0.375,0.0) at the same times as
in Fig. 5. Figure 6 shows isosurface plots of the kinetic density at f ∗ =
0.005 at several (re-dimensionalized) points in time. That is, the shape in
each plot shows all points of the velocity domain with f (x, v, t)=f ∗, up
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Fig. 6. Isosurface plots of the kinetic density f (x, v, t) as function of v ∈R
3 for Kn=1.0 at

selected (re-dimensionalized) times. Coordinates of spatial point above the corner trench: x=
(0.375,0.375,0.0).
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to the resolution of the velocity discretization. The reference value f ∗ =
0.005 is selected such that a Maxwellian distribution results in an isosur-
face that fits in the axis limits in the plots in Fig. 6 given by the dis-
crete velocities. Figure 6(a) shows an empty plot, which indicates that by
t = 1 ns, the kinetic density f (x, v, t) at this position x is still strictly less
than f ∗ in all velocity components. This agrees with Fig. 5(a) that indi-
cates a very low concentration at the mouth of the feature. Figure 6(b)
shows that by t=2 ns molecules with downward velocity components have
reached the point x, indicated by f >f ∗ for v3< 0 components. Observe
that the density is skewed heavily in the negative v3-direction. This is due
to the fact that the flow is downward into the feature. In Figure 6(c) at t=
5 ns, f has now attained values above f ∗ also in the components for v3>

0, but the flow continues to show directionality indicated by the slightly
angled sides of the isosurface shape. As Fig. 6(c)–(f) shows, this direction-
ality becomes less pronounced over time, but does persist in this regime up
to t=40 ns.

These 3-D/3-D results confirm that the flow is less collisional for
Knudsen numbers in the transition regime. The plots of the kinetic density
show that significant fractions of the incoming reactive species get to the
bottom of the feature relatively rapidly. While this is clearly visible in the
plots of the kinetic density in Fig. 6, notice that the concentration plots in
Fig. 5 do not reveal this. This again explains our interest in directly access-
ing the kinetic density as a function of velocity.

4.2. Numerical Convergence of the Spectral Galerkin Method

In this section, we present two- and three-dimensional numerical
stability and convergence demonstrations for our numerical method. Its
asymptotic stability and convergence are guaranteed by theorems in [22]
as the number of expansion coefficients K → ∞. But the computational
studies in [22] only cover one spatial dimension; our studies extend the
results to higher dimensions. This is important to establish that reasonable
values of finite K give acceptable results.

As the true solution f in Theorem 3 is unknown, we use instead
f := fK(x, v, t), where K = 32 × 32 = 1024 is the finest solution in veloc-
ity space that we obtained for the two-dimensional case. The spatial mesh
with mesh size h=0.03125 and the constant time step ∆t=10−4 were cho-
sen such that the velocity error dominates [24]. The simulations were run
for 10 ns starting from an initial condition fini with cini =0.9 in (2.10) for
all x ∈Ω.

Table I displays numerical stability and convergence for our method
with Kn = 0.01,1.0,100.0, and ∞. Column 1 shows the level of velocity
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Table I. Demonstration of Numerical Stability and Convergence for the Spectral
Galerkin Discretization of 2-D Velocity Space for Kn =0.01,1.0,100.0, and ∞

K ‖fK‖
G(t)

‖f ‖
G(t)

−‖fK‖
G(t)

‖f ‖
G(t)

−‖fK/4‖G(t)
‖f ‖

G(t)
−‖fK‖

G(t)

‖f−fK‖
G(t)

‖f −fK/4‖G(t)
‖f −fK‖

G(t)

Kn =0.01
4 0.47861 6.86e−03 N/A 8.73e−03 N/A

16 0.48252 2.95e−03 2.3254 3.69e−03 2.3676
64 0.48425 1.22e−03 2.4180 1.51e−03 2.4364

256 0.48508 3.90e−04 3.1282 4.94e−04 3.0640
Kn =1.0

4 0.52021 5.28e−03 N/A 9.31e−03 N/A
16 0.52299 2.51e−03 2.1036 4.70e−03 1.9813
64 0.52455 9.20e−04 2.7283 4.63e−03 1.0144

256 0.52522 2.50e−04 3.6801 2.88e−03 1.6052
Kn =100.0

4 0.52303 6.20e−03 N/A 1.11e−02 N/A
16 0.52615 3.10e−03 2.0162 5.73e−03 1.9470
64 0.52801 1.20e−03 2.5371 5.63e−03 1.0177

256 0.52887 3.50e−04 3.4571 4.33e−03 1.3026
Kn =∞

4 0.52306 6.20e−03 N/A 1.12e−02 N/A
16 0.52599 3.27e−03 1.8960 8.78e−03 1.2738
64 0.52805 1.21e−03 2.7025 6.63e−03 1.3227

256 0.52891 3.50e−04 3.4571 4.34e−03 1.5261

discretization ranging from K = 2 × 2 = 4 to K = 16 × 16 = 256. The sec-
ond column contains the G(t)-norm of the numerical solution ‖fK‖

G(t)
,

which converges to the G(t)-norm of f , as predicted by Theorem 2, where
‖f ‖

G(t)
= 0.48547,0.52547,0.52922, and 0.52926 for Kn = 0.01,1.0, 100.0,

and ∞, respectively. Column 3 contains the error between the norm of f
and the norms of fK . The decreasing errors indicate that the norms of the
numerical solution fK are converging to the norm of f . The fourth col-
umn contains the ratio of successive errors between these norms. The fifth
column shows the error between f and the numerical solution fK in the
G(t)-norm. As K increases, the error ‖f−fK‖

G(t)
decreases and demon-

strates numerical convergence of our method in all regimes, as predicted
by Theorem 3. Notice for completeness that the theorem is only proved
for specular reflection on ∂Ωre [22], so our numerical studies using the
reaction condition on the wafer surface Γw⊂∂Ωre constitute an extension
beyond the theory. The last column contains the observed convergence
rates for our method. A comparison of the values in column 6 indicates
that the convergence is better in the near-hydrodynamic regime than in the
other regimes.
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We now present three-dimensional numerical stability and conver-
gence results. As the true solution f is unknown, we define again f :=
fK(x, v, t), where K=8×8×8=512 is the finest solution in velocity space
that we obtained in three dimensions. The spatial mesh with mesh size
h= 0.0625 and constant time step ∆t = 10−4 were chosen such that the
velocity error dominates [24]. The simulations were run for 10 ns starting
from an initial condition fini with cini =0.9 in (2.10) for all x ∈Ω.

Table II summarizes the stability and convergence results for the
3-D/3-D case. Column 1 shows the level of velocity discretization for K=
2×2×2=8 and K=4×4×4=64. The second column contains the G(t)-
norm of the discrete solution fK that approaches the G(t)-norm of f ,
as predicted by Theorem 2, where ‖f ‖

G(t)
=0.62035,0.65907,0.66249, and

0.66314 for Kn = 0.01,1.0,100.0, and ∞, respectively. Column 3 contains
the error between the norms of f and fK . The decreasing errors indicate
that the norms of the numerical solution fK are converging to the norm
of f . The fourth column contains the ratio of successive errors between
these norms. The fifth column shows the error between f and the numer-
ical solution fK in the G(t)-norm. As K increases, the error ‖f−fK‖

G(t)

decreases and demonstrates convergence in all regimes, as predicted by
Theorem 3. The last column contains the observed convergence rate for
our method. A comparison suggests again that the order of convergence
may be higher in the near-hydrodynamic regime.

These studies in two and three dimensions show that asymptotic con-
vergence is achieved as K→∞ in agreement with Theorem 3 for a range

Table II. Demonstration of Numerical Stability and Convergence for the Spectral
Galerkin Discretization of 3-D Velocity space for Kn =0.01,1.0,100.0, and ∞

K ‖fK‖
G(t)

‖f ‖
G(t)

−‖fK‖
G(t)

‖f ‖
G(t)

−‖fK/8‖G(t)
‖f ‖

G(t)
−‖fK‖

G(t)

‖f−fK‖
G(t)

‖f −fK/8‖G(t)
‖f −fK‖

G(t)

Kn =0.01
8 0.61551 4.84e−03 N/A 5.89e−03 N/A

64 0.61848 1.87e−03 2.5882 1.79e−03 3.2905
Kn =1.0

8 0.65713 1.94e−03 N/A 8.43e−03 N/A
64 0.65869 3.80e−04 5.1052 5.09e−03 1.6561

Kn =100.0
8 0.65953 2.96e−03 N/A 1.01e−02 N/A

64 0.66137 1.12e−03 2.6429 6.73e−03 1.5007
Kn =∞

8 0.65956 3.58e−03 N/A 1.01e−02 N/A
64 0.66142 1.72e−03 2.0814 6.75e−03 1.4963
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of Knudsen numbers 0.01 � Kn � ∞ and that results obtained for finite
resolutions K that are attainable in practice are reliable.

4.3. Parallel Performance Studies

In this section, we present results from parallel performance stud-
ies for the KTRM using the DGM code DG on a 64-processor Beowulf
cluster, in extension of earlier demonstrations on a cluster with 8 pro-
cessors [26]. Specifically, the machine is an IBM 1350 cluster arranged
as 32 dual-processor nodes with 2.0 GHz Intel Xeon (512 kB L2 cache)
chips and 1 GB of memory per node. The nodes are connected by a high-
performance Myrinet interconnect, and files are served by a fast ethernet.
Communication among nodes is accomplished using the Message-Passing
Interface (MPI) standard.

The motivation for parallel computing is that several processors work-
ing on a problem (with fixed size) should be able to solve the problem
faster than a single processor, because the calculation operations in the
algorithm are distributed across the processors and executed in parallel.
That is, ideally, a computation using p processors should be p times as
fast as a computation on 1 processor. But for algorithms, such as DGM,
that require information exchange between the processors (fluxes between
finite elements at boundaries of subdomains; see Section 3.3), using more
processors necessitates additional communication operations. Therefore,
using more processors simultaneously causes decreasing calculation time
and increasing communication time, leading to a point of diminishing
returns; discovering this point is the purpose of parallel performance stud-
ies in practice.

Since both calculations and communications are an inherent part of
parallel computing, both types of operations must be included in timings
of parallel programs, which are therefore based on wall clock time (and
not CPU time or similar). We compute the wall clock time of a simula-
tion as the difference between time stamps assigned by the operating sys-
tem to the first and last output file created during the simulation; this is
the most pessimistic timing measure possible, because in addition to calcu-
lations and communications of our code, it includes any other delays asso-
ciated with the operating system and, for instance, writing of output files.
Using this pessimistic measure, we cannot rely on the resolution of simu-
lation times of less than 1 min; such timings will be reported as <1 min.

The parallel performance results presented involve simulations with
Kn = ∞. A Knudsen number of Kn = ∞ corresponds to a Boltzmann
equation with zero right-hand side. Since there are no arithmetic oper-
ations needed to compute the right-hand side, these simulations contain
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fewer calculations than those with Kn<∞. Thus, speedup results based
on simulations with Kn = ∞ are again the most pessimistic ones possi-
ble, because cases with Kn<∞ involve more calculations – without incur-
ring additional communications – and hence may exhibit better parallel
performance.

In 2-D, we choose a mesh with Ne=320 elements and vary K to control
the computational complexity of the problem. We expect to see an increase
in observed wall clock times for larger K, but also better speedup. Table III
contains the observed wall clock times Tp in minutes for computations using
p processors for three cases of progressively finer velocity resolution; on
p=1 processor, a serial implementation of the same algorithm is used. An
examination of each column for a fixed p indicates that, as expected, an
increase in run time is seen for larger K. For each fixed resolution though,
as we increase the number of processors, a decrease is seen in the simula-
tion times; some of the simulations for K=64 are so short that we cannot
resolve their timings with our resolution of 1 min accuracy.

Figure 7 contains speedup and efficiency plots for the 2-D/2-D simu-
lations. The first plot in the figure contains speedup Sp :=T1/Tp, defined
as ratio of the wall clock time T1 using 1 processor over the time Tp using

Table III. Observed Wall Clock Time Tp in Minutes for p Processors for 2-D/2-D
Simulations for Kn =∞

Ne K DOF p=1 p=2 p=4 p=8 p=16 p=32 p=64

320 64 81,920 16 8 5 3 1 <1 <1
320 256 327,680 125 73 43 22 10 6 3
320 1024 1,310,720 1785 887 450 227 122 67 35

Fig. 7. Speedup and efficiency for 2-D/2-D simulations with Ne =320 for Kn =∞.
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p processors, for the three resolutions with the horizontal axis denoting
the number of processors p and the vertical axis denoting speedup. The
optimal value is Sp =p and shown as a dashed line for visual guidance.
The speedup is very good up to 16 processors in all cases; we cannot plot
any speedup for p= 32 and 64 for K = 64. For the more complex cases,
speedup tapers off a little for p>16. The best speedup is seen for the
most computationally complex case K = 1024. The second plot in Fig. 7
shows the efficiency Ep :=Sp/p for the three test cases. The optimal value
is Ep = 1 and shown as a dashed line for visual guidance. Since the effi-
ciency is a function of speedup, we see the same results as in the speedup
plot in principle. But an advantage of the efficiency plot is that it allows
us to determine that there is a drop-off in efficiency from 1 to 2 as well as
to 4 and 8 processors in some cases; this may be a result of initial startup
associated with a parallel code on the cluster combined with possibly less
than optimal splitting of the spatial domain Ω into subdomains for cer-
tain values of p. But this initial drop-off in efficiency does not continue
as p grows, giving very good results for p�16 in fact. The best efficiency
is seen for the most complex case K=1024, which stays above 80% all the
way up to 64 processes.

We now conduct analogous 3-D/3-D parallel performance studies. We
choose a mesh with Ne=1984 elements and vary K. Table IV contains the
observed wall clock time for computations using p processors for the three
different velocity resolutions. As expected, we see longer simulation times
for the more complex problems and a decrease in computation time with
the use of additional processors.

Figure 8 contains speedup and efficiency results for the 3-D/3-D stud-
ies. The first plot in the figure shows the parallel speedup. We see again
that the more complex cases lead to better performance. The efficiency
plot in Fig. 8 allows us again to see in more detail that there is a drop-off
in efficiency from 1 to 2 processors. But both plots show that speedup and
efficiency remains excellent all the way up to 64 processors for the most
complex case with K=512.

Table IV. Observe Wall Clock Time Tp in Minutes for p Processors for 3-D/3-D
Simulations for Kn =∞

Ne K DOF p=1 p=2 p=4 p=8 p=16 p=32 p=64

1984 8 126,976 19 11 6 4 2 1 <1
1984 64 1,015,808 120 59 30 16 12 5 3
1984 512 8,126,464 3307 1663 902 480 218 124 60
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Fig. 8. Speedup and efficiency for 3-D/3-D simulations with Ne =1984 for Kn =∞.

The performance results demonstrate that time is saved by parallel
computations in all cases, while the improvement with each doubling of
process numbers p is not very uniform in some cases. This non-uniformity
may be the result of the particular partitioning of the domain Ω into sub-
domains; notice that the partitioning is independently chosen for every p,
so doubling the number of processes may or may not introduce additional
communications. But all studies demonstrate that for the most complex
cases with the largest numbers of degrees of freedom, parallel performance
is excellent, with efficiency remaining above at least 80% all the way up
to 64 processes. Recall that the choice of Kn =∞ reduced the complexity
of the cases shown as no right-hand side is computed and recall that our
measure of wall clock time as a difference in time stamps of output files
make these results pessimistic predictors of performance. These results are
also consistent with additional performance studies with K fixed and Ne
varying [24].

5. Conclusions

In Section 2, we sketched the application problem of chemical vapor
deposition and the extension of the kinetic transport and reaction model
(KTRM) to include the effect of collisions. The KTRM is given by a sys-
tem of transient linear Boltzmann equations for the reactive species.

In Section 3, we presented a spectral Galerkin method used to discret-
ize velocity space that approximates each linear Boltzmann equation by a
system of linear conservation laws. We show how our choice of basis func-
tions leads directly to diagonal coefficient matrices in the system of con-
servation laws and also allows for the explicit identification of the inflow
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boundary condition for each equation in the system. Since the expansion of
the Galerkin method is equal to the one obtained classically, Theorems 2
and 3 also guarantee stability and convergence of our method.

Section 4 presented examples of application results in two and three
dimensions that show the capability of the model and its numerical method.
The results indicate that the application for Knudsen numbers in the tran-
sition regime admits solutions that are different from Maxwellians at some
points in time, justifying our interest in accessing the kinetic density directly.
Meanwhile, the solutions are still close enough to Maxwellians to allow for
the use of a moment method of our type. We have numerically demonstrated
convergence and stability for 2-D/2-D and 3-D/3-D simulations. While these
results are guaranteed from previous analysis in the limit as the number of
expansion terms K tends to infinity, these demonstrations are important to
convince ourselves that convergence can indeed be achieved with the finite
values for K that are realistically possible for high-dimensional simulations.
Finally, we demonstrate that the parallel implementation of our method
provides an efficient tool for large numbers of processors on a distributed-
memory cluster with high-performance interconnect.
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