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Abstract. We consider a model for chemical vapor deposition, the process of adsorption of gas
onto a surface together with the associated deposition of a chemical reactant on the surface. The
surface has a microscopic structure which, in the context of semiconductor manufacturing, arises
from a preprocessing of the semiconductor wafer. Using singular perturbation analysis, a boundary
condition for the corresponding diffusion equation is derived, which allows for the replacement of the
microstructured surface by a flat boundary. The asymptotic analysis is numerically verified with a
simple test example.
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1. Introduction. We consider the process of adsorption of the components of a
chemically reacting flow onto a surface with a given microstructure. Our motivation
for considering this problem is the coating of microstructured surfaces with thin films
via chemical vapor deposition. In chemical vapor deposition a reacting gas flows
through an inlet into a reactor. Inside, the reactor components of the gas are adsorbed
onto the processed material, creating a thin surface layer. We are concerned with the
case when the surface is patterned, i.e., exhibits a certain regular surface structure
whose scale is much smaller than the scale of the reactor geometry. Chemical vapor
deposition has a wide range of industrial applications. Our motivation arises from
the use of chemical vapor deposition in processing semiconductor wafers. There, the
surface structure arises from trenches, which are the result of prior processing of the
wafer. These trenches, or features, are of the same order of magnitude as the future
semiconductor devices (10−6m to 10−7m), while the whole wafer is usually 4 or 6
inches in diameter.

We will make the following assumptions on the flow and the geometry.
1. The reactor is assumed to work under high pressure conditions. This means

that the mean free path of the flow is so small that the flow can be described by
a diffusion process of the reacting gas through the background gas present in the
reactor; see [LC]. In terms of that work, the Knudson number Kn, which is the ratio
of the mean free path over the typical length scale, is assumed to be small, Kn << 1.
Thus, the governing equations are of the form

(a) ∂tρ = −divzF + R(ρ, z, t), (b) F = −D(z, t)∇zρ,(1.1)
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where z denotes the vector of spatial variables and t denotes time. The function
ρ denotes the density of the reacting gas, and the vector F denotes the flux. The
symmetric positive definite diffusion matrix D is assumed to be given. The matrix
D can vary in space and time because of the presence of temperature gradients.
Temperature is assumed to be a given quantity for the purpose of this paper. For
practical applications, the presented analysis can be easily extended to include heat
conduction, and a separate equation for the temperature can be augmented. The
term R(ρ, z, t) in (1.1(a)) models the reaction of the gas with the background in the
flow phase.

2. The microstructured surface, which we will denote by Γa, is given by the
equation

y = h̃ε(x), z = (x1, x2, y).(1.2)

This assumption means that the growth of the surface is so slow compared to the
time constant of the flow that it can be assumed to be independent of time. This
is a realistic assumption, considering the surface grows at a time scale of minutes,
while the particles of the flow move with the velocity of the flow. The mathematical
treatment of an evolving fine structure is reserved for a future paper in preparation.
The microstructure of the surface is modeled by the assumption that

h̃ε(x) = ε h
(
x,

x

ε

)
(1.3)

holds, where ε is a small, dimensionless parameter. Notice that all quantities are
already assumed to be dimensionless for the purposes of this analysis. Thus, a domain
width of 1 unit in both x-variables can be assumed. The function h(x, ξ) varies
moderately in all its variables and is assumed to be periodic in the second variable ξ.
So,

h(x, ξ + e1) = h(x, ξ + e2) = h(x, ξ)(1.4)

holds for e1 = (1, 0)T and e2 = (0, 1)T . The scale given by the parameter ε is
usually referred to as the feature scale. Note that usually microstructured surfaces
are assumed to be periodic if mechanical or optical properties are considered (see,
for instance, [BR1], [BR2], [URE]). The assumption (1.4) means that “neighboring
regions” of the surface look, in some sense, similar, while it allows us to prescribe, for
instance, a different average trench depth in different areas of the adsorbing surface.
The model as posed here is already dimensionless. In its original dimensional form,
the parameter ε would correspond to the period of the features of, say, 1 µm. If the
overall size of the domain is, for instance, 1 cm, then the dimensionless ε could be
chosen as their ratio of 10−4.

More theoretical work concerning problems involving highly oscillating quantities
include [CS], [DL], [KPV], [KV]. They and the references therein provide the theo-
retical framework for this work, which is meant as the first step towards a practical
simulator for chemical vapor deposition in the context of semiconductor manufac-
turing. Therefore, this model for the wafer surface is the appropriate one for the
application under consideration, and a more direct analysis is used than in those
references.

3. The adsorption of gas onto the surface is given by the boundary condition

ν • F = S(ρ, z, t) for z ∈ Γa,(1.5)
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Fig. 1. Sketch of the two-dimensional domain with associated coordinate system.

where ν denotes the unit outward normal vector on the surface Γa. The function S
in (1.5) models the deposition rate on the surface (see [LC], [CPGRJ]).

4. For the purpose of simplicity, we assume the geometry to be a cuboid, with
the inlet taking up the top face and the adsorbing surface Γa occupying the bottom
face. A sketch of the geometry is given in Figure 1.

On the top face Γt, the density ρ is prescribed, and on the side walls Γw, hard
wall boundary conditions are imposed. So, altogether, the diffusion equation (1.1) is
subject to the boundary conditions

ρ(z, t) = ρb(z, t) for z ∈ Γt,(1.6(a))

ν • F (z, t) = 0 for z ∈ Γw,(1.6(b))

ν • F (z, t) = S(ρ, z, t) for z ∈ Γa.(1.6(c))

The problem addressed in this paper is a classical singular perturbation problem.
The solution of the diffusion equation (1.1) poses no major challenge for modern com-
putational tools. However, in order to accurately discretize the boundary condition
(1.6(c)) at the adsorbing surface Γa, the surface structure would have to be resolved
on a numerical mesh. Since the scale of the surface structure is five orders of magni-
tude smaller than that of the overall geometry, this is an impossible task, even for the
most advanced adaptive grid refinement techniques. On the other hand, the structure
of the surface can be expected to influence the flow only in a narrow region above Γa.
We will use asymptotic analysis to derive a boundary condition which will allow us
to replace the microstructured surface by a flat surface.

This paper is organized as follows.
In section 2 we will derive an approximate solution to the initial-boundary value

problem (1.1)–(1.6), using asymptotics in the small, dimensionless parameter ε in
(1.3). The outer solution, which is valid in the reactor away from the microstruc-
tured wafer surface Γa, will vary only on a slow spatial scale, since the effects of the
microstructure will be smoothed out away from Γa due to the parabolicity of the
differential equation (1.1). Close to the surface Γa, the solution will be corrected by
a small layer term, which decays rapidly away from Γa. The matching conditions for
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the inner and outer solutions result in an asymptotic boundary condition for the outer
problem, given in (2.40), which only uses the average additional surface area produced
by the microstructure. Thus, an approximate solution away from the surface Γa can
be computed by using only a simple parameter function characterizing the surface,
without resolving the wafer scale numerically.

In section 3 the asymptotic analysis of section 2 is verified numerically for a two-
dimensional version of the above problem (i.e., for the case of a narrow channel). To
this end, we choose a microstructure on the wafer surface whose scale is just large
enough that it can be resolved using a nonuniform mesh. This scale is still three
orders of magnitude larger than the one used in practical applications. This “true”
solution is then compared to the solution of the asymptotic problem derived in section
2. The agreement of the densities and fluxes is as good as can be expected for the
moderate numerical value of ε = 1/16 used.

2. Asymptotic expansion. In this section we will derive an asymptotic expan-
sion of the solution of the initial boundary value problem (1.1)–(1.6) in powers of the
small parameter ε in (1.3). ε describes to some extent the roughness of the adsorbing
surface Γa. So, for ε = 0, Γa would become the flat surface given by y = 0, and the
numerical solution of equation (1.1) would become straightforward. Since we expect
the structure of the surface to influence the flow only in a narrow layer region directly
above Γa, we make the following ansatz.

ρ(z, t) = ρ̃ε(z, t) + ρ̄ε

(
x,

x

ε
,
y

ε
, t
)
, z = (x1, x2, y),(2.1(a))

ρ̃ε =
∞∑
j=0

ρ̃j(z, t)ε
j , ρ̄ε =

∞∑
j=0

ρ̄j

(
x,

x

ε
,
y

ε
, t
)
εj ,(2.1(b))

F (z, t) = F̃ε(z, t) + F̄ε

(
x,

x

ε
,
y

ε
, t
)
,(2.1(c))

F̃ε =

∞∑
j=0

F̃j(z, t)ε
j , F̄ε =

∞∑
j=−1

F̄j

(
x,

x

ε
,
y

ε
, t
)
εj .(2.1(d))

An ansatz is made for both ρ and F in order to separate their effects on the asymp-
totics explicitly. The terms ρ̄ and F̄ denote the layer corrections which only produce
a significant contribution to the solution close to the adsorbing surface Γa. So,

(a) lim
η→∞ ρ̄j(x, ξ, η, t) = 0, (b) lim

η→∞ F̄j(x, ξ, η, t) = 0 ∀x, ξ, t, j(2.2)

hold. Moreover, we assume the same periodicity properties for the layer correction
terms ρ̄ε and F̄ε as we do for the structure of the adsorbing surface Γa in (1.4). So,

ρ̄j(x, ξ + e1, η, t) = ρ̄j(x, ξ + e2, η, t) = ρ̄j(x, ξ, η, t),(2.3(a))

F̄j(x, ξ + e1, η, t) = F̄j(x, ξ + e2, η, t) = F̄j(x, ξ, η, t)(2.3(b))

hold, where e1 = (1, 0)T and e2 = (0, 1)T again. We first derive the equations for the
zero-order term of the outer solution ρ̃0, F̃0. Fixing y > 0 and letting the parameter
ε tend to zero yields

(a) ∂tρ̃0 = −divzF̃0 + R(ρ̃0, z, t), (b) F̃0 = −D(z, t)∇z ρ̃0.(2.4)
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For the leading-order term of the layer correction (ρ̄0, F̄−1), we obtain by fixing η = y
ε

and letting ε go to zero

(a) divξ,ηF̄−1 = 0, (b) F̄−1 = −D(x, y = 0, t)∇ξ,ηρ̄0,(2.5)

where

F̄−1 = (F̄ 1
−1, F̄

2
−1, F̄

3
−1)

T , divξ,ηF̄−1 = ∂ξ1 F̄
1
−1 + ∂ξ2 F̄

2
−1 + ∂ηF̄

3
−1,(2.6(a))

∇ξ,ηρ̄0 = (∂ξ1 ρ̄0, ∂ξ2 ρ̄0, ∂ηρ̄0)
T(2.6(b))

hold. Note that the expansion for F̄ε in (2.1(d)) has to start with the O(1
ε ) term in

order to close the system.
Turning to the boundary condition (1.6(c)), we first compute the normal vector

ν using (1.3). Thus, ν is given by

ν =
1

σ
[εν̃ + ν̄], ν̃ =


 ∂x1h
∂x2h

0


 , ν̄ =


 ∂ξ1h
∂ξ2h
−1


 ,(2.7(a))

σ2 = 1 + (ε∂x1
h + ∂ξ1h)2 + (ε∂x2

h + ∂ξ2h)2,(2.7(b))

and the boundary condition (1.6(c)) becomes in leading (= O(1
ε )) order

ν̄ • F̄−1 = 0.(2.8)

Combining (2.5(a)) and (2.5(b)), we see that the zero-order layer correction term ρ̄0

satisfies the homogeneous diffusion equation

divξ,η[D(x, y = 0, t)∇ξ,ηρ̄0] = 0(2.9)

together with the boundary conditions

ν̄TD∇ξ,ηρ̄0 = 0 for η = h(x, ξ),(2.10)

the homogeneous boundary conditions at the hard walls Γw, and the decay condition
(2.2(a)) at η = ∞. An easy application of the maximum principle or, alternatively, a
standard L2-estimate immediately shows that the term ρ̄0 vanishes identically. Thus,

ρ̄0(x, ξ, η, t) = 0, F̄−1(x, ξ, η, t) = 0 ∀x, ξ, η, t(2.11)

hold. Therefore, no significant correction to the density is present close to the ad-
sorbing surface Γa, and the flow will stay bounded as ε→ 0. However, as we will see,
there is a significant correction to the flux F close to the adsorbing surface, caused by
the microstructure of Γa. Going to the next higher-order term in the layer expansion
yields

(a) divξ,ηF̄0 = 0, (b) F̄0 = −D(x, y = 0, t)∇ξ,ηρ̄1(2.12)

together with the boundary conditions

ν̄ • [F̄0 + F̃0] = S(ρ̃0, x, y = 0, t)σ0,(2.13)
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where the terms F̃0 and ρ̃0 are evaluated at y = 0 and the layer correction term F̄0 is
evaluated at η = h(x, ξ). The coefficient σ0 in (2.13) is given by

σ2
0 = 1 + (∂ξ1h)2 + (∂ξ2h)2.(2.14)

Thus, after computing the zero-order term of the outer solution (ρ̃0, F̃0), the layer
correction term (ρ̄1, F̄0) is given as the solution of the homogeneous quasi steady
state diffusion equation (2.12) together with the boundary condition (2.13) at Γa,
appropriate homogeneous boundary conditions at the hard walls Γw, and the decay
condition (2.2).

The goal of the asymptotic analysis is, of course, to decouple the boundary value
problem for the outer solution (ρ̃0, F̃0) from the layer expansion. To this end we first
characterize all the solutions of the layer equation (2.12), which satisfy the decay
condition (2.2). We have the following lemma.

Lemma 2.1. Let the symmetric positive definite matrix function D(x, t) ∈ R3×3

be given by

D =

(
D0 d
dT δ

)
,(2.15)

where D0 ∈ R2×2, d ∈ R2, and δ ∈ R hold. Then, all solutions ρ(x, ξ, η, t) of the
diffusion equation

divξ,η[D(x, t)∇ξ,ηρ] = 0,(2.16)

which are periodic with period 1 in the variable ξ and satisfy limη→∞ ρ = 0, are of the
form

ρ(x, ξ, η, t) =
∑
n∈Z2

gn(x, t) exp[2πinT ξ − 2πKn(x, t)η](2.17)

with

Kn(x, t) =
1

δ

[
inT d +

√
δnTD0n− (nT d)2

]
, n = (n1, n2)

T ,(2.18)

where the term under the square root in (2.18) is always positive.
Proof. Since the function ρ is periodic in ξ, a Fourier expansion in the variable ξ,

ρ(x, ξ, η, t) =
∑
n∈Z2

g̃n(x, η, t) exp[2πinT ξ],(2.19)

has to hold. Inserting (2.19) into the differential equation (2.16) yields

D∇ξ,ηρ =
∑
n∈Z2

(
2iπg̃nD0n + ∂η g̃nd
2iπg̃nd

Tn + ∂η g̃nδ

)
exp[2πinT ξ],(2.20)

divξ,ηD∇ξ,ηρ =
∑
n∈Z2

{2iπnT [2iπg̃nD0n+∂η g̃nd]+∂η[2iπg̃nd
Tn+∂η g̃nδ]} exp[2πinT ξ],

(2.21)
and therefore

δ∂2
η g̃n + 4iπnT d∂η g̃n − 4π2nTD0ng̃n = 0.(2.22)
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Since the coefficients of this differential equation are independent of η, the solutions
are of the form

g̃n = gn exp(−2πKnη),(2.23)

where Kn depends on all variables except η (and ξ). Inserting (2.25) into (2.24) gives
the quadratic equation

δK2
n − 2inT dKn − nTD0n = 0(2.24)

with solutions

K =
1

δ

[
inT d±

√
δnTD0n− (nT d)2

]
.(2.25)

The term under the square root is always positive, since it can be written as

1

δ
(δnT ,−nT d)

(
D0 d
dT δ

)(
δn

−nT d
)
.(2.26)

Hence, the square root is real and the positive sign has to be taken in (2.27) to obtain
a solution, which decays to zero as η →∞.

With the help of the characterization of exponentially decaying solutions of the
diffusion equation given in Lemma 2.1, we can now derive a solvability condition for
the boundary condition (2.13). Collecting the layer correction terms in (2.13) on the
left-hand side yields

−ν̄ •D∇ξ,ηρ̄1(x, ξ, η = h(x, ξ), t) = σ0S − ν̄ • F̃0, ν̄ =


 ∂ξ1h
∂ξ2h
−1


 .(2.27)

The next lemma gives a necessary condition for the solution of equation (2.27), where
the function f(x, ξ, t) will later be replaced by the right-hand side in (2.27).

Lemma 2.2. Let the symmetric, positive definite matrix D be partitioned as in
(2.15). Then the equation

ν̄TD∇ξ,ηρ(x, ξ, η = h(x, ξ), t) = f(x, ξ, t),(2.28)

where the function f(x, ξ, t) is periodic with period 1 in the variable ξ, has a solution
of the form

ρ(x, ξ, η = h(x, ξ), t) =
∑
n∈Z2

gn(x, t) exp[2πinT ξ − 2πKn(x, t)h(x, ξ)](2.29)

only if ∫ 1

0

dξ1

∫ 1

0

dξ2 f(x, ξ, t) = 0(2.30)

holds for all values of x and t.
Proof. Inserting the expression (2.29) into (2.28) yields

ν̄TD∇ξ,ηρ|η=h(x,ξ) = 2π
∑
n∈Z2

gn(∇ξh
T ,−1)D

(
in
−Kn

)
exp[2πinT ξ−2πKnh(x, ξ)].

(2.31)
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Next, we try to write the coefficients in the sum (2.31) as

(∇ξh
T ,−1)D

(
in
−Kn

)
= uTn (in−Kn∇ξh),(2.32)

with some vectors un ∈ R2 independent of the variable ξ. Assuming the partition
(2.15) of the matrix D, (2.32) gives

∇ξh
T (iD0n−Knd)− idTn + δKn = uTn (in−Kn∇ξh).(2.33)

Separating the terms which are dependent on ξ from the others in equation (2.33)
yields the equations

(a) iD0n−Knd = −Knun, (b) − idTn + δKn = inTun.(2.34)

Computing the vector un from (2.34(a)) and inserting into (2.34(b)) yields

−idTn + δKn =
i

Kn
nT (Knd− iD0n),(2.35)

which is the same as equation (2.24) used to determine Kn. Hence, we can use the
vectors un given by (2.34(a)) to rewrite (2.31) as

ν̄TD∇ξ,η|η=h(x,ξ) = 2π
∑
n∈Z2

gnu
T
n (in−Kn∇ξh) exp[2πinT ξ − 2πKnh(x, ξ)]

= divξ

{∑
n∈Z2

gnun exp[2πinT ξ − 2πKnh(x, ξ)]

}
.(2.36)

Hence, we can write the left-hand side of (2.28) as the divergence of a vector-valued
function which is 1-periodic in the variable ξ. Therefore, the integral (2.30) has to
vanish identically for (2.28) to have a solution.

It should be pointed out that (2.30) is only a necessary condition for the existence
of the solution to (2.28). Thus, we can conclude that, if the solution of the full problem
(1.1)–(1.6) possesses an expansion of the form (2.1), then the zero-order terms (ρ̃0, F̃0)
have to be compatible with (2.30).

In order to show the existence of solutions to the layer problem (2.28), it would
be necessary to show the completeness of the basis functions of the form φn(ξ) =
exp[2πinT ξ − 2πKnh(x, ξ)] in the space of 1-periodic L2-functions of ξ. Even then,
the existence of layer solutions is a quite delicate problem, since the coefficients of the
form (∇ξh

T ,−1)D(in,−Kn)T would have to be nonzero for sufficiently large ‖n‖ in
order to avoid resonance. Existence and the asymptotic validity of the expansion for
the layer solution will be the topic of a subsequent paper.

Using the necessary solvability condition from Lemma 2.2, we can now separate
the boundary value problem defining the outer solution (ρ̃0, F̃0) from the one defining
the boundary layer correction term (ρ̄1, F̄0). We have the following theorem.

Theorem 2.3. The zero-order term (ρ̃0, F̃0) of the expansion of the outer solution
satisfies the boundary condition

e3 • F̃0 = σ̃S(ρ̃0, x, y = 0, t),(2.37)
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where (ρ̃0, F̃0) are evaluated at y = 0, e3 denotes the third unit vector (0, 0, 1)T , and
σ̃ is given by

σ̃(x) =

∫ 1

0

dξ1

∫ 1

0

dξ2 σ0(x, ξ), σ2
0 = 1 + (∂ξ1h)2 + (∂ξ2h)2.(2.38)

Proof. Rewriting the boundary condition (2.13) gives

−ν̄TD∇ξ,ηρ̄1 = σ0S − ν̄ • F̃0.(2.39)

The necessary condition of Lemma 2.2 implies that the integral over ξ of the right-
hand side must vanish. Evaluating the integrals and defining σ̃ as in (2.38) yields
(2.37).

So, in summary, the zero-order expansion term of the outer solution (ρ̃0, F̃0) is
given as the solution of the problem

∂tρ̃0 = −divzF̃0 + R(ρ̃0, z, t), F̃0 = −D(z, t)∇z ρ̃0(2.40(a))

together with the boundary conditions

ρ̃0(z, t) = ρb(z, t) for z ∈ Γt,(2.40(b))

ν • F̃0(z, t) = 0 for z ∈ Γw,(2.40(c))

e3 • F̃0 = σ̃ S(ρ̃0, z, t) for z ∈ Γa,(2.40(d))

where σ̃ is defined as in (2.38). The term σ̃ reflects the increased surface area due to
the roughness of the adsorbing surface Γa.

The boundary layer correction close to Γa is given by the correction term (ρ̄1, F̄0),
which is the solution of the problem

divξ,ηF̄0 = 0, F̄0 = −D(x, y = 0, t)∇ξ,ηρ̄1(2.41(a))

together with the boundary condition

ν̄ • [F̄0 + F̃0] = S(ρ̃0, x, y = 0, t)σ0,(2.41(b))

the conditions

lim
η→∞ ρ̄1(x, ξ, η, t) = 0, lim

η→∞ F̄0(x, ξ, η, t) = 0 ∀x, ξ, t, j,(2.41(c))

and the condition of periodicity in the variable ξ. Higher-order terms in the expansion
can be derived in the same manner and could be used as a higher-order correction to
the solution.

3. Numerical results. This section will demonstrate that the problem formu-
lation given by (2.40) is correct by comparing the solution with one obtained by using
a finite difference method on the original problem (1.1). Since the ultimate purpose of
this problem is to serve as an interface between the associated reactor scale and fea-
ture scale models, the quality of the solutions obtained will be compared in two ways.
First, the method has to be able to predict the density ρ correctly in the bulk of the
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domain in order to facilitate the interaction with the reactor scale model. Second, the
model has to predict the flux of gases into the wafer surface correctly. However, this
does not have to hold on the scale of the microstructure, since this will be modeled
by the feature scale model itself, but rather, the average flux into the wafer has to be
predicted correctly.

For the physical problem at hand it is customary to assume an infinite trench
length in the x2-direction. Hence, the remaining problem is two-dimensional in the
independent variables x := x1 and y, and hence z stands now for the vector (x, y)T .
The test problem used is then

(a) ∂tρ = −divz(F ) + R(ρ, z, t), (b) F = −D(z, t)∇zρ(3.1)

on the domain

Ωz =
{

(x, y) ∈ R2 : 0 < x < 1, h̃ε(x) < y < 1
}

(3.2)

and with the boundary conditions

ν • (−D∇zρ) = 0, ν = (−1, 0)T for x = 0,(3.3(a))

ν • (−D∇zρ) = 0, ν = (1, 0)T for x = 1,(3.3(b))

ρ = ρb(x, t) for y = 1,(3.3(c))

ν • (−D∇zρ) = S(ρ, x, t), ν = (1/σ)(∂xh̃ε,−1)T for y = h̃ε(x)(3.3(d))

for the initial condition

ρ(x, y, t = 0) = ρ0(x, y).(3.4)

The boundary conditions are realistic for modeling hard walls on the sides of the
domain, a Dirichlet condition towards the interior of the reactor, and a flux condition
on the wafer surface.

For convenience, the problem obtained by asymptotic analysis of the above prob-
lem is restated here in its two-dimensional form as

(a) ∂tρ = −divxy (F ) + R(ρ, x, y, t), (b) F = −D(x, y, t)∇xyρ(3.5)

on the domain

Ωxy =
{
(x, y) ∈ R2 : 0 < x < 1, 0 < y < 1

}
(3.6)

with boundary conditions

(a) (−D∇xyρ)
1 = 0 for x = 0, (b) (−D∇xyρ)

1 = 0 for x = 1,(3.7)

(c) ρ = ρb(x, t) for y = 1, (d) (−D∇xyρ)
2 = −σ̃ S(ρ, x, t) for y = 0

with

σ̃(x) =

∫ 1

0

σ0(x, ξ) dξ, σ2
0 = 1 + (∂ξh)2(3.8)
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and the initial condition

ρ(x, y, t = 0) = ρ0(x, y).(3.9)

This problem is solved by a finite difference method applied on a staggered grid on
the unit square Ωxy using a conservative formulation of the differential equation to
ensure mass conservation of the chemical material.

To this end the grid points in the x-direction are defined as xi = i∆x, i = 0, . . . I,
with ∆x = 1/I for some even integer I ≥ 2. Similarly, in the y-direction, they are
defined as yj = j ∆y, j = 0, . . . J , with ∆y = 1/J for some even integer J ≥ 2. On
this grid we then define the approximations vij ≈ ρ(xi, yj , t) and voldij ≈ ρ(xi, yj , t −
∆t). We will also use as short-hand notation Fij := F (xi, yj , t), etc. Moreover, to
avoid confusion with subscripts indicating a location on the grid, component indices
are written as superscripts, so, for instance, D11

i,j is the (1, 1)-element of the matrix
D(xi, yj , t). Also, for every grid point we define a differential domain

Ωij := (xi−1, xi+1)×(yj−1, yj+1) =
{
(x, y) ∈ R2 : xi−1 < x < xi+1, yj−1 < y < yj+1

}
.

(3.10)
Notice for later use that its size is µ(Ωij) = (2 ∆x) (2 ∆y) = 4 ∆x∆y.

To get the conservative formulation, the differential equation is integrated over
the differential domain Ωij centered at (xi, yj). All integrals not involving spatial
derivatives are then approximated by their integrands evaluated at (xi, yj) times the
size of Ωij , namely, µ(Ωij) = 4 ∆x∆y. The integral of the divergence term is converted
into a surface integral by the Gauss integral theorem. Thus, we have after dividing
by 4 ∆x∆y:

vij − voldij

∆t
=

1

4 ∆x∆y

∫
∂Ωij

ν • F dσ + Rij .(3.11)

Here, the implicit Euler method has been applied to avoid stability restrictions. The
remaining integral is now approximated by∫

∂Ωij

ν • F dσ = 2 ∆y
(
F 1
i+1,j − F 1

i−1,j

)
+ 2 ∆x

(
F 2
i,j+1 − F 2

i,j−1

)
.(3.12)

This discretization is called conservative, since the mass initially present in the system
is conserved. That is achieved because, using this discretization, the sum of all fluxes
in the domain is equal to the flux through the boundary of the domain, that is,

∑
(i,j)

∫
∂Ωij

ν • F dσ =

∫
∂Ωxy

ν • F dσ.(3.13)

Notice that the fluxes are never explicitly computed in the code. Instead, F 1
i+1,j , for

instance, is further discretized using centered differences to get

F 1
i+1,j = (−D∇xyρ)

1
i,j = −D11

i+1,j

(
∂ρ

∂x

)
i+1,j

−D12
i+1,j

(
∂ρ

∂y

)
i+1,j

(3.14)

≈ −D11
i+1,j

vi+2,j − vi,j
2 ∆x

−D12
i+1,j

vi,j+1 − vi,j−1

2 ∆y
.(3.15)
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Fig. 2. Nine-point stencil at (i, j) rotated by 45◦.

Observe that the resulting overall discretization has a nine-point stencil rotated by
45o, as shown in Figure 2. Therefore, the actual numerical domain is the staggered
grid generated by

Ω̃ := {(xi, yj) ∈ Ωxy : i + j even} .(3.16)

This discretization results in a banded linear system of equations, which is solved
by routines from LINPACK. Finally, the integral needed in the computation of σ̃ is
approximated by the trapezoidal rule with interval width ∆ξ := ∆x = 1/I.

To validate the solution of the asymptotic problem, the classical problem is solved
directly using a grid fine enough to discretize every period of h(x, ξ) by at least eight
points. Practically, this is implemented by introducing the transformation

(
x
y

)
=

(
x

g(x,w)

)
(3.17)

such that

(x,w) ∈ Ωxw =
{
(x,w) ∈ R2 : 0 < x < 1, 0 < w < 1

}
.(3.18)

This transformation will achieve two goals. On the one hand, it transforms the domain
of the problem to the unit square so that the boundary can be discretized easily. On
the other hand, it also distributes the grid points in the y-direction in a nonuniform
way such that more grid points lie closer to the surface than in the bulk. See Figure 3
for an example of a grid point distribution in the original domain Ωz.

The solution procedure applied to the transformed domain Ωxw is exactly the
same as the one applied to the asymptotic problem Ωxy.

The results presented below are for the following mathematical test problem:

D(x, y, t) =

(
2 −1
−1 2

)
, R(ρ, x, y, t) = −24x + 13,(3.19)
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Fig. 3. Graph of the numerical domain with fewer grid points for clarity.

(a) ρb(x, t) = 2x3 − 3x2 + t + 2,(3.20)

(b) S(ρ, x, t) = −6x2 + 6x + 2, (c) ρ0(x, y) = 2x3 − 3x2 + y + 1.

The surface model is chosen to give fast oscillations around a slowly varying carrier
function, namely, as

y = h̃ε(x) = εh(x, x/ε) with h(x, ξ) = x(1− x) sin(ω0ξ).(3.21)

The values chosen for ε in the test problem is ε = 1/16 = 0.0625.

Finally, the transformation from (x, y) to (x,w) in the validation problem is chosen
as

y = g(x,w) = h̃ε(x)
eα − eαw

eα − 1
+

eαw − 1

eα − 1
.(3.22)

The parameter in the transformation is chosen as α = 4. The grid is chosen by
I = J = 128 and the time step is ∆t = 0.01. 100 steps are then computed to reach
the final time tfinal = 1.

The initial condition for the asymptotic problem is shown in Figure 4, and for
the validation problem, in Figure 5. The solutions at the final time are presented
in surface plots in Figures 6 and 7, respectively. To facilitate a comparison between
both solutions Figure 8 shows a contour plot of both final solutions. The solid line
represents the solution obtained from the asymptotic problem, while the dotted lines
belong to the solution from the validation problem. Not surprisingly, the solution of
the validation problem introduced some oscillations, which die out towards the upper
boundary of the domain. Clearly, both solutions agree perfectly in the bulk of the
domain except for these small oscillations.
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Fig. 4. Initial condition for the asymptotic problem.
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Fig. 5. Initial condition for the validation problem.
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Fig. 6. Final solution of the asymptotic problem.
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Fig. 7. Final solution of the validation problem.
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Fig. 8. Contour plot of both final solutions.
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Fig. 9. Comparison of the final fluxes into the surface.

The second criterion for the quality of the approximation is its capability to
predict the fluxes into the wafer surface. To this end the total flux into the surface,

Ftotal =

∫ 1

0

ν • F dx,(3.23)

has been computed to Ftotal = 3.85529763 for the asymptotic model and to Ftotal =
3.85490895 for the validation problem. This is clearly in agreement. Moreover, Fig-
ure 9 shows the predicted fluxes vs. x along the surface. The solid line is computed
from the asymptotic model, and the dotted line, from the validation model. Again, we
observe the oscillations associated with the resolution of the actual surface structure.
Clearly though, the average local fluxes are predicted correctly by the asymptotic
model. This is as desired, since an associated feature scale model would only use
these averages.

REFERENCES

[BR1] O. Bruno and F. Reitich, Numerical solution of diffraction problems: A method of
variation of boundaries, J. Opt. Soc. Amer. A, 10 (1993), pp. 1168–1175.

[BR2] O. Bruno and F. Reitich, Solution of a boundary value problem for Helmholtz equations
via variation of the boundary into the complex domain, in Proc. Roy. Soc. Edinburgh,
122A (1992), pp. 317–340.

[CPGRJ] T. Cale, J. Park, T. Gandy, G. Raupp, and M. Jain, Step coverage predictions using
combined feature and reactor scale models for blanket tungsten LPCVD, Chem. Eng.
Comm., 119 (1993), pp. 197–220.



752 MATTHIAS K. GOBBERT AND CHRISTIAN A. RINGHOFER

[CS] D. Cioranescu and J. Saint Jean Paulin, Homogenization in open sets with holes, J.
Math. Anal. Appl., 71 (1979), pp. 590–607.

[DL] A. Damlamian and Li Ta-Tsien, Boundary homogenization for elliptic problems, J.
Math. Pure Appl., 66 (1987), pp. 351–362.

[KPV] W. Kohler, G. Papanicolaou, and S. Varadhan, Boundary and interface problems
in regions with very rough boundaries, in Multiple Scattering and Waves in Random
Media, P. L. Chow, W. E. Kohler, and G. C. Papanicolaou, eds., North-Holland,
Amsterdam, 1981, pp. 165–197.

[KV] R. Kohn and M. Vogelius, A new model for thin plates with rapidly varying thickness,
Internat. J. Solids Structures, 20 (1984), pp. 333–350.

[LC] H. Liao and T. Cale, Low Knudsen number transport and deposition, J. Vac. Sci. Tech.,
A12 (1994), pp. 1020–1026.

[URE] J. Uretsky, The scattering of plain waves from periodic surfaces, Ann. Phys., 33 (1965),
pp. 400–427.


