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Abstract

A geometrically nonlinear continuum theory has been developed for the equilibria of martensitic crystals
based on elastic energy minimization. For these non-convex functionals, typically no classical solutions exist,
and minimizing sequences involving Young measures are studied. Direct minimizations using discretization based
on conforming, non-conforming, and discontinuous elements have been proposed for the numerical approximation
of this problem. Theoretical results predict the superiority of the discontinuous finite element. Detailed numerical
studies of the available finite element discretizations in this paper validate the theory. One-dimensional prototype
problems due to Bolza and Tartar and a two-dimensional numerical model of the Ericksen—James energy are
presented. Both classical elements yield solutions that possess suboptimal convergence rates and depend heav
on the underlying numerical mesh. The discontinuous finite element method overcomes this problem and shows
optimal convergence behavior independent of the numerical me&b01 IMACS. Published by Elsevier Science
B.V. All rights reserved.
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1. Introduction

Many new materials of interest in materials science and structural mechanics have been found to
exhibit microstructure under certain ambient conditions. For example, certain alloys show laminate
microstructure that can be observed in laboratory experiments [1,2]. The understanding of these
microscopic phenomena plays an important role to improve certain material properties like shape-
memory, ferroelectricity, or magnetostriction, used for instance in micromachines.
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A mathematical model for such ‘smart materials’ was first given by Ball and James [1,2]. In
there, minimizing solutions represent deformations that exhibit microstructures which are observed in
experiments. A particular example is the phenomenon of twinning associated with austenite-martensite
transformations [1,2].

Because of the non-(quasi-)convex nature of the so-called Ericksen—James energy density, the relate:
functional is not weakly lower semicontinuous and hence there is a lack of a minimizer belonging
to an appropriate underlying Sobolev space, in general. Instead, corresponding (weakly converging)
minimizing sequences are studied that typically show fast oscillations in the gradient of the deformation
which gives raise to microstructure. A tool for describing the asymptotic behavior of minimizing
sequences is the Young measure [23], giving volume fractions of the involved martensitic variants in
each test volume of the reference domain in austenite s2at€his probability measure enables the
evaluation of (nonlinear) quantities, like the stress for the limit of such minimizing sequences [23].

From the numerical point of view, the computation of minimizers associated with discrete models
leads to significant problems, mainly caused by their non-convex character. Over the last years, basically
three categories of methods have been studied to cope with this type of problem:

1. Convexification of the energy functionalee, e.g., [4,10,14,23]: The original non-convex elastic
energy density is replaced by its (quasi- or rank-one-)convex hull. This manipulation is attractive
since now a minimizer exists that is the weak limit of a minimizing sequence. Equally important, the
solution of this problem is now accessible to standard gradient based minimization routines. On the
other hand, explicit formulae of (quasi-)convex hulls are only known in some cases (unfortunately,
the physically important case of the Ericksen—James energy functional is not covered), and
numerical approximations of it are rather expensive, see [4]. Moreover, this process deletes physical
information from the original energy functional that makes this approach questionable for certain
important applications.

2. Generalized formulation of the energy functionake, e.g., [6,23,24]: The original problem is
reformulated as a convex minimization problem in terms of the deformation and parameterized
gradient Young measures. This approach is quite promising from a theoretical point of view since
the energy functional is kept unchanged. As a drawback, it causes significant computational work
which necessitates additional sophisticated numerical strategies. A first promising step to reduce
computational work is given in [6], where a one-dimensional test problem is studied.

3. Direct minimization of the energy functionake, e.g., [8,11,16,15,18-21]: Numerical methods that
fit into this category start with discretizations of the energy functional and underlying domain via,
e.g., finite element methods. These methods preserve the physical energy density and are applicabl
without restrictions. On the other hand, they might suffer severely from the non-convex character of
the energy density in that computed minimizers often get stuck in local minima. Furthermore, the
spatial discretization introduces a scaling to the microstructure that limits the resolution of complex
microstructure. At the same time, this drawback of local minima is sometimes advantageous
for applications where local minima (e.g., “metastable states”) are important (e.g., in hysteresis
phenomena).

In the following, we consider finite element methods that are intended for the direct minimization of
non-convex functionals. In the context of the Ericksen—James energy density, we refer to the extensive
survey article by Luskin [19] and the publications [15,16,18,21] that deal with the numerical analysis
of conforming and classical non-conforming methods (i.e., continuity is only enforced in the center
of adjacent finite element faces). As is pointed out in these contributions, the resolution of microscale
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structures heavily relies on the alignment of the underlying mesh with the laminated microstructure,
otherwise leading to drastically polluted solutions.

This is the basic motivation for the introduction of discontinuous finite element methods to this type
of minimization problem. As can be clearly seen from the theoretical investigations performed in [11],
the convergence analysis leads to results that are superior to those of conforming and classical non
conforming methods, which reflects the increased flexibility of the finite element method with respect to
the underlying triangulation.

Mathematical models for describing deformations from a reference state of ‘smart materials’ can be
formulated in two or three dimensions, i.é.€ {2, 3}. The numerical problem reads then as follows. For
the reference stat@ € RY, minimize the energy functional

Ew) = / (Vo) dr ()
2

over all admissible functions € A with
A={ueC(2;RY): ulyo=gx)}. )

Here, ¢ :R?*¢ — R is the Ericksen-James energy, that only depends on the gradierdf the
deformationv, andg(x) is a given function on the boundary &f. The Ericksen—James energy density
satisfies the principle of frame indifference and leads to a non-convex energy functional to be minimized.
For a detailed discussion on the physical background of the energy, we refer to [19]. For the subsequent
studies, we benefit from the densipy-) being non-negative angl(A) = 0 if and only if A € U, where
U denotes the union of all energy wells. These wells correspond to symmetry-related energy-minimizing
states of the material.

In order to have minimizers being Lipschitz-continuous, the wells have to be rank-one connected. For
the case of a two-well problem, this implies the condition

IF,el;, i=1,2, 3Fa,neR® suchthat Fo=F,+a®n.

Here,® denotes the tensor product of the vecterandn, that is, (a ® n);; = a;n;. Without loss of
generality, we may assune| = 1. To guarantee uniqueness of a homogeneous gradient Young measure
that is associated with this microstructure [1,2], we prescribe affine boundary conditions

u(x) = Fx forxeds, 3)
where
F=M+1—-10F 4)

with volume fractioni € [0, 1]. These characterizations of admissible deformations generalize to the
multi-well case of several energetically equivalent crystallographic configurations, see, e.g., [19].

The first finite element methods for the minimization of (1) used conforming elements with piecewise
linear basis functions on each triangular or quadrilateral element, thus minimizing on a set of admissible
functions A, C A. For strictly convexenergy densitie® and sufficiently smooth data, this approach is
known to yield optimal convergence results for the energy with ordérOHowever, for the problem
with a non-convex energy density, it can only be shown in general that a minimizing deformatiaA,,
satisfies

Euy) < ChY?, %)
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where the constaf may depend on the coefficients of the problem, the triangulafjcaand the domain

£2, but not on the mesh parametey see [7,8,15,18-20]. It has been observed that the quality of the
approximation depends strongly on the degree of alignment of the numerical mesh with the physical
laminates [9,19,21]. This means that the laminate microstructure is well-resolved on meshes, whose
element edges run along the laminate direction. If this is not the case, the numerical results are often
significantly polluted so that the laminates are distorted or, worse yet, align themselves with the numerical
grid irrespective of the underlying physics [9,21].

As a second numerical approach, a classical non-conforming finite element method with continuity
only in the edge midpoints (the Crouzeix—Raviart element) has been used [9,12,19,20]; even more genera
three dimensional non-conforming elements have been used in [13] and analyzed in [16]. This method
relaxes the continuity constraints between each two elements by only requiring continuity of the discrete
deformations at the edge midpoints. Of course, the functiéiial is then defined in an appropriate
element-wise setting by takirtg, (-). This finite element method does have increased flexibility to handle
deformations with microstructure on general grids due to the relaxation of the inter-element continuity
requirements. However, the theoretical analysis presented in [12,16] does not reflect this improved
flexibility in comparison to the conforming method, and the result for a minimizer A, is still

Ey(uy) < ChY2, (6)

This motivates the construction of a new finite element method yielding more accurate approximations
of crucial quantities such as the macroscopic deformation, the structure of laminates, and the statistical
properties of the microstructure given in terms of its Young measure on general meshes. Moreover,
this new method should be able to represent more complex microstructure given through force-driven
deformations as well as ones occurring in evolutionary models both in this context and for more
complicated materials.

An algorithm based on discontinuous finite elements was introduced in [11]. As it is shown there,
this algorithm allows for much improved convergence rate estimates for the energy (naii€lyfad
the energy of a minimizing deformation) as well as other quantities of interest like the gradient Young
measure or the deformation gradient in laminate direction. In particular, this result holds for non-aligned
meshes, i.e., those that are independent of the alignment of the numerical grid with the physical laminates.
The underlying conceptual ideas are the following:

1. The (averaged) boundary conditions will be treated in a more relaxed way to avoid the pollution

impact from the boundary.

2. The cross-element continuity constraints are relaxed in the sense that small jumps are allowed.

3. The laminate structures are scaled differently from the transitions between laminates.

This leads to the following algorithm:

Algorithm 1. Given a quasiuniform triangulatioff;, of the domain2 c R?, with d € {2, 3}, consider
element-wise linear deformationg € A, = [[x.7, P1(K) with the scaled energy functional

>t /y[vh](x)| do>

KeT, 9K

2

&) = Z /¢(Vvh(x)) dx+0111<

KG’];lK

+a12< > ot /|[vh]<x>|2do> +ap ¥ h¥ / |oh(x) — Fyx|* do, @)
0K

KeT,, KeTh  jknag
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and perform the minimization
min &7 (vy) (8)

vp€AR

for a fixed constang € [0, 1].

The coefficientsr11, 12, andw, are order one constants that control the relative contributions from the
inter-element continuity constraints, and the relaxation of the boundary condition. Algorithm 1 introduces
a different scaling of the physical information (i.e., the laminates, which are of ordeY6) and
numerical scaling (i.e., transitions between laminates (of ordéy)O

For the discontinuous element method, an energy estimate/df @olds [11]. This is optimal for
the linear basis functions in use. However, this energy does not have a true physical meaning, but othel
guantities important for practical purposes are the following: The volume fracﬁnjm§(uh)) /()
give approximations to th&', i € {1, 2}, with u(w) the measure of the subdoma:inandu(wj)(uh)) the
measure of that collection of elememai'g C w, on which the deformation gradieRt,, is inside a ball
with radiusp and centerF; (measured in the Frobenius norm). These quantities are crucial parameters
in the computation of the gradient Young measure generated by the deformation giédjeft].

The gradient Young measure in turn yields important macroscopic quantities of practical relevance, for
instance, the stress field, see [4,19] and the literature cited therein. It is for this reason that the accurate
approximation also of microscopic quantities like the deformation gradient and volume fraction is of
importance. We recall here the main theorem that is proved in [11].

Theorem 1. Consider probleng8), with 8 = % as an approximation of the minimization probl€bj—(2)
with 2 ¢ R® a bounded set, and suppose= A is a (weak limi) solution of problenm(1)—(2) yielding
zero energy with associated gradient Young measuse AléFl + AZSFZ, whereVu(x) = [paxa Adv,(A).
Then problem(8) has at least one solution;, € A, = [[x.7, P1(K), and u,, satisfies the following
convergence estimates, for allc £2 andh < p < 1, and all p > O, for positive constanta;1, @3, and
oo of order one

@) &%y < Ch?,

(b) llup — Fuxll 2 < ChY4,

©) I(Vup — Fowll 20 < Ch*/4,

(d) IM(wL(uh))//L(w) — A< ChY8, forie({1,2).
The generic constant may depend on the parameters of the continuous minimization problem, with
energy(1) and the valueg;,, @1, andas,, but not on the mesh parameterin the cas€d), it additionally
depends on the choice pf

The analytic convergence results for all quantities of interest and the different finite element methods
that are subject to computational comparison in the following are summarized in Table 1.|Hére,
stands for thel.>-norm. Moreover, the constants, i € {1, 2}, denote the coefficients of the gradient
Young measure that are approximated by the volume fraqtiadp(uh))/u(w); for the double well
problem, this is concretely! = A and1? =1 — A. A marked improvement over the classical methods
can be observed for all quantities.

The purpose of this paper is a practical comparison of these different finite element methods for the
direct minimization of the non-convex energy for several relevant energy densities. Specifically, a detailed
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;?Jk:rll?nlary of convergence results for the energy and other crucial quantities for different finite element methods
Finite element method Enun) lun— Faxll || (Vup — F)wl| pp) _
Conforming [18,19] Qrl/2) O(hl/8) O(h1/8) O(h1/16)

Classical non-conforming [16] @1/? O(hl/8) O(h1/8) O(h1/16)
Discontinuous [11] h?) O(hY/% O(hY/%) O(h1/8)

numerical case study for a one-dimensional prototype problem for simple laminates is presented in
Section 2. This problem was originally proposed by Bolza, see, e.g., [23]. The results for the conforming

element depend substantially on the alignment of the numerical grid with the the physical laminates,

while the non-conforming and discontinuous element are able to follow the laminates in all cases.

However, both classical elements show substantially worse convergence rates than the discontinuou:
element. These results demonstrate the validity of the theoretical results contained in Table 1. A proposec
modification of relaxing the enforcement of the boundary conditions also for the classical finite elements

is shown to be ineffective in improving convergence rates in general. This demonstrates that the
improvements gained for the discontinuous element are a result of the behavior in the interior of the

domain.

Section 3 is devoted to the study of a more complex one-dimensional example due to Tartar. Its
solution possesses microstructure only in part of the domain. Hence, this is a test of the flexibility
of the methods to handle a more complex case than the one of simple laminates. The methods eacl
exhibit the same behavior as for the simpler prototype problem, with the classical element suffering from
numerical pollution in the case of non-aligned grids, while the discontinuous element is able to represent
the physical situation adequately.

A classical two-dimensional model for orthorhombic to monoclinic transformations is studied in
Section 4. This transformation is the physical example of two-well energy densities. The energy density
following [19] exhibits all relevant features of the three-dimensional Ericksen—James energy and is used
in many numerical studies of simple laminates, see [19]. Also in this case, the discontinuous element is
able to represent the physics appropriately, while the conforming element suffers severe pollution of its
results from the mis-alignment.

2. Example 1: A prototype problem for simple laminates

We consider the following prototype problem for the Ericksen—James energy [4,10]:

E0) = [ (00 =D+ () dx ©
2
for the domaing2 = (0,1) x (0,1) C R? and the deformations: 2 — R with boundary condition

v=00n0as£2. The solution to this problem consists of laminates intkdgirection, because the favored
deformation gradient¥v = (v,, v,) are F; = (+1,0) and F> = (-1, 0).
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In order to study the dependence of the finite element method on the alignment of the numerical mesh
with the physical laminates, we introduce the following generalized energy functional:

E) = /((VU )% —1)% + (Vv w)? dr. (10)
2

Here,n =n(y) = (cogy), sin(y))" denotes the vector normal to the laminate direction; w(y) € R?
is a vector along the laminates and orthogonat t@ndy the angle between the positiveaxis and
the vectom. Since the prototype problem with boundary conditioca 0 on d£2 models the example of
simple laminates, the coefficients of the gradient Young measuaadi? have to equa% in all cases.

We start with our comparison of the conforming, classical non-conforming, and discontinuous finite
elements for this problem, by taking

=3 [¢(Vum)dita Y [ [um - Fald (11)
Kely g Kelhygnon

for both the conforming and the classical non-conforming method to study the impact of (averaged)
boundary conditions in these schemes. For the discontinuous element, we choose the optimal coefficien
B = % [11] and parameters;; = a1 = ap = 1. The angley is varied through five values to cover
different mesh effectsy € {—45°, —22.5°,0°, +22.5°, +45°}. The mesh is given by a regularly refined
triangular mesh independent of the angleand such that the mesh is fully aligned with the physical
laminates whery = —45° andy = 0°. A study for the parameter, governing the degree of relaxation
of the boundary term was performed for the classical element by choosing @jteed 000 for strict
enforcement of the boundary conditionsa@r= 1 for relaxed enforcement.

The computer program implements the nonlinear conjugate gradient method for the minimization with
a quaderatic fit line search after bracketing [17]. The energy functional of Algorithm 1 is discretized using
the package FEAT2D [3] for the underlying finite element discretization. New element routines were
defined in this package for the discontinuous finite element for our purposes.

2.1. The conforming finite element

This element has been considered computationally by Collins, see [8,9], and the convergence analyse
are contained in [7,15,18,19]. Fig. 1 shows the computed volume fraction of the laminate microstructure.
If the numerical mesh is well aligned with the physical laminates, the element represents the physical
situation well. However, if the alignment is not good, distortion is possible (Fig. 1(d)), or the laminates
grow wider than expected (Fig. 1(e)).

Table 2(a) lists the values of the computed energy functional for the conforming finite element. Note
that fory = —45° andy = 0° the convergence rate is linear, due to the mesh being aligned with the
direction of the physical laminates. In the other cases, however, the convergence rate is observed to bt
much less than ).

Tables 3(a), 4(a), and 5(a) show the numerical results for the quantities listed in columns 2, 3, and 4
of Table 1. For the.?-error of the deformation in Table 3(a), we observe nearly linear convergence for
all anglesy, which is significantly better than the theoretically predicted rate @Gi*®), see Table 1.
However, theL?-error of the deformation gradient in laminate direction in Table 4(a) as well as the
approximation to the volume fraction in Table 5(a) depend crucially on the alignment of the numerical
mesh.
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Table 2
Total energy (column 1 in Table 1)
y = —45 y =—-225° y=0° y =+225° y =+45
(a) for the conforming element wiidp, = 1000
h= ;11 0.5754 0.5305 0.4532 0.6690 0.8920
h=3% 0.3497 0.3604 0.3891 0.4617 0.6182
h= 4 0.1884 0.2634 0.1939 0.3444 0.4260
h= 3—12 0.0972 0.1958 0.0963 0.2512 0.2911
h= 6—14 0.0488 0.1587 0.0474 0.1956 0.2320
(b) for the conforming element witta, = 1
h :% 0.1703 0.2791 0.1145 0.2460 0.5335
h =% 0.0435 0.1563 0.0425 0.2510 0.3300
h= 1—16 0.0113 0.1251 0.0112 0.1676 0.3227
h= 3—12 0.0029 0.1180 0.0029 0.1659 0.3459
h= 6—14 0.0007 0.1162 0.0007 0.1861 0.3758
(c) for the classical non-conforming element with= 1000
h :% 0.2297 0.2629 0.3733 0.3833 0.3265
h =% 0.1532 0.1744 0.1996 0.2315 0.2200
h= 1—16 0.0885 0.0980 0.0992 0.1438 0.1507
h= 3—12 0.0470 0.0652 0.0491 0.0960 0.1085
h= 6—14 0.0238 0.0392 0.0243 0.0765 0.0679
(d) for the classical non-conforming element with= 1
h :% 0.1422 0.1982 0.0880 0.2305 0.0938
h =% 0.0356 0.0612 0.0347 0.0957 0.0678
h= 1—16 0.0093 0.0271 0.0092 0.0631 0.0132
h= 3i2 0.0024 0.0171 0.0024 0.0524 0.0033
h= 6—14 0.0006 0.0145 0.0006 0.0520 0.0115
(e) for the discontinuous element
h :% 0.0165 0.0521 0.0173 0.0849 0.1156
h=3 0.0052 0.0222 0.0047 0.0324 0.0481
h= 1—16 0.0007 0.0052 0.0007 0.0108 0.0192
h= 3i2 0.0005 0.0014 0.0007 0.0033 0.0038
h= 6—14 0.0000 0.0003 0.0000 0.0009 0.0013
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Table 3
Error of the deformation in th&2-norm (column 2 in Table 1)
y =—45° y =—225° y=0° y =+225° y =445
(a) for the conforming element wiidp, = 1000
h :% 0.0733 0.0890 0.0980 0.1068 0.0800
h =% 0.0773 0.0832 0.1171 0.0904 0.1043
h= 1—16 0.0459 0.0574 0.0658 0.0685 0.0857
h= ?%2 0.0243 0.0309 0.0345 0.0452 0.0648
h= 6%1 0.0125 0.0158 0.0177 0.0274 0.0308
(b) for the conforming element witta, = 1
h :% 0.1882 0.1997 0.1897 0.1838 0.1975
h =% 0.1004 0.1433 0.1398 0.1363 0.1208
h= 1—16 0.0509 0.0653 0.0717 0.0855 0.0590
h= ?%2 0.0255 0.0325 0.0360 0.0441 0.0276
h= 6%1 0.0128 0.0162 0.0180 0.0185 0.0122
(c) for the classical non-conforming element with= 1000
h :% 0.1055 0.1332 0.1708 0.1405 0.1194
h =% 0.0857 0.0954 0.1196 0.0957 0.0765
h= 1—16 0.0473 0.0586 0.0662 0.0585 0.0424
h= ?%2 0.0246 0.0315 0.0346 0.0313 0.0241
h= 6%1 0.0125 0.0162 0.0177 0.0163 0.0125
(d) for the classical non-conforming element with= 1
h :% 0.1864 0.2194 0.1991 0.1980 0.1536
h=% 0.1003 0.1468 0.1396 0.1452 0.1137
h= 1—16 0.0509 0.0664 0.0716 0.0670 0.0592
h= 3% 0.0255 0.0334 0.0360 0.0337 0.0289
h= 6%1 0.0128 0.0167 0.0180 0.0168 0.0135
(e) for the discontinuous element
h :% 0.0960 0.1223 0.1375 0.1301 0.1233
h =% 0.0673 0.0915 0.1015 0.0896 0.0728
h= 1—16 0.0505 0.0658 0.0718 0.0634 0.0519
h= 3% 0.0351 0.0468 0.0504 0.0458 0.0357
h= 6%1 0.0255 0.0332 0.0361 0.0327 0.0251
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-Ig?rbokrajf the deformation gradient in laminate direction in fffenorm (column 3 in Table 1)
y =45 y =—225° y=0° y =+225° y =445
(a) for the conforming element wiidp, = 1000
h :% 0.2665 0.3946 0.4089 0.5459 0.4849
h =% 0.3135 0.3942 0.4368 0.4842 0.5063
h=7% 0.2474 0.3297 0.3086 0.4135 0.4483
h= ?%2 0.1834 0.2758 0.2158 0.3446 0.3805
h= 6%1 0.1313 0.2330 0.1496 0.3145 0.3255
(b) for the conforming element witta, = 1
h :% 0.0173 0.2006 0.0653 0.3002 0.3375
h=% 0.0199 0.1975 0.0398 0.2741 0.3216
h= 1—16 0.0105 0.1882 0.0137 0.2302 0.3502
h= ?%2 0.0037 0.1872 0.0045 0.2324 0.3670
h= 6%1 0.0013 0.1880 0.0015 0.2477 0.3886
(c) for the classical non-conforming element with= 1000
h :% 0.3547 0.4289 0.5002 0.4291 0.2750
h =% 0.3427 0.3598 0.4017 0.3486 0.2356
h= 1—16 0.2657 0.2778 0.2813 0.2839 0.2018
h= ?%2 0.1945 0.2221 0.1978 0.2313 0.1994
h= 6%1 0.1374 0.1690 0.1373 0.1965 0.1551
(d) for the classical non-conforming element with= 1
h :% 0.0419 0.1461 0.0884 0.1922 0.0368
h =% 0.0358 0.0982 0.0519 0.1502 0.1573
h= 1—16 0.0167 0.0883 0.0194 0.1495 0.0137
h= 3% 0.0063 0.0950 0.0068 0.1509 0.0051
h= 6%1 0.0023 0.0961 0.0023 0.1525 0.0630
(e) for the discontinuous element
h :% 0.0097 0.0772 0.0169 0.0635 0.0897
h=% 0.0058 0.0484 0.0062 0.0374 0.0471
h= 1—16 0.0012 0.0142 0.0011 0.0164 0.0185
h= 3% 0.0008 0.0047 0.0007 0.0063 0.0056
h= 6%1 0.0002 0.0015 0.0001 0.0021 0.0020
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Table 5
Error in the volume fraction! for w = £2 (column 4 in Table 1 withi = 1)
y =—45° y =—225° y=0° y =+225° y =445
(a) for the conforming element wiidp, = 1000
h :% 0.3125 0.3750 0.2500 0.4375 0.5000
h =% 0.1875 0.2344 0.2500 0.2578 0.3125
h= 0.1172 0.1816 0.1250 0.1816 0.2188
h= ?%2 0.0645 0.1704 0.0625 0.1455 0.1533
h= 6%1 0.0337 0.1477 0.0303 0.1028 0.1326
(b) for the conforming element witta, = 1
h :% 0.2500 0.1562 0.0000 0.1562 0.5000
h =% 0.0000 0.1484 0.0000 0.1328 0.1562
h= 1—16 0.0000 0.1074 0.0000 0.0703 0.1797
h= ?%2 0.0000 0.1191 0.0000 0.1055 0.2168
h= 6%1 0.0000 0.1234 0.0000 0.1218 0.2324
(c) for the classical non-conforming element with= o = 1000
h :% 0.3125 0.1875 0.2500 0.3438 0.2500
h=% 0.0469 0.0859 0.1250 0.2344 0.2031
h= 1—16 0.0586 0.0703 0.0625 0.1504 0.2109
h= ?%2 0.0381 0.0527 0.0312 0.1216 0.1641
h= 6%1 0.0212 0.0326 0.0154 0.1105 0.1029
(d) for the classical non-conforming element with= 1
h :% 0.2500 0.0312 0.0000 0.2188 0.1250
h =% 0.0000 0.0078 0.0000 0.0781 0.0156
h= 1—16 0.0000 0.0000 0.0000 0.0762 0.0312
h= 3% 0.0000 0.0137 0.0000 0.0869 0.0156
h= 6%1 0.0000 0.0144 0.0000 0.0902 0.0134
(e) for the discontinuous element
h :% 0.0000 0.0000 0.0000 0.0000 0.0625
h =% 0.0312 0.0547 0.0000 0.0781 0.0312
h= 1—16 0.0000 0.0000 0.0000 0.0000 0.0020
h= 3% 0.0186 0.0029 0.0312 0.0049 0.0068
h= 6%1 0.0000 0.0000 0.0000 0.0000 0.0000
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As a unique feature of using a one-dimensional prototype problem, it is possible to plot also the
deformation itself in Fig. 4(a); the deformation for the larget 1—16 is shown for visibility. It can be seen
that the boundary conditions are indeed satisfied and that the transition to the laminate structure in the
interior is limited to a small layer close to the boundary. Thus, the penalization technique is seen to work
effectively, and the contribution from the boundary to the total energy is (much) less than 10%. That
is, practically all error in the conforming finite element method with exact boundary conditions results
from the bulk term in the energy functional. This motivates the relaxation of the enforcement of the
boundary conditions by choosing smaller valuesdgrAs is well-understood theoretically, this results
in improved convergence for aligned meshes, whereas no improvement is visible in the non-aligned
cases; see Tables 2(b), 3(b), 4(b), and 5(b).

2.2. The classical non-conforming finite element

This element has been proposed for the simulation of microstructures in order to increase the flexibility
of the finite element approximation, when adjusting to non-aligned meshes; see [9,12,16,20]. All cases
in Fig. 2 show that the increased flexibility allows for a better representation of the laminates, while
the boundary conditions are still satisfied exactly, see Fig. 4(b). However, Table 2(c) shows that the
convergence behavior has not improved over the conforming element. It is observed that the bulk term
of the energy still accounts for more than 90% of the energy, that is the mesh pollution effect on the
minimizer is still present.

As in the conforming case, the enforcement of the boundary conditions in the penalty formulation is
further relaxed by decreasing the valuexef As Tables 2(d), 3(d), 4(d), and 5(d) show, any improvements
are concentrated on the aligned cases of angles—45° andy = 0°, as for the conforming element.

It has to be concluded that the classical non-conforming element possesses more flexibility to represen
the laminates (see the figures), but it does not decrease the interpolation error independently of the mes|
alignment (see the tables), thus validating the theoretical result (6) in general.

2.3. The discontinuous finite element

Fig. 3 shows the computed volume fraction for the discontinuous element. The laminates are wider than
for the classical elements due to the scaling used in the scaled energy functional (7). As the figure and
Table 2(e) show, the results as well as the convergence behavior are independent of the mesh alignmen
We can observe nearly quadratic convergence rates in most entries, in agreement with the theoretica
prediction in Table 1.

Tables 3(e) and 4(e) exhibit slightly better convergence rates than predicted in Table 1. On the one
hand, the absolute values for the error in the deformation in Table 3(e) are slightly higher than for
the previous elements due to the wider laminates. On the other hand, the values for the error in the
deformation gradient in laminate direction in Table 4(e) are significantly smaller than before, which
are well-resolved. Finally, Table 5(e) shows that the volume fracmj&);(uh))/u(w) is computed
without error in many instances for general meshes, an observation that is in contrast with the previous
methods.

The difference in the energy between aligned and non-aligned cases is made up nearly solely by
contributions from the jump terms with coefficients, anda,, which are very small in the aligned cases.
However, if the resolution is sufficiently good € 3%), the bulk term in the energy functional contributes
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at most 5% to the total energy. This demonstrates that the discontinuous finite element method is capable
of resolving the simple laminate structure on general meshes, since the interpolation error is uniformly
small.

3. Example 2: Tartar's example with non-zero energy
This section shows the increased flexibility of the discontinuous finite element method in another test

example due to Tartar, see [22], involving a more complicated microstructure. Numerical studies on this
problem for convexified energies or generalized formulations have been performed in [22] and [4,5],

respectively.
We consider the minimization of the following energy, for= (0, 1) x (0, 1),
Ew) = /(vg —1)% 4+ 02dv + /[—%s(x L R S L (12)
2 2

It is known that the minimum of the relaxed problem is given by

~h(v—3)° -3 -7 foro<a<y
u(x,y) =

1 1\3 1 1 (13)
ﬂ(x—é) +(X—§) f0r§<)€<1

The minimum energy [23] is given by a positive value, i.e.,v(:igff(v) = %é’g’o, for A={ve
ng»“(m, g = ulse}, and minimizing sequences exhibit spatial oscillations, i.e., microstructure, on the
domain,, = (0, 3) x (0, 1).

The conforming and the discontinuous finite element methods were applied to this problem in order to
study the impact of general triangulations and given boundary data on computed minimizers. To this end,
the energy functional (12) is ‘rotated’ in the same way as in (10) for the energy functional in (9). For a
rotation ofy = +22.5°, the solution deformation has the form as shown in Fig. 5 with the microstructure
in the front part of the graphs.

The results for the computed volume fractions are presented in Figs. 6 and 7 for the conforming and the
discontinuous element, respectively. There is again significant pollution of the laminate microstructure
on parts of the domain for the conforming method in Fig. 6. The discontinuous method produces the
volume fractions in Fig. 7 with crisp laminates in the appropriate part of the domain, for all rotation
anglesy.

4. Example 3: Two-dimensional modeling for simple laminates

This example deals with a physically relevant situation modeling orthorhombic to monoclinic
transformation [19]. Its two-dimensional deformations2 — R? minimizes the energy

Sv) = / (Vo)) dr (14)
2

with energy density
$(F) = k1(Ca1— (14 1%)” + k2(Cao— D? + k3(CE — 1), (15)
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where C = FTF is the Cauchy—Green strain tensor apdk;, «», and«s are positive constants. Its
energetically favored deformation gradients are

1 0 1 0
F) = (-77 1) and F, = <+7’] 1) . (16)
The boundary condition is given by the average gradient as
v(x) = [L—- A F+AF)x forallx € 982; 17)

it is choseni = % in the simulations. The constants in the energy density are choser=ds1 and
K1 =Ky =K3= 1.

The plots in the following show the observed distances of the deformation gradmmeach element
from the favored gradient matrik;; more formally, each element is colored representing a scale from O
to 1 according to the function [19]

IFTF — F{F|)%
IFTF — F{ P17 + | FTF — F] B3
This leads to plots that visualize both the direction of the laminates as well as the observed volume
fractions.

Results for the conforming element are shown in Fig. 8. The initial guess for the deformation was
chosen as accurately as the discretization on each grid allows for the continuous deformation. Despite
the good initial guess, the finite element discretization could not maintain the structure of the deformation
while minimizing the energy in the misaligned cases in Fig. 8(d), similar to results in [19]. Even worse,
the direction of the laminates in Fig. 8(e) follows themericalgrid, entirely contradicting the physics
of the problem; this effect has also been reported in [21, Fig. 13].

Fig. 9 summarizes the results for the discontinuous element. This finite element is able to discretize
the physical laminates equally well for all anglesThe initial guesses for the results were also chosen
close to the solution. It is a known problem of direct minimization that the gradient based minimizers
risk getting stuck in local minima for non-convex problems, and this is exhibited by poor convergence
behavior and strong dependence on the initial guess. However, it is demonstrated that the finite elemen
is able to resolve the physical structure on the given uniform mesh.

Finally, we notice that in the well-aligned cases, the conforming element is able to find an energy
minimum corresponding to narrower laminates than the discontinuous element. This demonstrates of
course that the latter element got stuck in some local minimum. However, for the approximation of the
most important quantities like the volume fraction in some relevant subset of the domain, it is more
important to be able to guarantee that the relevant physics (direction of laminates and the proportion
of phases) are represented correctly; this is not satisfied by the conforming element in general, and the
narrower laminates do not provide any benefit.

Y(F) = (18)

5. Conclusions

Results for detailed case studies for relevant prototype problems for the simulation of crystalline
microstructure have been presented for three finite elements: conforming, classical non-conforming, and
discontinuous finite elements. The quality of both the conforming and the classical non-conforming
elements are seen to depend on the alignment of the numerical grid with the physical laminates,
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Fig. 3. Prototype problem, computed volume fractions for the discontinuous eIemenhusiég, (a)y = —45,
(b)y =—-225°(c) y =0°, (d)y =225°, (e)y =45°.



172 M.K. Gobbert, A. Prohl / Applied Numerical Mathematics 36 (2001) 155-178

Fig. 4. Prototype problem, computed deformatiomfes 22.5° usingh = %3, (a) for the conforming element with
az = 1000, (b) for the non-conforming element with = 1000, (c) for the discontinuous element.

(@) (b)

Fig. 5. Tartar's example, computed deformationfoe 22.5° usingh = 1—16, (a) for the conforming element with
az = 1000, (b) for the discontinuous element.
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Fig. 9. Two-dimensional model, computed volume fractions for the discontinuous element }us&ngz,
@y =-45,(b)y =—-225° (c)y =0°, (d)y =225°, (e)y =45°.
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with decreasing quality on general triangulations. The relaxation of the enforcement of the boundary
conditions alone in the case of the classical elements did not improve their convergence behavior. In
contrast, the results of the case study for the discontinuous element show optimal convergence behavio
on general meshes, independent of the mesh alignment. All three elements studied in this paper represel
the macroscopic deformation quite well, but only the discontinuous element represents the crucial
microscopic quantities like the deformation gradient in laminate direction and the coefficient of the
corresponding Young measure adequately. Also for the more complex microstructures in Sections 3
and 4, the discontinuous element shows superior performance compared to the classical elements. Thes
computational results are in agreement with analytic results contained in [11].
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