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Abstract. Many physical materials of practical relevance can attain several variants of crys-
talline microstructure. The appropriate energy functional is necessarily nonconvex, and the min-
imization of the functional becomes a challenging problem. A new numerical method based on
discontinuous finite elements and a scaled energy functional is proposed. It exhibits excellent con-
vergence behavior for the energy (second order) as well as other crucial quantities of interest for
general spatial meshes, contrary to standard (non-)conforming methods. Both theoretical analyses
and numerical test calculations are presented and contrasted to other current finite element methods
for this problem.

Key words. finite element method, nonconvex minimization, nonlinear conjugate gradients,
multiwell problem, microstructure, multiscale, nonlinear elasticity, shape-memory alloys, materials
science

AMS subject classifications. 49M07, 65K10, 65N30, 73C50, 73S10

PII. S0036142998333791

1. Introduction. Many materials of interest in materials science and structural
mechanics have been found to possess microscopic structure under certain ambient
conditions. Since this microstructure is obtained by stress or temperature induced
deformations from a reference state, the mathematical model can be posed as a min-
imization problem for an energy functional.

From the mathematical point of view, corresponding deformations are described
as solutions of a minimization problem of the related energy functional. The existence
of a minimizer of this functional cannot be ensured in general, since the energy density
is not quasi convex and thus not weakly lower semicontinuous; see [12]. Therefore,
minimizing sequences of deformations need to be considered that exhibit increasingly
finer scale structures; see [1, 2, 24]. Apart from these analytical difficulties, the numer-
ical modeling of this kind of problem is also a challenging task; see also [4, 17, 18]. For
practical purposes, the numerical simulation of material properties is gaining interest
in the engineering community, along with the rise of “rational” materials as seen for
instance in shape-memory alloys and micromachines. For a more detailed review of
the background and the state of the art of the numerical analysis for microstructure
computations, we refer to the survey article by Luskin [22].

One area of particular interest is the simulation of austenite-martensite trans-
formations for shape-memory alloys, and we refer to the work of Ball and James
[1, 2]. Within this area, twinning is an important phenomenon, in which simple
laminates are formed by a deformation gradient that oscillates on an infinitesimal
scale in parallel layers between two stress-free states. These stress-free states are
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given by two symmetry-related variants of the martensitic phase. It follows from the
frame-indifference principle that the minimum value of the elastic energy is attained
on multiple, rotationally invariant wells. In this paper, we study the approxima-
tion of deformations of martensitic crystals which can undergo an orthorhombic to
monoclinic transformation, giving rise to a double well potential. We claim that the
presented analysis can easily be extended to more complicated phase transitions like,
e.g., the “triple well case” that describes the cubic to tetragonal phase transitions in
atomic lattice structure; we refer to [19, 20] for a corresponding study of the rotated
bi- or trilinear finite elements. For the present “double well case,” deformations are
energetically favored that have deformation gradients in the union of energy wells
U =

⋃2
i=1 Ui, which give zero energy contributions to the energy

E(v) =

∫
Ω

φ(∇v(x)) dx(1.1)

for admissible deformations v to be defined below. Each well is of the form Ui =
SO(3)Ui with SO(3) being the group of proper rotations and the Ui, i = 1, 2 repre-
senting martensitic variants. In the double well case, we can assume (see [22]) that
these wells are rank-one connected, i.e., there are Fi ∈ Ui, i = 1, 2, such that the
Hadamard condition is satisfied. This means that there are two nonvanishing vectors
a ∈ R3 and n ∈ R3 such that

F2 = F1 + a⊗ n.(1.2)

Without loss of generality, we assume |n| = 1.
Again in general, Ω ⊂ R3 denotes the reference domain of the crystal, which

is assumed to be polygonal. The mapping v : Ω → R3 represents then a continuous
deformation of the reference configuration of the crystal with the deformation gradient
∇v : Ω→ R3×3.

The energy density is assumed to satisfy

φ(A) ≥ 0 ∀ A ∈ R3×3,

φ(A) = 0, ⇐⇒ A ∈ U .(1.3)

We shall also assume that the energy density φ grows quadratically away from the
energy wells; that is,

φ(F ) ≥ κ|||F − π(F )|||2 ∀ F ∈ R3×3(1.4)

with κ > 0 constant and π : R3×3 → U a Borel measurable projection defined by

|||F − π(F )||| = min
G∈U
|||F −G||| ∀ F ∈ R3×3,(1.5)

where ||| · ||| denotes the Frobenius norm of a matrix, i.e., |||A||| =
√∑3

i,j=1A
2
ij . Note

that the projection π(F ) exists for any F ∈ R3×3, since U is compact, although it
may not be unique.

For the double well case, the laminate microstructure, which we are interested in,
is uniquely described by the affine boundary condition [2]

v(x) = Fλx ∀ x ∈ ∂Ω,(1.6)
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Table 1.1
Comparison of convergence results for the energy and other crucial quantities for different finite

element methods. See the text for explanation of the notation.

Finite element method Eh(uh) ‖uh − Fλx‖ ‖ (∇uh − Fλ)w‖
∣∣µ(ωiρ(uh))

µ(ω)
− λi

∣∣
Classical conforming, O(h1/2) O(h1/8) O(h1/8) O(h1/16)
see [21, 22]

Classical nonconforming, O(h1/2) O(h1/8) O(h1/8) O(h1/16)
see [20]

Discontinuous, O(h2) O(h1/4) O(h1/4) O(h1/8)
see Theorem 1.3

where

Fλ = λF1 + (1− λ)F2(1.7)

and λ ∈ [0, 1] represents the volume fraction of the two variants. The problem is now
stated in the following way:

inf
v∈A
E(v)(1.8)

for the set of admissible functions

A =
{
v ∈ C(Ω̄;R3) : v(x)|∂Ω = Fλx

}
.(1.9)

The first finite element methods for problem (1.8) used classical conforming ele-
ments with piecewise (bi- or tri-)linear basis functions on each triangular or quadri-
lateral element, thus minimizing on a subset Ah ⊂ A for conforming elements; see
[7]. In the context of convex energy densities φ, classical conforming methods are well
understood and yield optimal convergence results with order O(h2). However, for the
present problem of a nonconvex energy density, the results are rather sobering: In
general, it can only be shown that a minimizing deformation uh ∈ Ah satisfies

E(uh) ≤ Ch1/2,(1.10)

where C denotes a generic constant that may depend on the topology of the quasi-
uniform triangulation Th and the domain Ω but not on the mesh-size h; see [8, 21,
22] and [7] for a definition of quasi uniformity. For a complete list of results for
important quantities, see Table 1.1. Moreover, it turns out that the quality of the
approximation depends strongly on the degree of alignment of the numerical mesh
with the physical laminates. This means that the laminated microstructure is well
resolved on meshes, whose element edges run along the laminated direction. If this
is not the case, the numerical results are often so polluted that the laminates are
distorted beyond recognition; see Figure 3.1 for an example, which will be discussed
in detail in section 3.

The limitation of the convergence order for conforming elements has also been
studied in [6]. For a different, nonconvex energy density and related deformations
v : R2 ⊃ Ω → R, [6] shows that suboptimal convergence rates are sharp in general.
These observations demonstrate the severe drawbacks of classical conforming finite
element methods in the context of highly oscillatory solutions, since the high number
of continuity constraints locally limits the flexibility of the numerical method. Another
newer result for a conforming method using a reduced integration scheme, which yields
the same convergence order, is given in [11].
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As a second numerical approach, classical nonconforming finite element methods
(using piecewise rotated (bi-, tri-)linear basis functions) are presented in [15, 20, 22].
This method relaxes the continuity constraints between each two elements by only
requiring continuity of the discrete deformations at the edge midpoints. Of course,
the functional E(·) is then defined in an appropriate elementwise setting by taking Eh(·)
instead. Computational tests of this scheme have been reported in [15, 16]. At first
glance, this finite element method has increased flexibility to handle deformations with
microstructure on general grid topologies due to the relaxation of the interelement
continuity requirements. However, the theoretical analysis presented in [20] does not
reflect this improved flexibility in comparison to the conforming method, and the
result is still

Eh(uh) ≤ Ch1/2;(1.11)

see Table 1.1.

Based on these sobering observations of classical finite element methods for the
problem of twinning, we see an evident need for new finite element methods that
yield more accurate approximations of crucial quantities such as the deformation,
the structure of laminates, and the statistic properties of the microstructure (i.e., the
Young measure) on general meshes. Moreover, we believe that the robust resolution of
(laminate) microstructure on nonaligned meshes is an essential prerequisite to simulate
force-driven deformations as well as phenomena occurring in evolutionary models both
in this context and more complicated materials in general.

To this end, we present a new algorithm based on discontinuous finite elements.
It will be shown that this algorithm allows much improved convergence rate estimates
for the energy, namely, O(h2) and other quantities of interest as they are given in
Table 1.1. In particular, the resolution of laminate microstructure on general meshes is
much better than by the classical (non-)conforming discussed above. This statement is
justified through drastically improved convergence results and illustrated by numerical
experiments on nonaligned meshes.

The underlying conceptual ideas of the new numerical method are the following:

1. The (averaged) boundary conditions will be treated in a more relaxed way to
avoid the pollution impact from the boundary.

2. The cross-element continuity constraints are relaxed in a sense that small
jumps are allowed.

3. The laminate structures are scaled differently from the transitions between
laminates.

In order to explain these ideas, we will start with the proposal of a first numerical
model, which incorporates the first two ideas above and which would seem appropriate
for our purposes.

Algorithm 1.1. Given a quasi-uniform triangulation Th of the domain Ω ⊂ R3,
consider elementwise linear deformations vh ∈ Ah ≡

∏
K∈Th P1(K) with the scaled

energy functional

Eh(vh) =
∑
K∈Th

∫
K

φ(∇vh(x)) dx

+ α11

( ∑
K∈Th

h

∫
∂K

∣∣[vh](x)
∣∣ dσ)2

+ α12

( ∑
K∈Th

h

∫
∂K

∣∣[vh](x)
∣∣2 dσ)(1.12)
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+ α2

∑
K∈Th

∫
∂K∩∂Ω

|vh(x)− Fλx|2 dσ

and perform the minimization

min
vh∈Ah

Eh(vh).(1.13)

Here, P1(K) denotes the space of affine polynomials defined on an element K. Since
the finite elements are nonconforming here, Ah is not a subset ofA anymore. The coef-
ficients α11, α12, α2 are order one numbers that control the relative contributions from
the interelement continuity constraint and the relaxation of the boundary condition.
Here and throughout the paper, [·] denotes the jump (of a function) across element
faces, i.e., [v]

∣∣
F (x) = v

∣∣
K+(x)−v∣∣

K−(x) for two adjacent elements K+,K− ∈ Th with
face F = ∂K− ∩ ∂K+.

As will be seen from the subsequent analysis, no improved convergence results
can be obtained for Algorithm 1.1 for quantities of interest. The algorithm offers
too much freedom for minimizers to adopt spurious solutions that have no physical
relevance at all, i.e., that exhibit a physically relevant microstructure.

It will turn out that an algorithm appropriate for representing laminated mi-
crostructure on general meshes has to incorporate the third feature already listed
above. It should be able to distinguish between contributions to a minimizer from
the laminate microstructure and from the transitions between laminates; the latter
is where the underlying mesh demands its contributions. Therefore, we introduce
a different scaling of laminates (which are of order O(h1−β)) and of transitions be-
tween laminates (of order O(h)) into our numerical model. This leads to the following
algorithm.

Algorithm 1.2. Given a quasi-uniform triangulation Th of the domain Ω ⊂ R3,
consider elementwise linear deformations vh ∈ Ah ≡

∏
K∈Th P1(K) with the scaled

energy functional

Eβh (vh) =
∑
K∈Th

∫
K

φ(∇vh(x)) dx

+ α11

( ∑
K∈Th

h1−β
∫
∂K

∣∣[vh](x)
∣∣ dσ)2

+ α12

( ∑
K∈Th

h1−β
∫
∂K

∣∣[vh](x)
∣∣2 dσ)(1.14)

+ α2

∑
K∈Th

h2β

∫
∂K∩∂Ω

|vh(x)− Fλx|2 dσ

and perform the minimization

min
vh∈Ah

Eβh (vh)(1.15)

for a fixed constant β ∈ (0, 1).
We will demonstrate the superiority of Algorithm 1.2 over the classical conforming

and nonconforming methods through a rigorous convergence analysis for the full three-
dimensional case as well as numerical test calculations that have been carried out for a
scalar prototype problem. In the latter, the deformations are scalar functions, but the
energy density still exhibits the crucial mechanisms inherent to the Ericksen–James
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energy density [4, 12]. We refer to section 3 for the definition of and the results for
the prototype problem.

Throughout the remainder of the paper, we make use of the following standard
notation; see [7]. For any integer k ≥ 0 and p ∈ [1,∞], we define the space

W k,p
h (Ω) ≡ {v ∈ Lp(Ω) : v

∣∣
K
∈W k,p(K) ∀ K ∈ Th

}
,

and we equip W k,p
h (Ω) with the standard norms | · |k,p ≡

(∑
K∈Th | · |

p
k,p,K

)1/p
for

1 ≤ p < ∞ and maxK∈Th | · |k,∞,K for p = ∞. Correspondingly, ‖ · ‖k,p is defined,
using norms instead of seminorms. Subsequently, we will omit the indices in situations
where the meaning of the notation is clear from the context.

For the summary of the main result, we fix the following additional notation.
The orientation of the simply laminated microstructure is uniquely determined by its
normal vector n ∈ R3. In the following, we make also use of vectors w ∈ R3 along
the laminates that satisfy w · n = 0. Furthermore, the accuracy of representing the
volume fractions λ1 := λ and λ2 := (1− λ) will be given in terms of volume fractions
that represent the two different variants. To this end, we introduce the following sets
for any subset ω ⊂ Ω, ρ > 0, and vh ∈ Ah:

ωiρ(vh) =
⋃

K∈Th

{
x ∈ ω ∩K : Π(∇vh)(x) = Fi and ‖∇vh(x)− Fi‖ < ρ

}
for i ∈ {1, 2}. Here, we made use of the operator Π : R3×3 → {F1, F2} which is related
to the operator π in the following way:

π(F ) = Θ(F )Π(F ) with Θ : R3×3 → SO(3) ∀ F ∈ R3×3.

Finally, µ(ω) denotes the Lebesgue measure of the region ω. We refer to subsection 2.4
for further details. The verification of the following theorem is the subject of section 2.

Theorem 1.3. Consider problem (1.15) with β = 1/2 as an approximation of
problem (1.8)–(1.9) with Ω ⊂ R3 a bounded set, and suppose u ∈ A is the weak limit
of a minimizing sequence of (1.8)–(1.9). Then problem (1.15) has at least one solution
uh ∈ Ah ≡

∏
K∈Th P1(K), and uh satisfies the following convergence estimates for all

ω ⊂ Ω and h < ρ < 1 and for all ρ > 0, for positive constants α11, α12, α2 = O(1)

(a) E1/2
h (uh) ≤ Ch2,

(b) ‖uh − Fλx‖L2(Ω) ≤ Ch1/4,

(c) ‖(∇uh − Fλ)w‖L2(Ω) ≤ Ch1/4,

(d)
∣∣µ(ωiρ(uh))

µ(ω) − λi∣∣ ≤ Ch1/8 for i ∈ {1, 2}.
The generic constant C may depend on the parameters of the continuous problem
(1.8) and the values α11, α12, α2 but not on the mesh parameter h. In the case (d), it
additionally depends on the choice of the value of ρ.

Again, we stress the fact that these convergence results are much better than
those derived for the conforming (using (bi-, tri-)linear ansatz functions; see [21])
or classical nonconforming (using piecewise rotated (bi-,tri-)linear ansatz functions;
see [20, 21]) finite element methods; see also Table 1.1. This reflects the increased
accuracy of the ansatz for nonaligned meshes. The misaligned triangulation does not
lead to a dramatic pollution of the computed solution anymore. This can be clearly
seen in the subsequent theoretical analysis in section 2 as well as in the numerical
investigation of our new method in section 3.
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Finally, we stress the fact that the analysis presented below is heavily motivated
by the work of Luskin [21, 22] and Li and Luskin [19, 20]. More extensive information
on the numerical test problem is given in [13], and extensions of this work using
concepts of adaptivity are analyzed in [23].

2. Analysis for the discontinuous element. Let us recall that there are
three contributions in the scaled energy functional Eβh (·): the first is the bulk energy
term as it is given in the continuous version E(·). The two subsequent terms are

responsible to “ensure” certain continuity constraints. The last term in Eβh (·) allows
slight fluctuations of the boundary data to improve the flexibility of the finite element
method to model laminate microstructure. The latter energy terms in Eβh (·) are
introduced to allow flexibility of the finite element method with respect to general
meshes, allowing small cross-element jumps of the computed solution.

2.1. Discontinuous finite elements. The Lagrange interpolation operator

ITh :
∏
K∈Th

C(K)→
∏
K∈Th

Aff(K)

with Aff(K) the set of affine-linear functions on the triangle K ∈ Th, is defined in
a standard way as a point interpolate. From this, inverse inequalities are valid since
they hold on each triangle; compare [7].

Lemma 2.1. Let k and ` be two integers such that 0 ≤ k ≤ ` ≤ 2. The following
inverse inequalities are valid for any K ∈ Th and any vh ∈ Aff(K):

1. |vh|`,K ≤ Chk−`|vh|k,K ,
2. |vh|`,∞,K ≤ Chk−`−3/2|vh|k,K .

2.2. Properties of minimizers of the functional Eβh (·). It is possible to

construct a deformation ṽh ∈
∏
K∈Th Aff(K) that satisfies Eβh (ṽh) ≤ Ch2 for β ∈ [0, 1].

The construction is accomplished in the proof of the following lemma.
Lemma 2.2. Let Th be a quasi-uniform triangulation covering Ω ⊂ R3. Then,

there exists a minimizer uh ∈ Ah of the functional Eβh : vh 7→ Eβh (vh) for 0 ≤ β ≤ 1,
creating an energy that is bounded by

Eβh (uh) ≤ Ch2.

Proof. We define a deformation C(Ω) 3 w(x) : Ω→ R3 by

w(x) = γh1−βw̃
(

x

γh1−β

)
(2.1)

with

w̃(x) = F1x+
[∫ x·n

0

ξ(s) ds
]
a,

where ξ(s̃) : R→ R is a characteristic function with period 1 given by

ξ(s̃) =

{
1 ∀ 0 ≤ s̃ ≤ λ,
0 ∀ λ < s̃ < 1

(2.2)

and an arbitrary choice of the constant γ = O(1). It is evident that the following
inequality holds true:

|w(x)− Fλx| ≤ Ch1−β ∀ x ∈ Ω.(2.3)
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We now have

∇w(x) = F1 + ξ

(
x · n
γh1−β

)
a⊗ n.(2.4)

We are given a triangulation Th = {Ki}i∈I such that in general w 6= ITh(w). Because
of w being piecewise affine it is clear that there exists a refinement T̃h = {K̃ij}i∈I,j∈Ji
of Th with

Th 3 Ki =
⋃
j∈Ji

K̃ij , K̃ij ∈ T̃h,

such that the following holds: w = IT̃h(w). In our notation, cardJi = 1 stands for no
refinement, whereas cardJi > 1 denotes a refinement of Ki ∈ Th.

Using the triangulation Th = {Ki}i∈I , we will now construct a deformation vh ∈
Ah from the function w defined in (2.1) by

vh(x) :=

{
w(x) ∀Ki ∈ Th with card Ji = 1,
ExtKi(w)(x) ∀Ki ∈ Th with card Ji > 1.

(2.5)

For our purposes, we define the extension operator

ExtKi :
∏
j∈Ji

Aff(K̃ij)→ Aff(Ki)

with ExtKi(w)(x) a linear extension of w
∣∣
K̃ij0

with j0 ∈ Ji, onto
⋃
j=Ji

K̃ij = Ki ∈ Th,

satisfying

∇ExtKi(w)(x) = ∇w(x)
∣∣
K̃ij0

with µ(K̃ij0) ≥ µ(K̃ij) ∀ j ∈ Ji;

in case of ambiguity due to equally sized elements K̃ij0 in this definition, choose the
smallest j0. This gives a deformation candidate vh = ITh(vh) that satisfies the given
energy bound. Since the jumps of order O(h) in vh are along O(hβ−1) lines that are
touched by O(h−2) elements, the second term in (1.14) can be bounded as( ∑

K∈Th
h1−β

∫
∂K

∣∣[vh](x)
∣∣ dσ)2

≤ C (hβ−1h−2h1−βh2h
)2 ≤ Ch2.

The third term can be controlled in an analogous fashion. Deviations from the pre-
scribed boundary data are penalized by the fourth term, which amounts to O(h2) for
the deformation vh, using (2.3),∑

K∈Th
h2β

∫
∂K∩∂Ω

|vh(x)− Fλx|2 dσ ≤ Ch−2h2βh2h2(1−β) ≤ Ch2.

The existence of a minimizer uh ∈ Ah now follows from compactness arguments
for the continuous functional Eβh (·) enjoying property (1.4), since the underlying set
of admissible functions Ah is finite-dimensional. We refer to [14] for a corresponding
elaboration of this argument for nonconforming finite elements.

Based on this result, we can prove the following theorem that is crucial for the
further analysis of Algorithm 1.2. In particular, this explains why Algorithm 1.1
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(corresponding to the case β = 0) fails and the additional concept of scaling is essential
in Algorithm 1.2.

Theorem 2.3. A minimizer uh ∈ Ah of the energy functional Eβh (·) given in
(1.14) satisfies the following estimate:∣∣∣∣∣∣∣∣∣ ∑

K∈Th

∫
K

{∇uh(x)− Fλ} dx
∣∣∣∣∣∣∣∣∣ ≤ C{hβ + h1−β

}
for β ∈ [0, 1].

Proof. Set zh(x) = uh(x)− Fλx. Then we have∑
K∈Th

∫
K

∇zh(x) dx =
∑
K∈Th

∫
∂K

zh

∣∣∣
K

(x)⊗ ν dσ

=
∑

F⊂∂K,F6⊂∂Ω

∫
F
zh

∣∣∣
K

(x)⊗ ν dσ +
∑

F⊂∂K,F⊂∂Ω

∫
F
zh

∣∣∣
K

(x)⊗ ν dσ

=: I1 + I2.
(2.6)

Since two neighboring elements K+ and K− such that K+ ∩K− 6= ∅ share one face
with their related normal vectors changing their sign (i.e., ν|K− = −ν|K+), we can
continue with the first term as follows, setting z±h = zh

∣∣
K± ,

∣∣∣∣∣∣I1∣∣∣∣∣∣ =
1

2

∣∣∣∣∣∣∣∣∣ ∑
F⊂∂K,F6⊂∂Ω

∫
F

(z+
h − z−h )(x)⊗ ν∣∣

K+ dσ
∣∣∣∣∣∣∣∣∣

≤ 1

2

∑
F⊂∂K,F6⊂∂Ω

∫
F

∣∣[uh](x)
∣∣ dσ ≤ Chβ .(2.7)

The last bound is a consequence of Lemma 2.2. Another application of it further
leads to an upper bound for the term I2:

∣∣∣∣∣∣I2∣∣∣∣∣∣ ≤ ∑
F⊂∂K,F⊂∂Ω

∫
F
|zh(x)| dσ ≤ C

∑
F⊂∂K,F⊂∂Ω

h
(∫
F
|zh(x)|2 dσ

)1/2

≤ C
 ∑
F⊂∂K,F⊂∂Ω

∫
F
|zh(x)|2 dσ

1/2

≤ Ch1−β .

(2.8)

This concludes the proof.
Remark 2.4. We stress the fact that in the case of the classical conforming

or classical nonconforming elements—as described above—we have the even sharper
result ∑

K∈Th

∫
K

{∇uh(x)− Fλ} dx = 0.

This ensures that the gradient of the computed deformation uh is identical to the
macroscopically observable Fλ in an averaged sense. In fact, this “stability require-
ment” is not necessary to obtain an efficient scheme, as we will see in the following.
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We can now continue our analysis with the verification of the following theorem.
Theorem 2.5. A minimizer uh ∈ Ah of the functional Eβh (·) that is given in

(1.14) satisfies the following estimate for all normalized vectors w ∈ R3:( ∑
K∈Th

∫
K

|uh(x)− Fλx|2 dx
)1/2

≤ C

( ∑
K∈Th

∫
K

∣∣{∇uh(x)− Fλ}w
∣∣2 dx)1/2

+ h1−β + hβ/2

 .

Proof. We will again use the abbreviative notation zh(x) = uh(x)−Fλx for x ∈ Ω.
Using integration by parts, we obtain∫

Ω

|zh(x)|2 dx =
∑
K∈Th

∫
∂K

|zh(x)|2(w · x)(w · ν) dσ

−
∑
K∈Th

∫
K

(∇|zh(x)|2 · w)(w · x) dx =: I1 + I2

(2.9)

with an arbitrary vector w ∈ R3, |w| = 1.
The second term can be controlled as follows:

|I2| =
∣∣∣ ∑
K∈Th

∫
K

(∇|zh(x)|2 · w)(w · x) dx
∣∣∣

≤ C max
x∈Ω
|w · x|

( ∑
K∈Th

∫
K

|∇zh(x)w|2 dx
)1/2(∫

Ω

|zh(x)|2 dx
)1/2

(2.10)

≤ 1

4

∫
Ω

|zh(x)|2 dx+ C
∑
K∈Th

∫
K

|∇zh(x)w|2 dx.

The constant 1/4 in front of the first term is obtained by Young’s inequality applied to
the previous formula; the generic constant C in front of the second term also absorbs
maxx∈Ω |w · x| as well as the (square of the) generic constant from the previous step.
In order to handle the term I1, we distinguish between the edges in the interior of the
domain and those on the boundary ∂Ω:

I1 =
∑

F⊂∂K,F⊂∂Ω

∫
F
|zh(x)|2(w · x)(w · ν) dσ

+
∑

F⊂∂K,F6⊂∂Ω

∫
F
|zh(x)|2(w · x)(w · ν) dσ =: I11 + I12.

(2.11)

Because of Lemma 2.2, we can bound the first term by

|I11| ≤ C
∑

F⊂∂K,F⊂∂Ω

∫
F
|zh(x)|2 dσ ≤ Ch2(1−β).(2.12)

In order to bound I12, reorder the summation by element faces and let z+
h (x) and

z−h (x) denote the value of zh(x) along the face F = K+∩K− with normal vectors ν+
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and ν− corresponding to the elements K+ and K−, respectively. Then ν+ = −ν−,
and it holds |z+

h (x) − z−h (x)| = |[uh](x)|. In the following, the factor 1/2 reflects
the fact that each element face is counted twice after reordering; this factor is later
absorbed into the generic constant C:

I12 =
1

2

∑
F⊂∂K,F6⊂∂Ω

∫
F

{|z+
h (x)|2(w · x)(w · ν+) + |z−h (x)|2(w · x)(w · ν−)

}
dσ

=
1

2

∑
F⊂∂K,F6⊂∂Ω

∫
F

{|z+
h (x)|2 − |z−h (x)|2}(w · x)(w · ν+) dσ

=
1

2

∑
F⊂∂K,F6⊂∂Ω

∫
F

({
z+
h − z−h

}
(x) · {z+

h + z−h
}

(x)
)
(w · x)(w · ν+) dσ

=
1

2

∑
F⊂∂K,F6⊂∂Ω

∫
F

({
u+
h − u−h

}
(x) · {z+

h + z−h
}

(x)
)
(w · x)(w · ν+) dσ

≤ C
∑

F⊂∂K,F6⊂∂Ω

∫
F

∣∣[uh](x)
∣∣{|z−h (x)|+ |z+

h (x)|} dσ
≤ C

∑
F⊂∂K,F6⊂∂Ω

(∫
F

∣∣[uh](x)
∣∣2dσ)1/2(∫

F

{|z−h (x)|2 + |z+
h (x)|2} dσ)1/2

.

Now, apply Lemma 2.1 to obtain∫
F
|z−h (x)|2 dσ ≤ µ(F)|z−h (x)|20,∞,K− ≤ Ch2h−3|z−h (x)|20,K− = Ch−1

∫
K−
|z−h (x)|2 dx

and analogously for z+
h (x). Then we can continue from above:

I12 ≤ C
∑

F⊂∂K,F6⊂∂Ω

(∫
F

∣∣[uh](x)
∣∣2 dσ)1/2(

h−1

∫
K−
|z−h (x)|2 dx+h−1

∫
K+

|z+
h (x)|2 dx

)1/2

(2.13)

and by Young’s inequality

I12 ≤
∑

F⊂∂K,F6⊂∂Ω

{
C

h

∫
F

∣∣[uh](x)
∣∣2 dσ +

1

8

∫
K−
|z−h (x)|2 dx+

1

8

∫
K+

|z+
h (x)|2 dx

}

≤ C

h

∑
F⊂∂K,F6⊂∂Ω

∫
F

∣∣[uh](x)
∣∣2 dσ +

1

4

∑
K∈Th

∫
K

|zh(x)|2 dx,

where the last two sums were combined into one by reordering and C denotes a generic
constant again. Because of the result∑

K∈Th

∫
∂K

∣∣[uh](x)
∣∣2 dσ ≤ Ch1+β ,(2.14)

which is an immediate consequence of Lemma 2.2, we can now insert (2.10) through
(2.14) in (2.9), and the proof is finished.

The following theorem is a local trace inequality, bounding errors on interior
edges in terms of the error on elements. For this purpose, we will introduce subdo-
mains ωh ⊂

⋃
i∈LKi, referred to as “pseudoparallelepipeds.” By this, we mean a
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Fig. 2.1. Sketch for the construction used in the proof of Theorem 2.6.

perturbed parallelepiped assembled from elements Ki ∈ Th with faces being piece-
wise affine curves to be considered as O(h) perturbations of planes that constitute
the parallelepiped ω ⊃ ωh. See Figure 2.1 for a sketch of the construction in the
two-dimensional case. Owing to the quasi-uniform character of the triangulation Th,
it is always possible to construct at least one pseudoparallelepiped ωh for a given
parallelepiped ω such that dist(∂ωh, ∂ω) < O(h). Moreover, we will employ “pseudo-
tubes” Sj of thickness O(h); by this, we mean collections of triangles with faces
F±j ⊂ ∂ωh such that ω =

⋃
j∈M Sj with M ⊂ L. A selection criterion for a triangle

Ki ⊂ Th to belong to a fixed pseudotube Sj can for instance be formulated through
the introduction of a new “Cartesian reference triangulation” Kh of the parallelepiped
ω = span{o1, o2, o3} ⊂ Ω with oi ∈ R3 and |o3| = Λ(ω), where the construction pro-
cess of tubes Ŝj = span{ho1, ho2, o3} and

⋃
j∈L Ŝj = ω is straightforward. We can

now make use of these tubes in a way that triangles Ki ∈ Th with Ki ⊂ ωh belong to
Sj , provided

µ(Ki ∩ Ŝj) ≥ 1

2
µ(Ki) ∀ i ∈ I ∀ j ∈ L,

and the faces F ⊂ ∂Ki for ∂Ki ∩ ∂ωh 6= ∅ are faces of the tube Sj , provided the

Euclidean orthogonal projection of Ŝj along ±o3 onto ∂ωh, denoted by Bj , satisfies

µ(F ∩ Bj) ≥ 1

2
µ(F) ∀ F ⊂ ∂Ki such that F ⊂ ∂ωh

with µ(F) denoting the (two-dimensional) area of F . Of course, this selection process
can be “ambiguous” but this does not cause severe problems, thanks to the quasi
uniformity of the triangulation Th. In the following, we refer to distinct sets F−j :={F−jl}rl=1

and F+
j :=

{F+
jl

}q
l=1

with numbers r = r(j), q = q(j) that constitute the
bottom and top of the tube Sj .

Theorem 2.6. Suppose uh ∈ Ah to be a minimizer of Eβh (·) as it is given in
(1.14). Then, there exists a constant C = C(ω) > 0 such that for any parallelepiped ω
and any associated pseudoparallelepiped ωh = {Ki}i∈L ⊂ Ω with L ⊂ I, the following
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is valid: ∑
F⊂∂K,F∩∂ωh 6=∅,K⊂ωh

∫
F
|u•h(x)− Fλx|2 dσ

1/2

≤ C

Λ(ω)

(∫
ωh

|uh(x)− Fλx|2 dx
)1/2

+ Chβ/2

+C

(∫
ωh

|uh(x)− Fλx|2 dx
)1/4

( ∑
K∈ωh

∫
K

|||∇uh(x)− Fλ|||2 dx
)1/4

,

where Λ(ω) is the length of the shortest edge of a corresponding parallelepiped ω and
where u•h

∣∣
∂K∩∂ωh 6=∅ is the trace of uh

∣∣
K⊂ωh on ∂K ∩ ∂ωh.

Proof. Using the terminology introduced above, we shall make use of the following
construction:

1. Given ω ⊂ Ω, determine a pseudoparallelepiped ωh =
⋃
i∈LKi.

2. Construct pseudotubes Sj of thickness O(h) as collections of triangles with
faces F±j ⊂ ∂ωh and the property

⋃
j∈M Sj = ωh with M ⊂ L.

See Figure 2.1 for a sketch of the two-dimensional case.

Let us fix one j ∈ L. We are given a direction from the collection of elements F−j
to F+

j in a canonical way. This allows for a construction to distinguish between z+
h

and z−h on an edge ∂Ki with Ki ⊂ Sj . Further, let us define a function α
(i)
jl : F (i)

jl 7→
dist(cF(i)

jl

,F−j ) for 1 ≤ l ≤ cardF (i)
j , and F (i)

j :=
{F (i)

jl

}cardF(i)
j

l=1
, on the edges of the

elements of Sj that represents the distance from the center of F (i)
jl , denoted by cF(i)

jl

,

from F−j .

For the following, we consider chains {α(i)
j }ki=0 that satisfy the following condition

with k = k(j) a number that describes the “end” of the chain at F+
j :

dist(F (i)
j ,F (i+1)

j ) ≤ Ch ∀ 0 ≤ i ≤ k − 1 ∀ j ∈ L.

Further, each face F−jl = F (0)
jl of the collection of bottom faces

{F−jl}rl=1
can be

written as the convex hull of three distinct nodal points, F (0)
jl = conv(ajl1, ajl2, ajl3).

Therefore, each x
(0)
l ∈ F (0)

jl can be uniquely represented by a triple {λl1, λl2, λl3} such

that x
(0)
l =

∑3
m=1 λlma

(0)
jlm with λlm ≥ 0 and

∑3
lm=1 λlm = 1.

For the following construction, we choose corresponding points in the k levels

{F (i)
j }ki=1, defined by

F (i)
jl 3 x(i)

l =
3∑

m=1

λlma
(i)
jlm

with conv
({a(i)

jlm}3m=1

)
= F (i)

jl . Therefore, for each x
(0)
l ∈ F (0)

jl , we can define chains

{x(i)
l }ki=0 that connect x

(0)
l ∈ F−jl , for 1 ≤ l ≤ r with x

(k)
l ∈ F+

jl , 1 ≤ l ≤ q.
Subsequently, we employ the shorthand notation zh(x) = uh(x) − Fλx. We are
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now prepared to carry out the following consideration ∀ x(0)
l ∈ F (0)

jl ,

−dist(cF+
jl
, cF−

jl
)
∣∣z•h∣∣F(0)

jl

(x
(0)
l )
∣∣2

=
∑k−1
i=0

[
(α

(k)
jl − α(i+1)

jl )
∣∣z−h ∣∣F(i+1)

jl

(x
(i+1)
l )

∣∣2 − (α
(k)
jl − α(i)

jl )
∣∣z−h ∣∣F(i)

jl

(x
(i)
l )
∣∣2].

(2.15)
We can make the following reformulations for each term of the sum:∣∣∣(α(k)

jl − α(i+1)
jl )

∣∣z−h ∣∣F(i+1)

jl

(x
(i+1)
l )

∣∣2 − (α
(k)
jl − α(i)

jl )
∣∣z−h ∣∣F(i)

jl

(x
(i)
l )
∣∣2∣∣∣

=
∣∣∣(α(k)

jl − α(i)
jl )
[|z−h ∣∣F(i+1)

jl

(x
(i+1)
l )|2 − |z−h

∣∣
F(i)

jl

(x
(i)
l )|2]

+(α
(i)
jl − α(i+1)

jl )|z−h
∣∣
F(i+1)

jl

(x
(i+1)
l )|2

∣∣∣
≤ CΛ(ω)

∣∣∣[z−h ∣∣F(i+1)

jl

(x
(i+1)
l )− z−h

∣∣
F(i)

jl

(x
(i)
l )
]

×[z−h ∣∣F(i+1)

jl

(x
(i+1)
l ) + z−h

∣∣
F(i)

jl

(x
(i)
l )
]∣∣∣+ Ch

∣∣z−h ∣∣F(i+1)

jl

(x
(i+1)
l )

∣∣2(2.16)

≤ CΛ(ω)
∣∣∣[z−h ∣∣F(i+1)

jl

(x
(i+1)
l )− z+

h

∣∣
F(i+1)

jl

(x
(i+1)
l )

+z+
h

∣∣
F(i+1)

jl

(x
(i+1)
l )− z−h

∣∣
F(i)

jl

(x
(i)
l )
] · [z−h ∣∣F(i+1)

jl

(x
(i+1)
l ) + z−h

∣∣
F(i)

jl

(x
(i)
l )
]∣∣∣

+Ch
∣∣z−h ∣∣F(i+1)

jl

(x
(i+1)
l )

∣∣2.
Because of

z+
h

∣∣
F(i+1)

jl

(x
(i+1)
l )− z−h

∣∣
F(i+1)

jl

(x
(i+1)
l ) =

[
uh
]∣∣
F(i+1)

jl

(x
(i+1)
l ),(2.17)

we can therefore write, thanks to the quasi uniformity of the triangulation Th,∑
F⊂∂K,∂K∩∂ωh 6=∅,K⊂ωh

∫
F
|z•h(x)|2 dσ ≤

∑
j∈L

∑
Ki⊂Sj

(
h3‖∇zh‖0,∞,Ki‖zh‖0,∞,Ki

+

∫
∂Ki

∣∣[uh](x)
∣∣{|z−h (x)|+ |z+

h (x)|} dσ +
h3

Λ(ω)
‖zh‖20,∞,Ki

)
.

(2.18)

We can benefit from the inverse inequality in Lemma 2.1. Further, the second term
in the sum can be treated in a way analogous to (2.13), (2.14), and we finally obtain

≤ C
{ ∑
K⊂ωh

(
‖∇zh‖0,K‖zh‖0,K +

1

Λ(ω)
‖zh‖20,K

)
+ hβ + ‖zh‖20,ωh

}
.

This concludes the proof.

2.3. Approximation of limiting macroscopic deformations. We start with
an approximation result for discrete deformations, given in terms of the corresponding
energy.

Lemma 2.7. The following inequality is valid:∑
K∈Th

∫
K

|||∇vh(x)− π(∇vh(x))|||2 dx ≤ CEβh (vh) ∀ vh ∈ Ah.
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The justification of this lemma can immediately be given, exploiting the quadratic
growth of the bulk energy density close to the union of wells U ; see (1.4).

Another lemma will be useful for the subsequent studies.
Lemma 2.8. For any w ∈ R3 satisfying w · n = 0, there exists a constant C > 0

such that( ∑
K∈Th

∫
K

∣∣{π(∇uh(x))− Fλ}w
∣∣2 dx)1/2

≤ C
{
h1/2 + hβ/2 + h(1−β)/2

}
with uh ∈ Ah being a minimizer of problem (1.15).

Proof. For the orthorhombic to monoclinic transformation, we have

π(F ) ∈ SO(3)F1 ∪ SO(3)F2 ∀ F ∈ R3×3.

Because of the rank-one connection and the identity

Fλ = λF1 + (1− λ)F2 = F1 + (1− λ)a⊗ n = F2 − λa⊗ n,
this implies

|π(F )w| = |F1w| = |F2w| = |Fλw| ∀ F ∈ R3×3

for an arbitrary w ∈ R3 such that w · n = 0. Thanks to this, we find∑
K∈Th

∫
K

∣∣{π(∇uh(x))− Fλ}w
∣∣2 dx

=
∑
K∈Th

∫
K

{|π(∇uh(x))w|2 + |Fλw|2 − 2π(∇uh(x))w · Fλw
}
dx

= 2Fλw ·
∑
K∈Th

∫
K

{
Fλ − π(∇uh(x))

}
w dx

= 2Fλw ·
∑
K∈Th

∫
K

{∇uh(x)−∇uh(x) + Fλ − π(∇uh(x))
}
w dx

= 2Fλw ·
∑
K∈Th

{∫
K

{∇uh(x)− π(∇uh(x))
}
w dx+

∫
K

{
Fλ −∇uh(x)

}
w dx

}

≤ C
( ∑
K∈Th

∫
K

‖∇uh(x)− π(∇uh(x))‖2 dx
)1/2

+2Fλw ·
( ∑
K∈Th

∫
K

{
Fλ −∇uh(x)

}
dx

)
w.

(2.19)

We can now make use of Lemma 2.7 and Theorem 2.3 to complete the proof.
The next result is a consequence of the last two results.
Theorem 2.9. For any w ∈ R3 satisfying w ·n = 0, there exists a constant C > 0

such that( ∑
K∈Th

∫
K

∣∣{∇uh(x)− Fλ}w
∣∣2 dx)1/2

≤ C
{
h2 + h1/2 + hβ/2 + h(1−β)/2

}
.
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The subsequent result is preliminary for proving a result pertaining to the capa-
bility of the present finite element method to approximate laminate microstructures.

Theorem 2.10. Given a parallelepiped ω and an associated pseudoparallelepiped
ωh ⊂ Ω̄, there exists a constant C = C(ω) > 0 such that the following result holds for
a minimizer uh ∈ Ah:∣∣∣∣∣∣∣∣∣ ∑

K∩ω 6=∅,K∈Th

∫
K

{∇uh(x)− Fλ} dx
∣∣∣∣∣∣∣∣∣

≤ C
{
h+ h3/2 + hβ + h1/4 + h(1−β)/4 + hβ/4

}
.

Proof. In the following, we will employ the notation of ω and ωh. Then we can
split the following integral into contributions from ωh and from ω − ωh; thus,∑

K∩ω 6=∅,K∈Th

∫
K

{∇uh(x)− Fλ} dx =
∑

K⊂ωh,K∈Th

∫
K

{∇uh(x)− Fλ} dx

+
∑

K∩(ω−ωh)6=∅,K∈Th

∫
K

{∇uh(x)− Fλ
}
dx =: I1 + I2.

(2.20)

Because of µ(ω − ωh) = O(h) and using the Cauchy–Schwarz inequality, we have

∣∣∣∣∣∣I2∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣ ∑
K∩(ω−ωh)6=∅,K∈Th

∫
K

{∇uh(x)− π(∇uh(x))
}
dx
∣∣∣∣∣∣∣∣∣

+
∣∣∣∣∣∣∣∣∣ ∑
K∩(ω−ωh)6=∅,K∈Th

∫
K

{
π(∇uh(x))− Fλ

}
dx
∣∣∣∣∣∣∣∣∣

≤ C
h1/2

( ∑
K∈Th

∫
K

∣∣∣∣∣∣∇uh(x)− π(∇uh(x))
∣∣∣∣∣∣2dx)1/2

+ h


≤ C{h1/2

(Eβh (uh)
)1/2

+ h
}
.

(2.21)

In order to bound the term I1 in (2.20), we have

∣∣∣∣∣∣I1∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣ ∑
K⊂ωh,K∈Th

∫
K

{∇uh(x)− Fλ} dx
∣∣∣∣∣∣∣∣∣

=
∣∣∣∣∣∣∣∣∣ ∑
K⊂ωh,K∈Th

∫
∂K

{uh(x)− Fλx} ⊗ ν dσ
∣∣∣∣∣∣∣∣∣

≤ C
∣∣∣∣∣∣∣∣∣ ∑
F⊂∂K,F6⊂∂ωh,K∈Th

∫
F
{uh(x)− Fλx} ⊗ ν dσ

∣∣∣∣∣∣∣∣∣
+ C

∣∣∣∣∣∣∣∣∣ ∑
F⊂∂K,F⊂∂ωh,K∈Th

∫
F
{uh(x)− Fλx} ⊗ ν dσ

∣∣∣∣∣∣∣∣∣ =: I11 + I12.

(2.22)

The term I11 can be bounded by Chβ , according to an identical argument already
presented in the proof of Theorem 2.3; see (2.7). In order to bound I12, we can
make use of Theorem 2.6, in combination with Theorem 2.5 and Theorem 2.9. If we
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introduce the abbreviative notation zh(x) = uh(x)− Fλx, we find

‖I12‖ ≤ C
(
µ(∂ωh)

)1/2 ∑
F⊂∂K,F∩∂ωh 6=∅,K⊂ωh

∫
F
|z•h(x)|2 dσ

1/2

≤ C

Λ(ωh)

(∫
ωh

|zh(x)|2 dx
)1/2

+ C
(∫

ωh

|zh(x)|2 dx
)1/4( ∑

K⊂ωh

∫
K

∣∣∣∣∣∣∇zh(x)
∣∣∣∣∣∣2 dx)1/4

+ Chβ/2

≤ C

Λ(ωh)

{(Eβh (uh)
)1/4

+ hβ/2 + h(1−β)/2 + h1−β
}1/2

.

In this context the following auxiliary argument ensures the existence of an appropri-
ate constant C:∑

K∈Th

∫
K

∣∣∣∣∣∣∇zh(x)
∣∣∣∣∣∣2 dx ≤ C ∑

K∈Th

∫
K

∣∣∣∣∣∣∣∣∣∇uh(x)− π(∇uh(x))
∣∣∣∣∣∣∣∣∣2 dx

+ C
∑
K∈Th

∫
K

∣∣∣∣∣∣∣∣∣π(∇uh(x))− Fλ
∣∣∣∣∣∣∣∣∣2 dx ≤ C.(2.23)

This concludes the proof.

2.4. Approximation of simply laminated microstructure. We start with
an approximation result that states how well {F1, F2} are approximated by a mini-
mizer uh ∈ A.

Theorem 2.11. There exists a constant C > 0 such that the following inequality
is valid for a minimizer uh ∈ Ah:( ∑

K∈Th

∫
K

∣∣∣∣∣∣∣∣∣∇uh(x)−Π(∇uh(x))
∣∣∣∣∣∣∣∣∣2 dx)1/2

≤ C
{
h+ h1/2 + hβ/2 + h(1−β)/2

}
.

Proof. We have ∀w ∈ R3, w · n = 0:

Π(F )w = F1w = F2w = Fλw ∀ F ∈ R3×3.

The following identity is valid:

F −Π(F ) = F − π(F ) + {Θ(F )− I}Π(F ).(2.24)

We can then proceed in the following way:

{Θ(F )− I}Π(F )w = {π(F )− Fλ}w ∀ F ∈ R3×3.

We can now benefit from Lemma 2.8. By choosing a vector w ∈ R3 such that w ·n = 0,
we have ∑

K∈Th

∫
K

∣∣{Θ(∇uh(x))− I}F1w
∣∣2 dx =

∑
K∈Th

∫
K

∣∣{π(∇uh(x))− Fλ}w
∣∣2 dx

≤ C
{(Eβh (uh)

)1/2
+ hβ + h1−β

}
.

(2.25)
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Now, we choose w1, w2 ∈ R3, such that it holds w1 · n = w2 · n = 0 with w1, w2 being
linearly independent. Set m = F1w1 × F1w2. Since

Qm = QF1w1 ×QF1w2 ∀ Q ∈ SO(3),

we have ∀F ∈ R3×3:

{Θ(F )− I}m =
{

Θ(F )F1w1 ×Θ(F )F1w2} − {F1w1 × F1w2

}
=
{{Θ(F )− I}F1w1 ×Θ(F )F1w2

}− {F1w1 × {I−Θ(F )}F1w2

}
.

This, together with (2.25), implies

∑
K∈Th

∫
K

∣∣{Θ(∇uh(x))− I
}
m
∣∣2 dx ≤ C{(Eβh (uh)

)1/2
+ hβ + h1−β}.(2.26)

Now, the triple {F1w1, F1w2,m} is a basis for R3, and (2.25), (2.26) lead to

∑
K∈Th

∫
K

∣∣∣∣∣∣Θ(∇uh(x))− I
∣∣∣∣∣∣2 dx ≤ C{(Eβh (uh)

)1/2
+ hβ + h1−β}.

The result now follows from (2.24) and Lemma 2.7.

We are now in a position to verify the following result which states approximation
of the volume fraction λ.

Theorem 2.12. Suppose uh ∈ Ah to be a minimizer of Eβh (·). Then, for any
rectangular parallelepiped ω ⊂ Ω and any ρ > 0, there exists a constant C = C(ω, ρ) >
0 such that the following statement is valid:

∣∣∣µ(ω1
ρ(uh))

µ(ω)
− λ1

∣∣∣+
∣∣∣µ(ω2

ρ(uh))

µ(ω)
− λ2

∣∣∣ ≤ C{h1/4 + hβ/4 + h(1−β)/4
}
.

Proof. We start with the following identity, which is a consequence of the defini-
tion of the ωiρ(uh) given in the beginning of this section:

{
µ(ω1

ρ(uh))− λ1µ(ω)
}
F1 +

{
µ(ω2

ρ(uh))− λ2µ(ω)
}
F2

=
∑
K∈Th

{∫
K∩ω

{
Π(∇uh(x))− Fλ

}
dx−

∫
K∩(ω−{ω1

ρ∪ω2
ρ})

Π(∇uh(x)) dx
}
.

(2.27)

In order to treat the first term, we make use of Theorem 2.11 and Theorem 2.10,
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leading to ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ∑
K∈Th

∫
K∩ω

{
Π(∇uh(x))− Fλ

}
dx

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

≤
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ∑
K∈Th

∫
K∩ω

{
Π(∇uh(x))−∇uh(x)

}
dx

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ∑
K∈Th

∫
K∩ω

{∇uh(x)− Fλ
}
dx

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

≤ µ1/2(ω)

( ∑
K∈Th

∫
K

∣∣∣∣∣∣∣∣∣∣∣∣Π(∇uh(x))−∇uh(x)

∣∣∣∣∣∣∣∣∣∣∣∣2 dx
)1/2

+

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ∑
K∈Th

∫
K∩ω

{∇uh(x)− Fλ
}
dx

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

≤ C
{(Eβh (uh)

)1/8
+ hβ/4 + h(1−β)/4

}
.

(2.28)

The second term can be bounded according to the definition∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ∑
K∈Th

∫
K∩(ω−{ω1

ρ∪ω2
ρ})

Π(∇uh(x)) dx

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤ Cµ(ω − {ω1

ρ ∪ ω2
ρ}
)

≤ C

ρ

∑
K∈Th

∫
K∩(ω−{ω1

ρ∪ω2
ρ})

∣∣∣∣∣∣Π(∇uh(x))−∇uh(x)
∣∣∣∣∣∣ dx

≤ C
( ∑
K∈Th

∫
K

∣∣∣∣∣∣∣∣∣Π(∇uh(x))−∇uh(x)
∣∣∣∣∣∣∣∣∣2 dx)1/2

≤ C
{(Eβh (uh)

)1/4
+ hβ/2 + h(1−β)/2

}
,

(2.29)

with the last bound being a consequence of Theorem 2.11. The statement of the
theorem now follows from the linear independence of F1 and F2 in (2.27).

3. Computational experiments. In order to demonstrate the theoretical re-
sults of the previous sections numerically, we consider the prototype problem

E(v) =

∫
Ω

(
(vx)

2 − 1
)2

+ (vy)
2
dx(3.1)

on the domain Ω = (0, 1)× (0, 1) ⊂ R2 and the deformation v : Ω→ R. This problem
exhibits the crucial characteristics of the full problem in two or three dimensions
[4, 5, 12]. However, it is more instructive for numerical experiments, since due to
its low dimensionality it is possible to study the deformation v itself and not just its
gradient norm.

In order to test the theory for nonaligned meshes, we consider the following gen-
eralization of the energy functional:

E(v) =

∫
Ω

(
(∇v · n(γ))

2 − 1
)2

+ (∇v · w(γ))
2
dx(3.2)
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with

n(γ) =

(
cos(γ)
sin(γ)

)
, w(γ) ∈ n(γ)⊥, −45◦ ≤ γ ≤ +45◦.(3.3)

Here, n = n(γ) denotes the vector normal to the laminate direction and w = w(γ)
is a vector along the laminates. Both depend on the angle γ, which denotes the
angle between the positive x-axis and the vector n. The domain for the angle was
chosen as [−45◦,+45◦], because it covers the full range of alignments with any regular
triangular mesh. Notice that for γ = 0◦, the scaled energy in (3.2) reduces to the
original prototype problem (3.1).

A case study for five angles γ, five mesh parameters h, and five finite elements
has been performed. (1) The angle γ varied through five values, which cover all
degrees of alignment of the physical laminates with the numerical mesh; namely, γ =
−45◦,−22.5◦, 0◦,+22.5◦,+45◦. (2) The numerical grid is given by a regularly refined
triangular mesh, which is independent of the angle γ. To determine the convergence
rate for the energy, the mesh parameter was chosen as h = 1

4 ,
1
8 ,

1
16 ,

1
32 ,

1
64 .

(3) Classical conforming elements both with exact as well as with relaxed bound-
ary conditions, and classical nonconforming elements with exact as well as relaxed
boundary conditions have been tested; in order for the generalized energy functional
in Algorithm 1.2 to yield the same scaling as the original energy functional for the
classical elements, we set β = 0 and α11 = α12 = 0. The simulations for the dis-
continuous finite elements have used the scaled energy functional in Algorithm 1.2
with β = 1/2. Only graphs for the classical conforming element with exact boundary
conditions and the discontinuous elements are included in the following; more infor-
mation about the case study as well as a more extensive report on the results for all
finite elements is contained in [13].

For the graphs presented in the following, the angle γ = +22.5◦ is chosen, since
it is the “least” aligned case between the laminates and the grid. It is known that
this case poses significant problems for the classical finite element discretizations; see
[9, 10, 22]. These problems are clearly visible in Figure 3.1. Figure 3.1(a) shows a
plot of the gradient norm for h = 1/64. The white color in the graph indicates that
the gradient on that finite element is close to +1; the black color indicates values that
are close to −1. The laminates do not follow their correct direction of γ = +22.5◦

anymore but are rather distorted, and no reliable information concerning the volume
fractions can be obtained. This shows the dependence of the numerical solution
on the alignment of the grid with the physical laminates. Figure 3.1(b) shows the
deformation itself for h = 1/16. This size for h was chosen for the plot to allow the
features to be large enough to show sufficient detail for observation. This figure shows
that the penalty method was successful in enforcing the boundary conditions exactly,
as appropriate for this classical conforming element.

Correspondingly, Table 3.1(a) shows the values of the energy functional that were
observed for the classical conforming finite element. We notice that in the first and the
third column for the angles γ = −45◦ and γ = 0◦, respectively, the convergence rate
can be seen to be nearly linear. This is explained by the fact that in these two cases the
numerical mesh is aligned with the direction of the physical laminates. In the general
case however, as seen in the remaining columns of the table including for γ = +22.5◦,
the convergence rate is observed to be (much) worse than linear. Table 3.1(b) lists the
corresponding energy values obtained for the classical nonconforming element. While
the values themselves are lower than for the conforming element, the same observa-
tions hold with respect to the convergence behavior as for the conforming element.



266 MATTHIAS K. GOBBERT AND ANDREAS PROHL

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0
0.25

0.5
0.75

1

0

0.25

0.5

0.75

1

−0.1

0

0.1

(a) (b)

Fig. 3.1. (a) Deformation gradient in normal direction for angle γ = +22.5◦ using the classical
conforming element with exact boundary conditions with h = 1/64. (b) Deformation for angle
γ = +22.5◦ using the classical conforming element with exact boundary conditions with h = 1/16.
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Fig. 3.2. (a) Deformation gradient in normal direction for angle γ = +22.5◦ using the dis-
continuous element with h = 1/64. (b) Deformation for angle γ = +22.5◦ using the discontinuous
element with h = 1/16.

Hence, the nonconforming element does not significantly alleviate the problems found
with the conforming one.

Figure 3.2 plots the result for the discontinuous finite elements in Algorithm 1.2.
These elements use the vertices as degrees of freedom without any continuity require-
ment in the element definition; the amount of discontinuity allowed is controlled via
a penalty technique implemented by the α11- and α12-terms in the scaled energy
functional in Algorithm 1.2.

Figure 3.2(a) shows the norm of the deformation gradient in normal direction to
the laminates. It is observed that the bands of the laminates are represented crisply
and running straight along the direction defined by γ = +22.5◦. The laminates
themselves are wider than in the classical cases as required by the energy functional
in Algorithm 1.2 with β = 1/2. Concretely, each laminate has a width of order
O(h1−β) = O(h1/2); see section 1. Figure 3.2(b) shows the deformation u. First,
we can see also here the value of the deformation gradients in normal direction is
close to +1 and −1 as exhibited by the hat shape of the solution. As expected, the
solution exhibits a degree of discontinuity, but this effect is limited to the element
edges corresponding to transitions from one laminate to another, while the laminates
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Table 3.1
Values of the energy norm for the elements used. (a) Classical conforming element with exact

boundary conditions. (b) Classical nonconforming element with exact boundary conditions. (c)
Discontinuous element.

γ = −45◦ γ = −22.5◦ γ = 0◦ γ = +22.5◦ γ = +45◦
h = 1/4 0.5754 0.5305 0.4532 0.6690 0.8920
h = 1/8 0.3497 0.3604 0.3891 0.4617 0.6182
h = 1/16 0.1884 0.2634 0.1939 0.3444 0.4260
h = 1/32 0.0972 0.1958 0.0963 0.2512 0.2911
h = 1/64 0.0488 0.1587 0.0474 0.1956 0.2320

(a)

γ = −45◦ γ = −22.5◦ γ = 0◦ γ = +22.5◦ γ = +45◦
h = 1/4 0.2297 0.2629 0.3733 0.3833 0.3265
h = 1/8 0.1532 0.1744 0.1996 0.2315 0.2200
h = 1/16 0.0885 0.0980 0.0992 0.1438 0.1507
h = 1/32 0.0470 0.0652 0.0491 0.0960 0.1085
h = 1/64 0.0238 0.0392 0.0243 0.0765 0.0679

(b)

γ = −45◦ γ = −22.5◦ γ = 0◦ γ = +22.5◦ γ = +45◦
h = 1/4 0.0165 0.0521 0.0173 0.0849 0.1156
h = 1/8 0.0052 0.0222 0.0047 0.0324 0.0481
h = 1/16 0.0007 0.0052 0.0007 0.0108 0.0192
h = 1/32 0.0005 0.0014 0.0007 0.0033 0.0038
h = 1/64 0.0000 0.0003 0.0000 0.0009 0.0013

(c)

themselves are represented continuously.

Table 3.1(c) lists the values of the energy functional for the discontinuous element.
It is observed that we have O(h2) convergence rate. This is remarkable, in particular,
since this result is clearly independent of the degree of alignment of the physical
laminates with the numerical grid for all angles γ. That demonstrates the superiority
of the discretization using discontinuous finite elements.

The calculations were performed on a Silicon Graphics Challenge XL workstation
at the University of Maryland, Baltimore County. The computer program implements
the nonlinear conjugate gradient method for the minimization with initial conditions
chosen close to the assumed solution. The scaled energy functional of Algorithm 1.2
is discretized using the package FEAT2D [3] for the underlying finite element dis-
cretization.

4. Conclusions. This paper proposes the use of discontinuous finite elements for
the numerical simulation of crystalline microstructure. This becomes possible via the
introduction of a new, generalized energy functional that rests on three fundamental
ideas: (1) The boundary conditions are enforced only up to the order of the mesh pa-
rameter. (2) The degree of discontinuity is controlled by penalty terms in the energy
functional. (3) The laminates and laminate transitions are scaled appropriately rela-
tive to each other and relative to the mesh parameter. Using this functional, excellent
convergence behavior (second order) for the energy is shown both theoretically and by
numerical test calculations. This energy estimate implies much improved estimates
for other quantities of interest—for instance for the most crucial volume fractions of
the variants of the crystalline microstructure.
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[4] C. Carstensen and P. Plecháč, Numerical solution of the scalar double-well problem allowing
microstructure, Math. Comp., 66 (1997), pp. 997–1026.

[5] M. Chipot and C. Collins, Numerical approximations in variational problems with potential
wells, SIAM J. Numer. Anal., 29 (1992), pp. 1002–1019.

[6] M. Chipot and S. Müller, Sharp Energy Estimates for Finite Element Approximations of
Non-convex Problems, Tech. Rep. 8, Max-Planck-Institute for Mathematics in the Natural
Sciences, Leipsig, 1997.

[7] P. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam,
1978.

[8] C. Collins, Computation and Analysis of Twinning in Crystalline Solids, Ph.D. thesis, Uni-
versity of Minnesota, Minneapolis, MN, 1990.

[9] C. Collins, Computation of twinning, in Microstructure and Phase Transitions, IMA Vol.
Math. Appl. 54, Springer-Verlag, New York, 1993, pp. 39–50.

[10] C. Collins, Comparison of computational results for twinning in the two-well problem, in
Proceedings of the 2nd International Conference on Intelligent Materials, C. Rogers and
G. Wallace, eds., Technomic, 1994, pp. 391–401.

[11] C. Collins, Convergence of a reduced integration method for computing microstructures, SIAM
J. Numer. Anal., 35 (1998), pp. 1271–1298.

[12] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer-Verlag, New York,
1989.

[13] M. K. Gobbert and A. Prohl, A Survey of Classical and New Finite Element Methods for
the Computation of Crystalline Microstructure, Tech. Rep. 1576, IMA, 1998.

[14] P. Gremaud, Numerical analysis of a nonconvex variational problem related to solid-solid
phase transitions, SIAM J. Numer. Anal., 31 (1994), pp. 111–127.
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