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We present a parallel matrix-free implicit finite volume scheme for the solution of unsteady
three-dimensional advection-diffusion-reaction equations with smooth and Dirac-Delta source
terms. The scheme is formally second order in space and a Newton-Krylov method is employed
for the appearing nonlinear systems in the implicit time integration. The matrix-vector product
required is hardcoded without any approximations, obtaining a matrix-free method that needs
little storage and is well suited for parallel implementation. We describe the matrix-free imple-
mentation of the method in detail and give numerical evidence of its second order convergence
in the presence of smooth source terms. For non-smooth source terms the convergence order
drops to one half. Furthermore, we demonstrate the method’s applicability for the long time
simulation of calcium flow in heart cells and show its parallel scaling.
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I INTRODUCTION

Advection-diffusion-reaction systems occur in a wide variety of applications, as for instance heat
transfer or transport-chemistry problems. Long-time simulations of such real-life applications
often require implicit methods on very fine computational grids, to resolve the desired accuracy,
especially in three dimensions. When performing such simulations with methods storing system
matrices, the availability of memory becomes an issue already on relatively coarse meshes. One
way to address this problem is the use of parallel methods, which distribute the workload
among several CPUs and use the memory associated with these CPUs to solve larger systems.
If this approach does not provide enough memory to obtain the desired resolution, parallel
matrix-free methods are an excellent choice, since in general most of the memory is used to
store system matrices. In addition, matrix-free methods require less communication compared
to classical schemes, thus these are more suited for use on parallel architectures and allow for
better scalability.

To solve linear systems most matrix-free methods use Krylov subspace methods, which
only require the results of matrix-vector products in every iteration. If these can be provided
without storing the matrix, this leads to significant savings of memory and computations on
high resolution meshes become feasible. A prominent example are Jacobian-free Newton Krylov
(JFNK) methods, which approximate the Jacobian matrix by finite differences via function
evaluations [1]. In the following we present another type of matrix-free Newton-Krylov method,
which provides the matrix-vector products with the exact Jacobian by hardcoding the product.
This method is thus specific to a given class of equations and grids and particularly suitable
for computations on structured grids.

0Correspondence to: Stefan Kopecz, Institute of Mathematics, University of Kassel, Heinrich-Plett-Str. 40,
34132 Kassel, Germany (e-mail: kopecz@mathematik.uni-kassel.de)
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In [2] (see also [3] for details) a matrix-free Newton-Krylov method for the simulation of
calcium flow in heart cells was presented. The underlying model of calcium flow is given by
a system of three coupled diffusion-reaction equations, in which the occurring source terms
can be divided into linear and nonlinear parts, as well as point sources. Due to the elongated
shape of a heart cell and the focus of the work on physiological parameter values, a rectangular
domain with a structured grid is a natural choice. The method is based on a finite element
discretization and implemented in a matrix-free manner. Good parallel scalability of the parallel
implementation was demonstrated in [2]. The convergence of the finite element method in
presence of measure valued source terms, as they occur in the calcium model, was rigorously
shown in [4], and numerical results agree well with the theoretical predictions.

In this paper we show the performance of a formally second order finite volume scheme
in the framework of the matrix-free method from [2]. Since we intend to consider advection
dominated systems in the future, this is done for the more general class of equation systems of
advection-diffusion-reaction (ADR) type. For this type of problems finite volume methods are
a natural choice as opposed to finite element methods which would need additional stabilization
terms [5]. Additionally, we deal with point sources generated by Dirac delta distributions, as
they occur in the calcium flow equations. There is very little convergence theory in this case.
In [6], convergence of a finite volume method is shown for hyperbolic scalar conservation laws
with point sources, but no order of convergence is proved.

In the absence of a general convergence theory we demonstrate convergence of the method
numerically and compare the results to those obtained by the finite element method from [2],
for which a rigorous convergence theory is available. To demonstrate the method’s power
in real life applications, we show results of long-time simulations of calcium flow in heart
cells, the motivating application problem from [2]. Furthermore, a parallel performance study
demonstrates the good scalability of the parallel implementation and we show that the overall
performance of the finite volume scheme is comparable to the finite element method with
comparable errors and runtimes. As Krylov subspace method, BiCGSTAB is employed.

The outline of this paper is as follows. Section II introduces the system of ADR equations
and gives a short description of the equations modeling the calcium flow in heart cells as well as
the test cases that will be used to demonstrate the convergence of numerical method. In Sec-
tion III we derive the finite volume method and describe its parallel matrix-free implementation
in detail. In Section IV various convergence studies are presented to give numerical evidence
of the convergence of the finite volume scheme. This includes test cases with smooth and non-
smooth source terms. Whenever possible, the results are compared to those obtained by the
finite-element scheme of [2]. Section V illustrates the applicability of the method to long time
simulations of calcium in heart cells and compares the finite volume results to those obtained
by the finite element method. Finally, the scalability of the scheme in parallel computations
will be presented in Section VI.

II GOVERING EQUATIONS

We consider the three-dimensional system of advection-diffusion-reaction equations

u
(i)
t −∇ · (D(i)∇u(i) − u(i)β(i)) + a(i)u(i) = q(i)(u(1), . . . , u(ns),x, t) (2.1)

of i = 1, . . . , ns species with u(i) = u(i)(x, t) representing functions of space x ∈ Ω ⊂ R3

and time 0 ≤ t ≤ tfin. Without loss of generality, the components of the constant ve-
locity vectors β(i) ∈ R3 are non-negative. The entries of the diffusive diagonal matrices
D(i) = diag (D(i)

11 , D
(i)
22 , D

(i)
33 ) ∈ R3×3 are positive constants, and the reactive parameter a(i) ≥ 0

is a constant as well. The source terms q(i) represent different types of sources. In the follow-
ing we consider source terms which depend on space and time solely, nonlinear reaction terms
depending on u(1), . . . , u(ns), and point sources containing Dirac delta distributions.
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To describe the problem completely initial conditions u(i)|t=0 = u
(i)
ini as well as boundary

conditions on the domain’s boundary ∂Ω are necessary. We employ homogeneous Neumann
boundary conditions D(i)∇u(i) · n = 0 for i = 1, . . . , ns, in which n is the outward pointing
normal vector on ∂Ω.

II.A Calcium Flow Model

Within the general system (2.1) a model for the calcium flow in heart cells is included, see [2]
and the references therein for details. This model consists of ns = 3 equations corresponding to
calcium (i = 1), an endogenous calcium buffer (i = 2) and a fluorescent indicator dye (i = 3).
It is obtained by neglecting advective effects, i.e. β(i) = 0 for i = 1, 2, 3, and setting

q(i)(u(1), u(2), u(3)) = r(i)(u(1), u(2), u(3)) + (−Jpump(u(1)) + Jleak + JSR(u(1),x, t))δi1.

The reaction terms r(i) are nonlinear functions of the different species and couple the three
equations. Terms belonging only to the first equation are multiplied with the Kronecker delta
function δi1. These are the nonlinear drain term Jpump, the constant balance term Jleak, and
the key of the model in JSR. This term, which is given by

JSR(u(1),x, t) =
∑

x̂∈Ωs

σSx̂(u(1), t)δ(x− x̂),

models the release of calcium into the cell at special locations called calcium release units
(CRUs). The indicator function Sx̂ determines whether a CRU is open or not, σ controls the
amount of calcium injected into the cell and Ωs represents the set of all CRUs. Furthermore,
δ(x − x̂) denotes a Dirac delta distribution for a CRU located in x̂. Thus, JSR models the
superposition of point sources at the locations of all CRUs. A complete list of the model’s
parameter values is given in Table 2.1.

II.B Scalar Test Cases

In order to demonstrate the convergence of the method presented in Section III we will consider
a number of test cases, which are simplifications of the system (2.1) or the calcium model from
Section II.A, respectively.

II.B.1 ADR Equation with Smooth and Non-Smooth Source Term

The first test case is the unsteady scalar ADR equation (with superscript dropped)

ut −∇ · (D∇u) + β · ∇u+ au = f.

The domain and diffusive matrix D = D(1) are chosen as for the calcium model, see Table 2.1.
The velocity is set to β = (0.1, 0.2, 0.3)T and the reactive parameter is a = 0.1. Thus, advection,
diffusion and reaction are of equal order of magnitude.

With respect to the right hand side, we consider a smooth and a non-smooth f . In the first
case, the initial condition uini and right hand side f are chosen such that

u(x, y, z, t) =
1 + cos(λxx)e−Dxλ2

xt

2
1 + cos(λyy)e−Dyλ2

yt

2
1 + cos(λzz)e−Dzλ2

zt

2
(2.2)

with λx = λy = π/6.4 and λz = π/32 is the true solution. To show the method’s convergence
even in the presence of point sources, we also consider

f = σSx̂(t)δ(x− x̂),
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Table 2.1: Parameters of the calcium flow model with ns = 3 species. The concentration unit
M is short for mol/L (moles per liter).

Domains in space and time
Ω = (−6.4, 6.4)× (−6.4, 6.4)× (−32.0, 32.0) in units of µm
0 ≤ t ≤ tfin with tfin = 1,000 in units of ms

Advection-diffusion-reaction equation
D(1) = diag(0.15, 0.15, 0.30) µm2 / ms
D(2) = diag(0.01, 0.01, 0.02) µm2 / ms
D(3) = diag(0.00, 0.00, 0.00) µm2 / ms
β(i) = (0, 0, 0), a(i) = 0, f (i) ≡ 0 for all i
u

(1)
ini = 0.1 µM, u

(2)
ini = 45.9184 µM, u

(3)
ini = 111.8182 µM

CRU coefficients
∆xs = 0.8 µm, ∆ys = 0.8 µm, ∆zs = 2.0 µm
σ = 110.0 µM µm3, F = 96,485.3 C / mol (Faraday constant)
Pmax = 0.3 / ms, Kprob = 2.0 µM, nprob = 4.0
∆ts = 1.0 ms, topen = 5.0 ms, tclosed = 100.0 ms

Reaction terms
k+
1 = 0.08 / (µM ms), k−1 = 0.09 / ms, u1 = 50.0 µM
k+
2 = 0.10 / (µM ms), k−2 = 0.10 / ms, u2 = 123.0 µM

Pump and leak terms
Vpump = 4.0 µM / ms, Kpump = 0.184 µM, npump = 4
Jleak = 0.320968365152510 µM / ms

with σ and uini = u
(1)
ini chosen as in Table 2.1. The intention is to simplify the calcium problem

by modelling a single CRU in the center of the domain, which opens at time t = 1 and remains
open ever after. Therefore, we set x̂ = (0, 0, 0) and

Sx̂(t) =

{
0, t < 1,
1, t ≥ 1.

Numerical results with the smooth as well as the non-smooth source are shown in Section IV.B.

II.B.2 Diffusion with Homogeneous and Non-Smooth Source Term

To be able to compare finite volume results to those computed with the finite element scheme
from [2], we consider the test case from Section II.B.1 without advection (and reaction). This
means we set β = 0 and a = 0 and obtain

ut −∇ · (D∇u) = f.

Again, we allow for the two different source terms, but due to the absence of advection and
reaction the smooth source term, which is chosen such that the true solution is given by (2.2),
becomes f = 0. See Section IV.A for the numerical results.

II.B.3 Pure Advection

Finally, we consider the linear advection equation

ut + β · ∇u = 0,
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Figure 3.1: Regular mesh (left) and dual mesh (right).

with β = (1, 1, 1)T on the domain Ω = (0, 10) × (0, 10) × (0, 10). Since this is a hyperbolic
problem, we only need to specify boundary conditions on the inflow portion ∂Ωin ⊂ ∂Ω of the
boundary. In this test case ∂Ωin is given by the intersection of ∂Ω with the (x,y), (x,z) and
(y,z) hyperplanes and we assume homogeneous Neumann boundary conditions on ∂Ωin. The
problem’s true solution is given by

u(x, y, z, t) = exp
(
−5
(
(x− β1t− 2)2 + (y − β2t− 2)2 + (z − β3t− 2)2

))
,

when starting with initial data uini(x, y, z) = u(x, y, z, 0). The numerical results of this test
are shown in Section IV.C.

III NUMERICAL METHOD

In this section we describe the numerical method for the solution of the system of ADR equa-
tions (2.1). In Section III.A the finite volume space discretization is explained. This also
includes a discussion of the treatment of Dirac delta sources. A brief description of the time
integration and the matrix-free method is given in Section III.B and the matrix-free implemen-
tation of the method is presented in detail in III.C. Finally, Section III.D discusses the parallel
implementation of the method.

III.A Space Discretization

To derive the finite volume discretization, let Th = {K1, . . . ,KM} be a mesh such that Ω =⋃M
l=1Kl. Each Kl ∈ Th is an open subset of Ω and referred to as cell or control volume.

Integration of (2.1) over an arbitrary cell Kl ∈ Th and application of the divergence theorem
yields

d

dt

∫
Kl

u(i) dx−
∫

∂Kl

(D(i)∇u(i) − u(i)β(i)) · nl ds +
∫

Kl

a(i)u(i) dx =
∫

Kl

q(i) dx, (3.1)

where ∂Kl denotes the boundary of Kl and nl its outward normal. This is the equation we are
actually trying to solve, since it imposes less regularity on the solution. In particular, solutions
with discontinuities are now admissible. Denoting the volume of Kl by |Kl|, the spatial mean
value of u(i) over Kl is given by

ū
(i)
l (t) =

1
|Kl|

∫
Kl

u(i)(x, t) dx.
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Figure 3.2: Control volume

With this notation, (3.1) can be rewritten as

d

dt
ū

(i)
l − 1

|Kl|

∫
∂Kl

(D(i)∇u(i) − u(i)β(i)) · nl ds + a(i)ū
(i)
l =

1
|Kl|

∫
Kl

q(i) dx. (3.2)

This is a system of ordinary differential equations for the temporal evolution of the mean
values ū(i)

l . In this regard, the crucial part is the computation of the boundary fluxes in terms
of neighboring mean values.

In the following we only consider brick shaped domains. Thus, it is convenient to discuss
the flux approximation in a one-dimensional context and without species index i, which will
then be generalized to higher dimensions. Therefore, we condsider Ω = (Xmin, Xmax) and the
mesh

Th =
{
Kl|Kl = (xl, xl+1), l = 1, . . . ,M

}
,

with x1 = Xmin and xM+1 = Xmax. The center of a cell Kl is given by ml = (1/2)(xl + xl+1).
Since the superscripts (i), the right hand side and the reactive term, are of no importance for
the discussion of the flux approximation, we drop them and (3.2) can be written as

d

dt
ūl −

1
∆xl

(du′(xl+1)− βu(xl+1)− (du′(xl)− βu(xl))) = 0,

with ∆xl = xl+1 − xl.
In order to approximate the advective flux βu(xl+1) by the mean values ūl with l = 1, . . . ,M

we introduce a numerical flux function H = H(û+
l , û

−
l+1). The values û+

l and û−l+1 are approxi-
mations to the unknown values of u on either side of xl+1. Assuming that β ≥ 0 as before, the
upwind flux function for the advective flux is given by

Hupw(û+
l , û

−
l+1) = βû+

l . (3.3)

It respects the direction of velocity and thus avoids instabilities in purely advective situations.
Assuming a constant distribution of u in Kl and Kl+1 leads to the definitions û+

l = ūl and
û−l+1 = ūl+1. Using these values as input of the upwind flux function, results in a method of first
order convergence. The order can be increased using a ENO or WENO approach and providing
input data based on a linear distribution of u within the cells. See [7] and the literature cited
therein for details on WENO schemes. Since we consider linear advection there is no difference
between ENO and WENO and the input for the flux function is given by

û+
l = ūl +

ūl − ūl−1

ml −ml−1
(xl+1 −ml). (3.4)
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The choice of this particular linear distribution comes from the upwind idea that no information
to the right of xl+1 should be used in the flux computation. Note that the value of û−l+1 has no
influence when using the upwind flux function (3.3).

To approximate the diffusive flux du′(xl+1), we use a central difference of the neighboring
mean values and define the diffusive flux function as

Hdiff (ūl, ūl+1) = d
ūl+1 − ūl

ml+1 −ml
.

In this case, the mean values on either side of xl+1 are sufficient to obtain a scheme of second
order.

So far, we have omitted the discussion of the homogeneous Neumann boundary conditions,
which become du′(x1) = du′(xM+1) = 0 in this one-dimensional context. In particular, the
condition is equivalent to u′(x1) = u′(xM+1) = 0. The incorporation of this boundary condition
is done by setting Hdiff (ū0, ū1) = Hdiff (ūM , ūM+1) = 0 (or ū0 = ū1 and ūM+1 = ūM ,
respectively). The situation becomes more delicate for the advective flux, where two critical
situations occur. These are the computations of Hupw(û+

0 , û
−
1 ) and Hupw(û+

1 , û
−
2 ), for which

it is unclear how to choose the linear distribution in K1, since no Dirichlet data is available
at the boundary. The simple remedy which we are pursuing here, is the assumption of a
constant distribution in K1 and thus setting û+

1 = ū1 in Hupw(û+
1 , û

−
2 ). Furthermore, we set

û+
0 = û−1 = ū1 in Hupw(û+

0 , û
−
1 ) to incorporate the boundary condition u′(x1) = 0. Note that

there are no difficulties with Hupw(û+
M , û−M+1), since û+

M can be computed from (3.4) without
any problems and the chosen value of û−M+1 has no further influence.

Now, we extend this approach to three dimensions and define the mesh which is used for
the discretization. In [2] a regular mesh Ωh ⊂ Ω with constant mesh spacings ∆x, ∆y and
∆z was used for the finite element space discretization. Here we employ the corresponding
dual mesh Th, which is constructed by connecting all inner nodes of Ωh with lines parallel
to the coordinate axes and extending these lines in a straight manner to the boundary. The
dual mesh is a rectilinear mesh and each inner node of Ωh is the center of a cell of Th with
volume ∆x∆y∆z. Furthermore, the volume of a cell is reduced to ∆x∆y∆z/2, ∆x∆y∆z/4
or ∆x∆y∆z/8, whether this cell has a common face, edge or corner with the boundary ∂Ω.
The exterior view on a typical regular mesh and the corresponding dual mesh is depicted in
Figure 3.1. By construction the number of nodes of Ωh equals the number of cells in Th. In
the following we assume that Th consists of M = MxMyMz control volumes, with Mx, My and
Mz denoting the number of cells in each direction and introduce the enumeration scheme

l = i+ (j − 1)Mx + (k − 1)MxMy (3.5)

for 1 ≤ i ≤Mx, 1 ≤ j ≤My and 1 ≤ k ≤Mz, which is indicated in Figure 3.2. Thus, a control
volume Kl has the neighbors Kl−1 and Kl+1 in x-direction, Kl−Mx and Kl+Mx in y-direction
and Kl−MxMy and Kl+MxMy in z-direction.

For a given control volume Kl = (xL, xR) × (yL, yR) × (zL, zR) ∈ Th with spacings ∆xl =
xR − xL,∆yl = yR − yL,∆zl = zR − zL the boundary fluxes from (3.2) can be written as∫

∂Kl

(D∇u− uβ) · nl ds

=
∫ zR

zL

∫ yR

yL

(d11∂xu− β1u)|x=xR
− (d11∂xu− β1u)|x=xL

dydz

+
∫ zR

zL

∫ xR

xL

(d22∂yu− β2u)|y=yR
− (d22∂yu− β2u)|y=yL

dxdz

+
∫ yR

yL

∫ xR

xL

(d33∂zu− β3u)|z=zR
− (d33∂zu− β3u)|z=zL

dxdy.
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Here we exploited the fact, that the faces of Kl are parallel to the planes defined by the
coordinate axes and thus only one entry of the corresponding normal vectors is non-zero. Note
also that the superscripts (i) were dropped and that the above equation is valid for one of the
n species of the system. Using the midpoint rule and setting

Ha,j(ûL, ûR) = βj ûL, Hd,j(ūL, ūR) = djj
ūR − ūL

|mR −mL|
, (3.6)

with mL and mR denoting the centers of the cells belonging to ūL and ūR, the boundary fluxes
can be approximated as∫

∂Kl

(D∇u− uβ) · nl ds

≈ ∆yl∆zl

(
Hd,1(ūl, ūl+1)−Ha,1(û

1,+
l , û1,−

l+1)− (Hd,1(ūl−1, ūl)−Ha,1(û
1,+
l−1, û

1,−
l ))

)
+ ∆xl∆zl

(
Hd,2(ūl, ūl+Mx)−Ha,2(û

2,+
l , û2,−

l+Mx
)− (Hd,2(ūl−Mx , ūl)−Ha,2(û

2,+
l−Mx

, û2,−
l ))

)
+∆xl∆yl

(
Hd,3(ūl, ūl+MxMy )−Ha,3(û

3,+
l , û3,−

l+MxMy
)− (Hd,3(ūl−MxMy , ūl)−Ha,3(û

3,+
l−MxMy

, û3,−
l ))

)
,

where the enumeration scheme (3.5) was used to describe the location of the input data of the
flux functions. The notation ûj,±

l indicates that the approximation to the value of u lives in
Kl and belongs to the face which is between Kl and the element which lies in positive (+) or
negative (−) direction of the j-th coordinate. The computation of ûj,±

α and the treatment of
boundary conditions can be carried out as in the one-dimensional case.

The last step of the discretization is the treatment of the volume integral on the right hand
side of (3.2). This can be approximated sufficiently using the midpoint rule∫

Kl

q(x, t, u(1), . . . , u(n)) dx ≈ |Kl| q(ml, t, ū
(1)
l , . . . , ū

(ns)
l ),

with ml denoting the center of Kl. In the special case of a Dirac delta function as source term,
i.e. q(x) = δ(x − x̂), the volume integral can be computed exactly. The Dirac delta function
is defined by requiring δ(x − x̂) = 0 for all x 6= x̂ and

∫
R3 ψ(x)δ(x − x̂) dx = ψ(x̂) for any

function ψ ∈ C0(Ω). Thus, we obtain∫
Kl

q(x) dx =
∫

Kl

1 δ(x− x̂) dx =

{
1, x̂ ∈ Kl

0, x̂ 6∈ Kl.

This completes the description of the finite volume discretization and after division by the
local volume |Kl| = ∆xl∆yl∆zl, (3.2) can now be written as

d

dt
ūl −

1
∆xl

(
Hd,1(ūl, ūl+1)−Ha,1(û

1,+
l , û1,−

l+1)− (Hd,1(ūl−1, ūl)−Ha,1(û
1,+
l−1, û

1,−
l ))

)
− 1

∆yl

(
Hd,2(ūl, ūl+Mx)−Ha,2(û

2,+
l , û2,−

l+Mx
)− (Hd,2(ūl−Mx , ūl)−Ha,2(û

2,+
l−Mx

, û2,−
l ))

)
− 1

∆zl

(
Hd,3(ūl, ūl+MxMy

)−Ha,3(û
3,+
l , û3,−

l+MxMy
)− (Hd,3(ūl−MxMy , ūl)−Ha,3(û

3,+
l−MxMy

, û3,−
l ))

)
+ aūl = q(ml, t, ū

(1)
l , . . . , ū

(ns)
l ). (3.7)

Setting

ū(i) = (ū(i)
1 , . . . , ū

(i)
M )T , q(i) = (q(i)1 , . . . , q

(i)
M )T , q

(i)
l = q(i)(ml, t, ū

(1)
l , . . . , ū

(ns)
l ), (3.8)
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this reads
d

dt
ū(i) = (H(i)

diff −H(i)
adv − a(i)I)ū(i) + q(i)(ū(1), . . . , ū(ns)), (3.9)

where I ∈ RM×M is the identity matrix and the flux matrices Hdiff ,Hadv ∈ RM×M will be
derived in Section III.C. Their derivation is the key step towards a matrix-free implementation
of the method.

Finally, collecting all ns vectors ū(i) in Ū ∈ RnsM the system (3.9) can be written as

d

dt
Ū(t) = fode(t, Ū(t)) (3.10)

with fode = (f (1), . . . , f (ns))T ∈ RnsM and components

f (i) = A(i)ū(i) + q(i)(ū(1), . . . , ū(ns)), (3.11)

with
A(i) = H(i)

diff −H(i)
adv − a(i)I.

III.B Time Integration and Matrix-Free Krylov Subspace Method

To solve the ODE system (3.10) we use the numerical differentiation formulas (NDFk) with
variable order 1 ≤ k ≤ 5 and adaptively chosen time step size, see [8, 9] for details. The time
step and order selection is based on controlling the estimated truncation error [8] to tolerances
of εode

rel and εode
abs.

This implicit method demands the solution of a nonlinear system Fnewt(U) = 0 in each
time step. For its solution a matrix-free method is applied, which means that results of the
Jacobian-vector products needed in the Krylov subspace method are provided directly without
storing the Jacobian. This is possible since the Jacobian Jnewt has the form

Jnewt(t, Ū(t)) = I− cJode(t, Ū(t)), (3.12)

with the identity I ∈ RnsM×nsM , the Jacobian Jode of fode, a constant c ∈ R, and we are able
to compute all terms of (3.7) analytically. The purpose of this approach is to save memory
and hence to allow for computations on very fine meshes. In addition, the usage of the exact
Jacobian should lead to quadratic convergence of the Newton method. The iteration is stopped
if ‖Fnewt(U)‖ < εnewt.

From (3.11) we see that the Jacobian Jode has the structure

Jode =

A(1)

. . .
A(n)

+


∂q(1)

∂ū(1) . . . ∂q(1)

∂ū(n)

...
. . .

...
∂q(n)

∂ū(1) . . . ∂q(n)

∂ū(n)


and due to (3.8) each of the blocks ∂q(i)

∂ū(j) is a diagonal matrix. Thus, the matrix-free imple-
mentation of the blocks A(i), which contain the advective and diffusive flux matrices, is the
essential part of a matrix-free implementation of the Jacobian Jnewt.

The Krylov subspace method used to obtain the results presented in the following sections is
BiCGSTAB. Numerical experiments have shown that this method is at preferable over GMRES
as well as to QMR, which has been used with the finite element method in [2]. We stop the
iteration if the residual r satisfies the condition ‖r‖2 < εlin ‖b‖2 with b denoting the right
hand side of the linear system and a given tolerance εlin. For an overview of Krylov subspace
methods see [10].
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III.C Matrix-free Implementation of Diffusive and Advective Flux Matrices

We start with the derivation of H(i)
diff for some i = 1, . . . , ns. Again the index (i) is dropped for

clarity. From (3.7) and (3.6) we see, that multiplication of Hdiff (l, :), the l-th row of Hdiff ,
with ū gives

Hdiff (l, :)ū =
1

∆xl
(Hd,1(ūl, ūl+1)−Hd,1(ūl−1, ūl))+

1
∆yl

(Hd,2(ūl, ūl+Mx)−Hd,2(ūl−Mx , ūl))

+
1

∆zl
(Hd,3(ūl, ūl+MxMy

)−Hd,3(ūl−MxMy
, ūl))

=
d11

∆xl

(
ūl+1 − ūl

|ml+1 −ml|
− ūl − ūl−1

|ml −ml−1|

)
+
d22

∆yl

(
ūl+Mx

− ūl

|ml+Mx −ml|
− ūl − ūl−Mx

|ml −ml−Mx |

)
+
d33

∆zl

(
ūl+MxMy − ūl

|ml+MxMy
−ml|

−
ūl − ūl−MxMy

|ml −ml−MxMy
|

)
. (3.13)

Since in most cases the distances between cell centers and the mesh widths ∆xl, ∆yl and ∆zl

are equal to the mesh widths ∆x, ∆y and ∆z of the regular mesh Ωh, it is convenient to express
the matrix entries in terms of ∆x, ∆y and ∆z. For an inner control volume whose neighbors
have no common boundary with the domain, i.e.

Kl ∈
{
Kl|l = i+ (j− 1)Mx + (k− 1)MxMy, 3 ≤ i ≤Mx − 2, 3 ≤ j ≤My − 2, 3 ≤ k ≤Mz − 2

}
,

equation (3.13) leads to the classic 7-point finite difference stencil

d33

∆z2
ūl−MxMy +

d22

∆y2
ūl−Mx +

d11

∆x2
ūl−1 − 2

(
d11

∆x2
+

d22

∆y2
+

d33

∆z2

)
ūl

+
d11

∆x2
ūl+1 +

d22

∆y2
ūl+Mx

+
d33

∆z2
ūl+MxMy

,

since the local mesh widths and the distance between cell centers are of size ∆x, ∆y or ∆z.
Thus, the only non-zero entries in the l-th row of H(i)

diff are

(h(i)
diff )l,l = −2

(
d
(i)
11

∆x2
+
d
(i)
22

∆y2
+
d
(i)
33

∆z2

)
, (h(i)

diff )l,l−1 = (h(i)
diff )l,l+1 =

d
(i)
11

∆x2
,

(h(i)
diff )l,l−Mx = (h(i)

diff )l,l+Mx =
d
(i)
22

∆y2
, (h(i)

diff )l,l−MxMy = (h(i)
diff )l,l+MxMy =

d
(i)
33

∆z2
.

If for instance Kl−1 has a common boundary with the domain, the distance between the cell
centers reduces to |ml − ml−1| = (3/4)∆x, which changes the entries belonging to ū

(i)
l and

ū
(i)
l−1 to

(h(i)
diff )l,l = −

(
7
3
d
(i)
11

∆x2
+

2d(i)
22

∆y2
+

2d(i)
33

∆z2

)
, (h(i)

diff )l,l−1 =
4
3
d
(i)
11

∆x2
.

If evenKl has a common boundary with ∂Ω, boundary conditions have to be taken into account.

If for instance Kl−1 does not exist, the term d
(i)
11

∆xl

ul−ul−1
|ml−ml−1| vanishes due to the treatment of

boundary conditions described in Section III.A. This leads to

(h(i)
diff )l,l = −

(
8
3
d
(i)
11

∆x2
+ 2

d
(i)
22

∆y
+ 2

d
(i)
33

∆z2

)
, (h(i)

diff )l,l−1 = 0,

(h(i)
diff )l,l+1 =

8
3
d
(i)
11

∆x2
.
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Similar modifications are required if one of the other neighbors of Kl has a common boundary
with the domain or if Kl is a boundary cell at another boundary. Particulary, near edges and
corners of the domain several of these changes have to be considered.

To derive the advective flux matrix, we proceed as in the diffusive case ((i) abandoned for
clearness) and obtain

Hadv(l, :)ū =
1

∆xl
(Ha,1(û

1,+
l−1, û

1,−
l )−Ha,1(û

1,+
l , û1,−

l+1))

+
1

∆yl
(Ha,2(û

2,+
l−Mx

, û2,−
l )−Ha,2(û

2,+
l , û2,−

l+Mx
))

+
1

∆zl
(Ha,3(û

3,+
l−MxMy

, û3,−
l )−Ha,3(û

3,+
l , û3,−

l+MxMy
))

=
β1

∆xl
(û1,+

l−1 − û1,+
l ) +

β2

∆yl
(û2,+

l−Mx
− û2,+

l ) +
β3

∆zl
(û3,+

l−MxMy
− û3,+

l ), (3.14)

in which the flux function data for the particular directions is given by

û1,+
l = ūl −

∆xl

2
ūl − ūl−1

|ml −ml−1|
,

û2,+
l = ūl −

∆yl

2
ūl − ūl−Mx

|ml −ml−Mx
|
,

û3,+
l = ūl −

∆zl

2
ūl − ūl−MxMy∣∣ml −ml−MxMy

∣∣ .
In the general case, if

Kl ∈
{
Kl|l = i+ (j − 1)Mx + (k− 1)MxMy, 4 ≤ i ≤Mx − 1, 4 ≤ i ≤My − 1, 4 ≤ i ≤Mz − 1

}
,

i.e. |Kl| = ∆x∆y∆z, (3.14) can be written as

H(i)
adv(l, :)ū(i) = −1

2
β

(i)
3

∆z
ūl−2MxMy −

1
2
β

(i)
2

∆y
ūl−2Mx −

1
2
β

(i)
1

∆x
ūl−2

+ 2
β

(i)
3

∆z
ūl−MxMy + 2

β
(i)
2

∆y
ūl−Mx + 2

β
(i)
1

∆x
ūl−1 −

3
2

(
β

(i)
1

∆x
+
β

(i)
2

∆y
+
β

(i)
3

∆z

)
ūl.

This gives the matrix coefficients

(h(i)
adv)l,l = −3

2

(
β

(i)
1

∆x
+
β

(i)
2

∆y
+
β

(i)
3

∆z

)
,

(h(i)
adv)l,l−2 = −1

2
β

(i)
1

∆x
, (h(i)

adv)l,l−1 = 2
β

(i)
1

∆x
,

(h(i)
adv)l,l−2Mx = −1

2
β

(i)
2

∆y
, (h(i)

adv)l,l−Mx = 2
β

(i)
2

∆y
,

(h(i)
adv)l,l−2MxMy = −1

2
β

(i)
3

∆z
, (h(i)

adv)l,l−MxMy = 2
β

(i)
3

∆z
.

Now we discuss some exemplary exceptions. If Kl doesn’t have a right neighbor, i.e. Kl+1

doesn’t exist, but the other possible neighbors exist, then ∆xl = (1/2)∆x and |ml −ml−1| =
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(3/4)∆x, which leads to

(h(i)
adv)l,l = −1

6

(
16
β

(i)
1

∆x
+ 9

β
(i)
2

∆y
+ 9

β
(i)
3

∆z

)
,

(h(i)
adv)l,l−1 =

11
3
β

(i)
1

∆x
, (h(i)

adv)l,l−2 = −β
(i)
1

∆x
,

while the remaining matrix entries are left unchanged. On the other side, if Kl−2 has a common
boundary with the domain, then |ml−1 −ml−2| = (3/4)∆x and so we have

(h(i)
adv)l,l = −3

2

(
β

(i)
1

∆x
+
β

(i)
2

∆y
+
β

(i)
3

∆z

)
,

(h(i)
adv)l,l−1 =

13
6
β

(i)
1

∆x
, (h(i)

adv)l,l−2 = −2
3
β

(i)
1

∆x
.

In the case that Kl−2 does not exist, since Kl−1 has a common boundary with the domain, we
have to take the boundary condition into account. As discussed above we set û1,+

l−1 = ūl−1 and
get

(h(i)
adv)l,l = −1

6

(
10
β

(i)
1

∆x
+ 9

β
(i)
2

∆y
+ 9

β
(i)
3

∆z

)
,

(h(i)
adv)l,l−1 =

5
3
β

(i)
1

∆x
, (h(i)

adv)l,l−2 = 0.

Finally, ifKl has a common boundary with the domain on the left, we have |Kl| = (1/2)∆x∆y∆z
and û1,−

l = ûl−1 = ūl, which leads to

(h(i)
adv)l,l = −3

(
β

(i)
2

∆y
+
β

(i)
3

∆z

)
,

(h(i)
adv)l,l−2 = 0, (h(i)

adv)l,l−1 = 0.

Considering these exceptional cases additionally in the y- and z-direction, completes the deriva-
tion of the matrix structure.

In order to use QMR as linear solver the transpose (Jnewt)T must be available. Numerical
experiments have shown that there is no benefit from using QMR, since for instance BiCGSTAB
and GMRES are faster solvers which do not require matrix-vector products with the transpose.
Hence, there is no benefit from an implementation of the matrix-vector product with (Jnewt)T .

III.D Parallel Implementation

The code used to perform the parallel computations presented in this paper is an extension
of the one described in [2], which uses MPI for parallel communications. Please note that the
results in this paper were computed on a newer cluster than used in [2].

In order to distribute the vector of unknowns (3.8) among P processes, we split the mesh in
z-direction and distribute the unknowns accordingly. In the following, we call a submesh of size
MxMy with only one cell in z-direction a slice. Given a mesh with Mz cells in z-direction, each
of the P parallel processes contains the data of a submesh of size MxMy(Mz/P ), i.e. Mz/P
slices of the original mesh.

To compute the matrix-vector products needed in the Krylov subspace method, communi-
cation between neighboring processes is required. Denoting the portion of ū which is available
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on process 0 ≤ p < P by ūp = (ū(p−1)MxMy(Mz/P )+1, . . . , ūpMxMy(Mz/P ))T , we see from Sec-
tion III.C that the computation of (Hdiff ū)p can be accomplished locally on process p if and
only if the first slice of ūp+1 and the last slice of ūp−1 are available besides ūp.

Regarding the advective matrix, Section III.C shows that the computation of (Hadvū)p

needs the last two slices of ūp−1, but none of ūp+1. Thus, one additional slice if needed from
process p− 1.

On interconnect networks in clusters, latency is a much more significant issue than band-
width. Therefore, the cost associated with communicating two slices from process p − 1 and
one slice from process p+1 in the finite volume method will not measurably change the parallel
behavior of the code, compared to one slice only from each for the finite element method. Thus,
we expect parallel performance of the finite volume method to be as good as that of the finite
element method.

IV CONVERGENCE STUDIES

Here we present convergence studies for the test cases of Section II. Particularly, we show the
convergence of the finite volume scheme, when point sources are present. In addition, we list the
results obtained by the finite element scheme from [2] whenever possible, i.e. if the advection
term is dropped.

For both methods, the L2-norm ‖u− uh‖L2(Ω) is used. The true solution is denoted by u
and uh is its numerical approximation. Classical results for the spatial error in this norm have
the form

‖u(·, t)− uh(·, t)‖L2(Ω) ≤ C hq for all 0 < t ≤ tfin, (4.1)

where the constant C is independent of the mesh size h. The number q is the convergence order
of the spatial discretization. For the finite element method, the classical theory for trilinear
basis functions specifies q = 2, see, e.g., [11]. The classical theory requires the source terms to
be in the function space L2(Ω), which is not true for the Dirac delta distribution. The heuristic
arguments and computational results of [2] indicate q = 0.5 in three spatial dimensions, which
has recently been rigorously confirmed [4]. For the finite volume method presented in the
previous section, one would expect q = 2 for smooth source terms, as well. For non-smooth
sources however, there is no clear heuristic argument. It is the purpose of the following studies
to determine this order.

All errors were measured in the L2-norm and the error is computed as the difference of the
numerical solution and a representation of the exact solution on a finer mesh. Here we use
this strategy for the test cases with nonsmooth source terms, otherwise we compare to the true
solution. When using finite elements this representation is the trilinear nodal interpolant. In
the finite volume case, we use the piecewise linear representation described in Section III.A.

In Sections IV.A and IV.B the finite element reference solution was computed on a mesh
with 256 × 256 × 1024 equidistant cells and the finite volume reference on the corresponding
dual mesh. Besides the errors, the following tables show the estimated convergence order, which
was calculated using the formula

qest = log2

(
‖e2h‖
‖eh‖

)
,

in which eh denotes the error computed with respect to a numerical solution on a mesh with
maximum mesh width h. For the finite volume results the mesh size given in the tables is the
size of the primal mesh, instead of the size of the dual mesh.

To stop the BiCGSTAB iterations we choose εlin = 10−2. The parameters to control the
time step selection in the NDFk method are εode

rel = 10−6 and εode
abs = 10−8 and the tolerance for

the Newton solver is εnewt = 10−4.
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Table 4.1: L2-error on Ω against the true solution for the diffusive test problem with homoge-
neous right hand side for FE and FV method.

t = 2 t = 3 t = 4
16× 16× 64 2.4312e–01 2.1704e–01 1.9429e–01

32× 32× 128 6.0228e–02 (2.0132) 5.3671e–02 (2.0157) 4.7955e–02 (2.0184)
64× 64× 256 1.4390e–02 (2.0654) 1.2805e–02 (2.0674) 1.1416e–02 (2.0706)

128× 128× 512 2.9260e–03 (2.2981) 2.5918e–03 (2.3046) 2.2940e–03 (2.3152)
(a) Finite element method

t = 2 t = 3 t = 4
16× 16× 64 4.1603e–01 4.0114e–01 3.8584e–01

32× 32× 128 1.0678e–01 (1.9620) 1.0243e–01 (1.9695) 9.8288e–02 (1.9729)
64× 64× 256 2.6435e–02 (2.0142) 2.5353e–02 (2.0144) 2.4333e–02 (2.0141)

128× 128× 512 6.2654e–03 (2.0769) 6.0116e–03 (2.0763) 5.7763e–03 (2.0747)
(b) Finite volume method

IV.A Diffusion with Homogeneous and Non-Smooth Source Term

Here we consider the unsteady scalar diffusive test problems from Section II.B.2. The errors
of both the finite element method and the finite volume method can be seen in Table 4.1
(homogeneous right hand side) and Table 4.2 (point source).

With respect to the homogeneous right hand side we observe second order convergence for
both schemes, as expected by construction.

For the test problem with a point source, the convergence theory from [4] shows that such
a source term reduces the convergence order of the finite element method to q = 0.5 in three
dimensions. For the finite volume method there is no such convergence theory available (at
least not to our knowledge), but we can expect the order to be equally reduced.

This is confirmed by the numerical results shown in Table 4.2. We see that for both meth-
ods the convergence order is reduced from q = 2 to q = 0.5. In particular, we observe the
convergence of the finite volume scheme in the presence of point sources.

IV.B Advection-Diffusion-Reaction Equation

We now consider the advection-diffusion reaction equation with different source terms. In
particular this equation contains an advective term. Since the finite element method from [2] is
not applicable to problems including advection, we only present results obtained with the finite
volume scheme. We consider the two different source terms, namely the smooth source term
and the non-smooth source term, from Section II.B.1. The results can be found in Table 4.3.

As before in the purely diffusive test case, we observe second order convergence for the
smooth source terms, whereas the convergence order drops to 0.5 for the non-smooth source
term.

IV.C Pure Advection

This Section shows the errors and the convergence order for the pure advection test case from
Section II.B.3. From Table 4.4 we observe second order convergence.

In order to solve this problem with a finite element method an extra stabilization mecha-
nism would need to be introduced to avoid oscillations. There is a vast amount of literature
concerning this problem, see [5] for example, but due to the upwind flux function this is not an
issue regarding the finite volume method.
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Table 4.2: L2-error on Ω against the reference solution for the diffusive test problem with
non-smooth source term for FE and FV method.

t = 2 t = 3 t = 4
16× 16× 64 5.4249e+01 5.0676e+01 5.0706e+01

32× 32× 128 3.6689e+01 (0.5643) 3.7651e+01 (0.4286) 3.7806e+01 (0.4235)
64× 64× 256 2.6378e+01 (0.4760) 2.6396e+01 (0.5124) 2.6400e+01 (0.5181)

128× 128× 512 1.6083e+01 (0.7138) 1.6083e+01 (0.7147) 1.6084e+01 (0.7149)
(a) Finite element method

t = 2 t = 3 t = 4
16× 16× 64 7.6451e+01 8.5493e+01 8.8933e+01

32× 32× 128 6.4231e+01 (0.2513) 6.5344e+01 (0.3877) 6.5578e+01 (0.4395)
64× 64× 256 4.6063e+01 (0.4797) 4.6135e+01 (0.5022) 4.6152e+01 (0.5068)

128× 128× 512 3.0898e+01 (0.5761) 3.0903e+01 (0.5781) 3.0905e+01 (0.5786)
(b) Finite volume method

Table 4.3: Finite volume L2-error on Ω for the advection-diffusion-reaction problem with dif-
ferent source terms.

t = 2 t = 3 t = 4
16× 16× 64 4.3545e–01 4.3988e–01 4.4475e–01

32× 32× 128 1.1677e–01 (1.8988) 1.2002e–01 (1.8738) 1.2341e–01 (1.8495)
64× 64× 256 2.9780e–02 (1.9713) 3.1088e–02 (1.9489) 3.2453e–02 (1.9271)

128× 128× 512 7.2491e–03 (2.0385) 7.7004e–03 (2.0134) 8.1655e–03 (1.9907)
(a) Smooth source term, error compared to true solution

t = 2 t = 3 t = 4
16× 16× 64 6.4421e+01 6.6058e+01 6.6523e+01

32× 32× 128 5.2605e+01 (0.2923) 5.2981e+01 (0.3183) 5.3058e+01 (0.3263)
64× 64× 256 4.0491e+01 (0.3776) 4.0534e+01 (0.3863) 4.0543e+01 (0.3881)

128× 128× 512 2.8725e+01 (0.4953) 2.8728e+01 (0.4967) 2.8729e+01 (0.4969)
(b) Non-smooth source term, error compared against reference solution

Table 4.4: Finite volume L2-error on Ω for the pure advection problem with homogeneous
source term.

t = 2 t = 3 t = 4
128× 128× 128 1.0605e–01 1.4547e–01 1.7831e–01
256× 256× 256 3.1166e–02 (1.7667) 4.5994e–02 (1.6612) 6.0303e–02 (1.5641)
512× 512× 512 7.9835e–03 (1.9649) 1.1946e–02 (1.9449) 1.5895e–02 (1.9237)

1024× 1024× 1024 1.9993e–03 (1.9975) 2.9984e–03 (1.9943) 3.9971e–03 (1.9915)
(a) Error compared to true solution
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V SIMULATION OF CALCIUM WAVES

The convergence tests of the Section IV had the purpose of ensuring that the implemented
numerical method is reliable and trustworthy for the application problem with point sources.
This section reports one set of results for the problem of self-initiated calcium waves, whose
model was detailed in Section II.A as motivation. Table 2.1 lists the model parameters of the
model. Recall from there the spatial domain Ω = (−6.4, 6.4) × (−6.4, 6.4) × (−32.0, 32.0) in
units of µm and a large final time of tfin = 1, 000 ms for long-time simulations. Simulations of
this problem have two purposes: One is to determine if a given set of model parameters allows
for self-initiation of a calcium wave. The other is to determine if self-initiation repeats, for an
overall effect of several waves of increasing calcium concentration. To this end, it is vital that
the final time be large enough to allow for several waves in the duration of the simulation.

The following results were obtained with the mesh size 128 × 128 × 512 using the finite
volume method. Corresponding studies on other meshes with both the finite volume and finite
element methods, except on very coarse meshes, gave equivalent results; due to the pseudo
random number generator in the probabilistic term that determines the opening or closing of
each calcium release unit (CRU), some variation in detail from run to run is expected.

Figures 5.1, 5.2, and 5.3 each show snapshots of time-dependent simulations at ten points
in time. Figure 5.1 plots open calcium release units throughout the cell, each marked by a fat
dot (the size of the dot does not have meaning). The simulation starts with no open CRUs
at t = 0 ms (no plot shown). By time t = 100 ms, a few CRUs are open, as shown in the
first sub-plot of Figure 5.1. They form a small cluster, as far as visible from this plot (but see
Figure 5.3 below), which is consistent with the mechanism modeled: Once a CRU happens to
open and it injects calcium into the cell, diffusion carries the calcium to its neighboring CRUs,
whose probability for opening increasing with the increasing calcium concentration. This is how
entire waves can self-initiate, which is born out by the second sub-plot for t = 200 ms, in which
the original wave has traveled in both directions through the cell. Moreover, we can see that
a new wave is about to initiate at approximately the same location as the one for t = 100 ms.
The following sub-plots in Figure 5.1 bear out the repeated self-initiation and travel of waves
through the cell. This confirms that the model is behaving correctly and the parameters in
Table 2.1 are meaningful. Recall that there is a lattice of 15 × 15 × 31 CRUs throughout the
interior of the cell. Of these 6,975 CRUs, on the order of hundreds are typically open at any
given point in time.

Figure 5.2 shows isosurface plots of the calcium concentration at the same ten points in
time. The critical value used in these plots is 65 µM, which is above the rest value of 0.1 µM
and safely below the maximum value of several hundreds reached at an open CRU location. It
is expected that the calcium concentration is high (above the critical value) around open CRUs.
But what is also crucial to determine by this simulation is that the calcium concentration return
to its rest value after a wave has passed and in between waves. This is clearly born out by the
sub-plots at latter points in time. Notice that long-time simulations are necessary to confirm
this fact; a short study up to, say, 200 ms can by contrast only confirm the self-initiation of a
wave, not that the concentration returns to rest values repeatedly.

Figure 5.3 shows confocal images of the simulation results at the ten points in time, which
show the calcium concentration in a two-dimensional x-z-cross-section of the domain at the
plane y = 0. These images are designed to emulate the appearance of experimental results.
They can provide additional detailed understanding of the shape of a wave. Recall that in
Figure 5.1 at t = 100 ms, one can only make out a cluster of open CRUs, and at t = 200 ms,
Figures 5.1 and 5.2 essentially show two blobs without discernable shape. By contrast, the
sub-plots in Figure 5.3 show the shape of the CRU waves as spirals (top and bottom of domain
cut off a portion). This confirms experimentally observed results and demonstrates that our
simulator can reproduce this effect.
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Table 6.1: Performance study of the calcium problem solved with the finite volume method.
Mesh 1 represents 16×16×64, Mesh 2 represents 32×32×128, Mesh 3 represents 64×64×256,
Mesh 4 represents 128× 128× 512. ET indicates “excessive time required” (more than 5 days),
N/A indicates that the case is not feasible due to p ≥Mz.

Wall clock time TP in HH:MM:SS
Mesh p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256
1 00:22:56 00:11:47 00:06:06 00:03:29 00:02:07 00:01:52 N/A N/A N/A
2 05:09:55 02:24:20 01:22:32 00:43:47 00:22:20 00:12:09 00:07:50 N/A N/A
3 50:29:42 25:36:12 15:16:01 07:48:17 03:57:59 02:01:50 01:05:59 00:41:02 N/A
4 ET ET ET 82:30:31 41:51:02 21:34:45 11:25:35 06:19:12 03:52:28

The parameters of Table 2.1 were discovered by experiments of [12]. They are different from
the parameters used in [2], whose simulations ended up saturating the cell (see Figure 4.5 in
[2]), a physiologically incorrect effect.

VI PARALLEL PERFORMANCE STUDIES

The hardware used for the performance studies presented in this section is part of the UMBC
High Performance Computing Facility (www.umbc.edu/hpcf). The machine has 82 compute
nodes, each with two quad-core Intel Nehalem X5550 processors (2.66 GHz, 8 MB cache) and
24 GB per node. All nodes and the 160 TB central storage are connected by an InfiniBand
(QDR) interconnect network.

Ideally, a run using p processes should be p times as fast as the 1-process run. We use the
wall clock time Tp to quantify the computing time which was required when using p processes.
This time includes both the calculation time associated with arithmetic and similar operations
that are local to a CPU and the communication time associated with the sending and receiving
of messages between the parallel processes. For a fixed problem size, the speedup which is
defined as Sp := T1/Tp quantifies how much faster the p-process run is over one with only
one process. For the 128× 128× 512 mesh in the finite volume method case, the definition of
speedup is modified to Sp := 8T8/Tp, since the 8-processor case is the first one to complete in
reasonable time (less than 5 days). For the 128× 128× 512 mesh in the finite element method
case, speedup is Sp := 16T16/Tp for the same reason. The optimal value of Sp is p. Thus, by
plotting Sp vs. p, one can get a visual impression how fast the actual performance deteriorates
from the ideal one. Another way to quantify how close the speedup Sp is to its optimal value
p is to plot efficiency Ep := Sp/p vs. p, whose optimal value is 1.

We present a performance study of the calcium problem, whose long run time also motivate
the use of parallel computing in the first place. In addition, we compare the finite volume
scheme and the finite element method from [2] with respect to scalability. The wall clock times
for both methods are shown in Tables 6.1 and 6.2, respectively. The corresponding speedup and
efficiency can be seen in Figures 6.1 and 6.2, respectively. Comparing speedup and efficiency,
there is no significant difference between both methods. Thus, the matrix-free finite volume
method is equivalently well suited for long time simulation of real-life applications as the finite
element scheme.

VII CONCLUSIONS

We considered the solution of advection diffusion reaction equations with nonlinear as well as
nonsmooth reaction terms by a matrix-free implementation of a formally second order finite
volume method. The order for smooth reaction terms was demonstrated to be 2, whereas it
drops to 0.5 for nonsmooth source terms. The new algorithm gives similar results as a finite
element scheme considered in previous articles but can handle advection dominated problems.

17



t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 5.1: Open calcium release units throughout the cell using finite volume method with
mesh size 128× 128× 512.
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Figure 5.2: Isosurface plots of the calcium concentration using finite volume method with mesh
size 128× 128× 512.
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Figure 5.3: Confocal image plots of the calcium concentration using finite volume method with
mesh size 128× 128× 512.
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(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 6.1: Performance study of the calcium problem solved with finite volume method.

Table 6.2: Performance study of the calcium problem solved with the finite element method.
Mesh 1 represents 16×16×64, Mesh 2 represents 32×32×128, Mesh 3 represents 64×64×256,
Mesh 4 represents 128× 128× 512. ET indicates “excessive time required” (more than 5 days),
N/A indicates that the case is not feasible due to p > Mz.

Wall clock time in HH:MM:SS
Mesh p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256
1 00:08:41 00:04:37 00:02:13 00:01:20 00:00:46 00:00:31 00:00:24 N/A N/A
2 09:23:19 04:43:52 02:33:54 01:19:35 00:40:40 00:21:53 00:12:57 00:08:45 N/A
3 67:04:28 32:09:20 18:10:07 09:17:32 04:42:50 02:25:47 01:19:28 00:45:09 00:29:06
4 ET ET ET ET 74:11:02 38:00:33 19:57:57 10:49:08 06:16:11

Finally, strong parallel scaling for up to 256 processes was demonstrated.
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