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Abstract

Tornadoes pose a forecast challenge to National Weather Service forecasters because of their
quick development and potential for life-threatening damage. The use of machine learning in
severe weather forecasting has recently garnered interest, with current efforts mainly utilizing
ground weather radar observations. In this study, we investigate machine learning techniques
to discriminate between nontornadic and tornadic storms solely relying on the Rapid Update
Cycle (RUC) sounding data that represent the pre-storm atmospheric conditions. This approach
aims to provide for early warnings of tornadic storms, before they form and are detectable by
weather radar observations. Two machine learning methods tested in our project are Random
Forest (RF) and Convolutional Neural Network (CNN). Performance testing of RF using various
ranges of hyperparameters results in an overall accuracy score of 70.14%, but the accuracy of
significantly tornadic class prediction is only 23.84%. The CNN model results in an overall
accuracy score of 67.84%, but the accuracy for significantly tornadic storms is only 26.69%.
The higher accuracy in the RF and CNN models for the majority class of nontornadic supercells
suggests that the imbalanced dataset is a meaningful contributor to the lower accuracy for
tornadic storms. After applying the simple method of randomly undersampling (oversampling)
the majority (minority) class, the accuracies of significantly tornadic class prediction of RF
and CNN are enhanced to 65.85% and 36.01%, respectively. Future work should investigate
alternative methods of dealing with imbalanced datasets in a CNN, including more sophisticated
undersampling/oversampling techniques.

Key words. Tornado prediction, Rapid Update Cycle (RUC), environmental sounding data,
random forest classifier, convolutional neural network (CNN).

1 Introduction

Tornadoes can develop quickly, cause severe damage across a large spatial area, and create life-
threatening conditions, thus posing a forecast challenge to National Weather Service (NWS) fore-
casters. Proximity soundings derived from model analysis data [27-29] are currently used opera-
tionally to monitor the probability of tornadogenesis. The Significant Tornado Parameter (STP)
was developed as one of these tools to aid operational forecasters in the tornado forecasting pro-
cess [27], and it is probably the most widely used environmental proxy for tornadic thunderstorms.
The STP has been updated after more supercell research and deeper understanding of the con-
nection between tornadogenesis and the environment factors. The majority of studies of severe
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weather exclusively rely on commonly used parameters that describe the environment (e.g., how
much instability or wind shear is in the atmosphere).

The goal of this work is to explore the use of machine learning techniques to predict significant
tornadoes using only Rapid Update Cycle (RUC) sounding data that represent the pre-storm
atmospheric conditions. This approach aims to provide for early warnings of tornadic storms,
before they form and are detectable by ground weather radar observations.

Two machine learning methods are considered in our project: Random Forest (RF) and Convo-
lutional Neural Network (CNN). (i) RF is an ensemble method that uses randomized decision trees
as its base models and grows many decision trees depending on a collection of random variables. A
new object will be classified using the binary recursive-partitioning algorithm in the decision tree
forest. RF will give estimates of what features are best in the classification and help to interpret
machine learning results. (ii) CNN is a class of neural network which can take advantage of the hi-
erarchical pattern in data and assemble more complex patterns using smaller and simpler patterns.
CNNss use relatively little pre-processing compared to other image classification algorithms with an
advantage of independence from prior knowledge and human effort in feature design. CNNs are
mainly used for processing data that has a grid pattern, and designed to automatically learn spatial
hierarchies of features [33]. (iii) The imbalanced nature of our dataset leads to underprediction of
significantly tornadic storms in both the RF and the CNN. To address the imbalanced dataset
issue, approaches to randomly undersample the dominant nontornadic cases and to oversample the
rare significantly tornadic cases are applied in this study.

(i) Performance testing of RF using various ranges of hyperparameters results in an overall
accuracy score of 70.14%, but the accuracy of the significantly tornadic category is only 23.84%.
Feature importance analysis of the RF model indicates the v-wind variable scored significantly
higher than other variables, while the pressure variable importance scores consistently lower than
other variables across all height levels. (ii) Performance testing of a CNN with three 1D convo-
lutional layers trained for 100 epochs has an overall accuracy score of 67.84%, but the accuracy
of the significantly tornadic category is only 26.69%. The results show that CNN outperforms
current forecasting parameter in terms of predicting whether or not a supercell storm will generate
some type of tornadic event but performs poorly on predicating significant tornadic events in com-
parison. (iii) Applying random undersampling (RUS) to RF produces the highest class accuracy
for the significantly tornadic category of all models considered herein, reaching a class accuracy
of 65.86%. However, it also results in the overall model accuracy decreasing as the accuracy of
original majority classes, weakly /nontornadic, decreases significantly. In contrast, RF with Ran-
dom oversampling (ROS) increases the accuracy of significantly tornadic events more modestly
while maintaining about the same accuracy for other two classes. Random undersampling (RUS)
applied to CNN also improves the accuracy for significantly tornadic events at the steep expense in
the accuracy for nontornadic events. Applying random oversampling (ROS) to CNN exhibits the
best balance of increased accuracy in the significantly tornadic category with less impact on other
accuracy measures. With 36.01% class accuracy in the significant tornado category, this exceeds
the accuracy of the base RF, random oversampling RF, and the base CNN model without random
sampling.

The remainder of this work is organized as follows. In Section 2, we discuss the basic physics
of tornadic and nontornadic supercells. Section 3 discuss the details of sounding data we use in
this study. Section 4 introduces the details of RF and CNN, the two machine learning techniques,
and the forecast skill metrics. Section 5 presents the detailed results of RF and CNN, RF feature
analysis, and the random sampling of the imbalanced data. Finally, in Section 6, we present
conclusions and discuss future work.
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Figure 2.1: Typical supercell appearance on both radar (left) and visually while storm chasing
(right). The radar image is reproduced from [20]. (left) shows radar reflectivity from Doppler
Radar on Wheels (DOW) on June 09, 2010 in Goshen County, Wyoming. Wind vectors and areas
of horizontal convergence are derived from multiple mobile radars (DOW 6 & 7). (right) shows a
photograph of a supercell on March 12, 2012 in Greer County, Oklahoma. Yellow arrows illustrate
the rotation of the mesocyclone.

2 The role of supercell storms in tornado forecasting

On average, approximately 1,200 tornadoes are reported in the U.S. each year, resulting in roughly
80 deaths and millions of dollars in damage. Timely and accurate predictions of these severe
weather events are key to mitigating casualties. However, tornadoes are very difficult to predict, as
most severe weather will not lead to tornadogenesis. Furthermore, the false alarm rate for tornado
warnings in the U.S. is around 75% [7]. Such a high false alarm rate is deeply problematic, not
only because false alarms result in unnecessary and sometimes costly precautions, but also because
frequent false alarms may negatively impact the public trust in tornado forecasting.

Since roughly 80% of tornadic events originate from supercell storms [31], the research conducted
herein will focus on identifying if a supercell will become tornadic, and, in the event that a tornado
forms, whether the resulting event will be weak (FO-F1) or severe (F2-F5) in nature. Supercells are
isolated storms that exhibit a rotating updraft, or mesocyclone, due to wind shear. The strength
of its updraft allows a supercell to self-sustain for longer periods of time than other types of
thunderstorms. In addition to tornadoes, supercells are also known to produce large hail, strong
nontornadic winds, flash flooding, and dangerous lightning, and tornadoes. Most strong to severe
tornadoes occur in conjunction with supercell storms [21].

Radar images allow forecasters to identify supercell storms by identifying the mesocyclonic
structure. We present a sample radar image of a supercell storm in Figure 2.1, along with a
photograph of a supercell. In both the radar and the photograph, rotation of the storm cell is
evident, but this is not sufficient to determine whether or not a tornado will form.

Predicting which supercell storms will result in tornadogenesis is much more difficult, as only
one out of every four supercells generate tornadic events [31]. In other words, while most tornadoes
originate from supercells, most supercells are nontornadic. Therefore, forecasters must rely on both
real-time radar data along with observational data of the storm’s surrounding environment to make
a prediction. Often, forecasters will use the Significant Tornado Parameter (STP), a composite
index calculated using multiple parameters known to be favorable in tornadic supercells [11]. This



index is given by
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(2.1)

where mixed-layer (ML) convective available potential energy (CAPE) is a measure of instability
in the atmosphere, convective inhibition (CIN) is the amount of energy that prevents an air parcel
from realizing said instability, lifted condensation level (LCL) is the height of the base of the
cloud, effective bulk wind difference (EBWD) is the vector magnitude of the change in wind speed
and direction with height, and storm-relative helicity (SRH) in the 0 to 500 m layer above the
ground is a proxy for the potential of cyclonic updraft rotation in right-moving supercells. These
ingredients are known to be favorable for supercells and tornadoes and have successfully been used
in operational forecasting for over 15 years [27]. However, given the high false alarm rate in tornado
prediction, this index alone is not sufficient.

3 Data

The severe weather event database! used in this study is that of [26] and [29], except expanded to
include the years 2005-2017 for tornadic thunderstorms and 2005-2015 for nontornadic thunder-
storms (i.e., all available severe weather events in the current SPC convective mode database). All
tornado, significant hail (sighail), and significant wind (sigwind) reports are filtered for the largest
magnitude report per hour on a 40 km spacing Rapid Update Cycle (RUC) model analysis grid
and then assigned to the closest analysis hour. Sub-significant hail/wind events or null cases (i.e.,
storms without severe weather reports) are not considered due to the difficulty of subjective case
identification associated with what would be an overwhelming sample size [26]. We argue that,
fundamentally, discerning the differences between tornadic and significantly severe, nontornadic
storms is the most interesting and challenging forecast problem.

Each severe report is assigned a storm mode classification based on archived level I WSR-
88D data from NCEI, as discussed in-depth in [26]. In this study, only the right-moving (cyclonic)
supercells (RMs) are considered. Nearly 90% of all significant tornadoes occur with RMs [26], while
95% of all fatalities and 92% of injuries occur with significant tornadoes. The RMs classification
includes three sub-classifications: discrete cell, cell in cluster, and cell in line. This results in 9,355
tornadoes, 3,788 sigwind, and 7,051 sighail events. These 20,194 right-moving supercells consist
of 10,839 significantly severe nontornadic? cases, 7,743 weakly tornadic (FO-F1) tornadic damage
cases, and 1,612 significantly tornadic (F2-F5) tornado damage cases. Approximately 54% of the
dataset is nontornadic because approximately 85% of supercells in nature are nontornadic [30].

Environmental base-state data corresponding to each severe report are obtained from archived
vertical profiles from the SPC’s mesoscale surface objective analysis [5], which itself uses the RUC
model? as the background environment [4]. Profiles are interpolated to isobaric surfaces with 25-hPa
vertical resolution (e.g., 1000, 975, 950, 925, etc. hPa).

!Compared to Storm Data, this dataset has a higher standard of quality control. Careful temporal or spatial
adjustments are made to a small portion of the event database to correct report errors [26].

2Hereafter, “nontornadic” is understood to refer to significantly severe nontornadic supercells (i.e., storms that
produce hail > 2 in (5.04 cm) diameter hail and convective wind gusts > 65 kt (33.4 m s™1)).

3The Rapid Refresh (RAP) model replaced the RUC model at 127 1 May 2012.



4 Methods

4.1 Random Forest

The first machine learning method that we exploit in our project is the Random Forest algorithm. It
was proposed by Leo Breiman and developed to be used for either a categorical response variable,
referred as “classification”, or a continuous response, referred as “regression” [6]. As the name
suggests, Random Forest is an ensemble method that uses randomized decision trees as its base
models. Random Forest grows many decision trees with each tree depending on a collection of
random variables. To classify a new object from an input, the algorithm puts the input vector
down each of the decision tree in the forest using the binary recursive partitioning algorithm [12].
Each tree gives a classification, and we say the tree “votes” for that class. The forest chooses the
classification having the most votes (over all the trees in the forest) as the classification of the given
input.

Random Forest adds additional randomness to the model while growing the trees. The “ran-
domness” is injected into the algorithm in two ways: (i) in each iteration, it takes a new random
sub-sample of the given dataset so that it uses a different training set, and (ii) it uses a random
subset of features to determine how to split on each tree node. It gives estimates of what features
are best in the classification. This results in a wide diversity that generally results in a better model.
Thus, there are three parameters than may be tuned to improve the accuracy of classification:

1. the number of randomly selected input variables/features chosen at each tree node,
2. the number of trees in the forest,
3. tree size, which can be measured by the maximum number of leaf nodes.

Typical Random Forests are not very sensitive to the number of selected input variables, so fine-
tuning is not necessary and overfitting effects due to choice of this parameter is relatively small
[12,13]. As stated in [6], the number of trees to use can be chosen as large as desired, without fear of
increasing the generalization error. However, user should keep in mind that although increasing the
number of trees will decreases variance in predictions, it also (linearly) increases the training time.
The original Random Forests models [6] suggest using very large tree. But in recent research [25],
a classification example with a forest of large trees shows overfitting. Users can tune either the
number of trees or the size of trees to avoid overfitting.

Our dataset is imbalanced since the class of significantly tornadic is much smaller than the
other two classes. The imbalanced dataset brings a great challenge to the classification algorithm.
The Random Forest model has an effective method, which is weighting the classes, to give balanced
results in imbalanced data. This method changes the weight that each class has when calculating
the “impurity” score of a chosen split point. Impurity measures how mixed the groups of samples
are for a given split in the training dataset and is typically measured with Gini or entropy. The
calculation can be biased so that a mixture in favor of the minority class is favored, allowing some
false positives for the majority class. Another approach to addressing the problem of class imbalance
is to randomly resample the training dataset. The two main approaches to randomly resampling
an imbalanced dataset are to delete examples from the majority class, called undersampling, and to
duplicate examples from the minority class, called oversampling. We explore both undersampling
and oversampling in this project.

In some applications, a variable importance analysis is needed to reduce dimensionality of the
problem, which simplifies the classification process, and in some cases improves results. Random
Forest uses an unusual but intuitive measure of variable importance [12]. To measure the importance
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of a variable k, the out-of-bag predictions of both variable k£ and a permutation of variable k are
obtained. Then, a measure of variable importance for the observation is acquired based on the
difference between error rate of those predictions. Averaging over observations from the same class
gives class-wise variable importance for the classification algorithm.

4.2 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a type of artificial neural network proposed by Hubel
and Wiesel in 1960s inspired by the research of neurons used for local sensitive orientation-selective
in cat’s visual system. CNN is mainly used for processing data that has a grid pattern, such as
images, and designed to automatically and adaptively learn spatial hierarchies of features, from
low- to high-level patterns [33].

CNN is typically comprised of three types of layers (or building blocks): convolutional layers,
pooling layers, and fully-connected layers. The first two, convolutional and pooling layers, perform
feature extraction, whereas the third, a fully connected layer, maps the extracted features into
the final output, such as classification. The convolutional layer plays a key role in a CNN. The
neurons in a convolutional layer are locally connected, rather than fully connected, which allow for
the extraction of local features from input data. Once a local feature is extracted, the positional
relationship between it and other features also will be determined [19]. One layer feeds its output
into the next layer. The pooling layer then simply performs downsampling along the spatial dimen-
sionality of the given input, further reducing the number of parameters within that activation. For
each neuron in every layer we apply an element wise non-linearity called an “activation function”,
which enables our network to learn more complex functions. Which activation function we use
largely depends on the range of our input data, the level of computational performance we desire,
and whether we apply the activation in between layers or on the final layer. For the connections
between layers we typically use functions such as leaky and non-leaky rectified linear activation
function (ReLU) and even hyperbolic tangent [24]. The final layer of the network receives a special
activation function such as sigmoid or softmax which produces classification scores for the given
input data.

The parameters, such as kernels, are optimized to minimize the difference between outputs of
CNN and ground truth labels through training processes. Over a series of epochs of training, the
CNN is able to distinguish between dominating and certain low-level features in the inputs and
classify the inputs into human proposed categories..

The objective of a neural network is to have a final model that performs well both on the data
that we use to train it, such as the training dataset, and the new data on which the model will be
used for predictions. The model learns information from given examples and attempts to develop
generalized ideas so that it may make accurate future predictions on unseen data. A model that
performs extremely well on the training dataset but does not perform well on unseen examples
is an overfit model. An overfit model can be easily diagnosed by monitoring the performance of
the model during training by evaluating it on both a training dataset and on a validation dataset.
There are two typical ways to avoid overfitting in a CNN model. One is to train the network on
more examples and the other is to change the complexity. It is more common to focus on methods
that constrain the size of the weighs in a network to gain a more stable model that is less sensitive
to statistical fluctuations in the input data.

Class imbalance is a common problem in real life applications of deep learning based classifiers,
such as our research problem. Methods for addressing class imbalance in CNN can be divided into
two main categories [16]. The first category is data level methods that operate on the training
data set and change its class distribution [8]. This type includes oversampling and undersampling.



The former one simply introduces more samples in the minority class. A recent research, SMOTE,
applied oversampling method by augmenting artificial examples created by interpolating neighbor-
ing data points to overcome the overfittiung issue [9]. The later one, as opposed to oversampling,
removes examples randomly from majority classes until all classes have the same number of exam-
ples. The other category keeps the training dataset unchanged and adjust the training algorithms.
We apply the two data level methods in this project.

4.3 Forecast skill metrics

A rigorous assessment of each algorithm is accomplished using a 3 x 3 contingency table (also
called a confusion matrix) [14, 15]. Since there are three predictands (i.e., nontornadic, weakly
tornadic, and significantly tornadic), a multi-class contingency table is required. Several metrics
are presented, including probability of detection (POD; or “hit rate”), the false alarm ratio (FAR),
the critical success index (CSI), and the true skill statistic (TSS, also known as the Pierce skill
score) [32]. Each of these will help elucidate which algorithms are the most skillful at discriminating
between nontornadic and significantly tornadic supercells. There often is a fine balance between
POD and FAR. Ideally, one wants the Probability of Detective (POD) to be as high as possible,
indicating that more tornadoes are detected, and the False Alarm Ratio (FAR) to be as low as
possible, indicating fewer false predictions. However, it is undesirable to greatly increase the POD
at the expense of a low FAR (and vice-versa). Critical Success Index (CSI) and True Skill Statistic
(TSS) provide a measurement indicating how well-balanced the forecast model is between over-
and under-prediction. Higher scores in these areas indicate a more optimal balance. For example,
the TSS highlights parameters that maximize POD while minimizing probability of false detection
(POFD; or “false alarm rate”). The TSS is defined by
ad — bc

TS5 = v o +a) (41)
where a is the sum of correct forecasts of a significant tornado report, b is the sum of false alarms,
¢ is the sum of missed significant tornado reports, and d is the sum of correct null forecasts. TSS
is also equivalent to the difference between the POD and the POFD [14], meaning that parameters
with high T'SS have an optimal combination of detecting events without misidentifying nulls.

5 Results

In this section, we present the analysis and results of several predictive Random Forest Classification
and Convolutional Neural Network models applied to the RUC sounding dataset. Results are
organized as follows. In Section 5.1, we describe the preprocessing the data underwent prior to
being used in our models. Next, we present the results from two Random Forest models, as well
as feature importance analysis, in Section 5.2. Section 5.3 contains the results of a simple and a
complex Convolutional Neural Network (CNN) model. Performance for both the Random Forest
and CNN models is impacted by the imbalanced nature of the RUC sounding dataset, in which
the the majority of storms are nontornadic (54%) and only a small minority (8%) are significantly
tornadic. In Section 5.4, we work to address this issue using the techniques of oversampling and
undersampling.

The hardware used in all of the enclosed computational studies is part of the UMBC High Per-
formance Computing Facility (hpcf.umbc.edu). The studies use both a CPU node with two 18-core
Intel Xeon Gold 6140 Skylake CPUs (2.3 GHz clock speed, 24.75 MB L3 cache, 6 memory channels)
and 384 GB memory and a GPU node containing four NVIDIA Tesla V100 GPUs connected by
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Figure 5.1: Height readings at each level are variable in the sounding data as depicted in (a). The
average height for each sounding level is given by the black dotted line. Final data representation
can be visualized as a 3D grid of dimension 20194 x 37 x 6 and is depicted in (b).

NVLink. The software used is Python 3.7.6 along with the following packages: scikit-learn (v.
0.23.dev0), imbalanced-learn (v. 0.6.2), TensorFlow (v. 2.1.0), and Keras (v. 1.1.0).

5.1 Data Preprocessing

In order use the RUC soundings in various machine learning approaches, the data first needed to be
pre-processed. Each storm has a vertical profile of pressure, temperature, dewpoint temperature,
relative humidity, both components of the horizontal velocity (u-wind and v-wind), and height above
ground level at 25 hPa increments up to 100 hPa. Because some severe reports occur at higher
elevations, with corresponding lower surface pressure, there are a variable number of vertical levels
among the 20194 soundings, illustrated in Figure 5.1 (a). For example, vertical level number 20 has
height range 4831 to 8085 m. In order for the machine learning algorithms to learn from common
structures in the data, there needs to be a uniform structure to the height grid. Therefore, we
compute the average height at each level and performed a linear interpolation of each sounding
variable (i.e., pressure, temperature, etc.) to a common height coordinate. This resulted in a
20194 x 37 x 6 array of variables (samples x levels x variable), with height now implicit within
each vertical profile, illustrated in Figure 5.1 (b).

5.2 Random Forest

We built and tested a Random Forest model using the machine learning package sklearn* in Python.
For our base model, hyperparameter settings are as follows: class_weight = balanced, max_depth
= 200, n_estimators = 200 (all other parameters use their default settings). We use the ‘balanced’
setting for class weights because we have imbalanced data: 54% nontornadic, 38% weakly tornadic,
and 8% significantly tornadic. The balanced setting weights the classes inversely proportional

“https://scikit-learn.org/stable/
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(a) Confusion Table

(b) Accuracy By Class

Actual Class | Total | Predicted | Accuracy
Predicted | [0] | [1] | [2] [0] 2172 1837 84.58%
[0] 1837 | 550 | 62 [1] 1568 986 62.88%
(1] 307 | 986 | 168 [2] 299 69 23.08%
[2] 28 32 | 69

Table 5.1: Confusion table and individual class accuracy for Random Forest base model. Class [0]
refers to nontornadic, class [1] refers to weakly tornadic, and class [2] refers to significantly tornadic.

to their frequency of occurrence. Using these settings, and a training-testing split of 80-20, the
Random Forest model predictions on the testing data results in an overall accuracy score of 71.6%.

Performance testing using various ranges of hyperparameters indicate that the model is perform-
ing optimally given the current settings and the current form of the input data. In testing a range
of max_depth settings from 10 to 400, the minimum accuracy score was 64.79% (for max_depth
= 10), the maximum was 71.6% (for max_depth = 200), the average accuracy score was 69.78%,
and the standard deviation was +1.65%. We also experiment with increasing the size of the forest
(n_estimators), varying choices between 100 to 2000. There were no significant gains in accuracy for
larger forests, and the best accuracy was observed at around n_estimators = 200. Similarly, exper-
iments with varying the parameters min_samples_leaf and min_samples_split showed no significant
gains beyond using the default settings.

Detailed Accuracy Analysis. We present a more detailed breakdown of accuracy results in
Tables 5.1 (a) and (b). Because we have three classes: [0]-nontornadic, [1]-weakly tornadic, and
[2]-significantly tornadic, the total accuracy score does not illustrate how well our model performs
predicting the various classes of storms. Table 5.1 (a) presents the confusion table and Table 5.1 (b)
gives the accuracy scores by class, comparing model predictions with actual events in each class. As
evident in both tables, the Random Forest predictor performs poorly on the significantly tornadic
class. These tables demonstrate that the Random Forest model is best at predicting nontornadic
storms, and worst at predicting significantly tornadic storms.

To put our results in context, we compute and compare forecasting skill scores for the Random
Forest (RF) model to current tornado forecasting, using the operational version of the Significant
Tornado Parameter [11], and present them in Tables 5.2 (a) and (b). We compute these skill
scores in two ways: tornadic vs. nontornadic (classes [1,2] vs. class [0]) and significantly tornadic
vs. weakly /nontornadic (class [2] vs. class [0,1]). Examining Table 5.2 (a), we see that the Random
Forest model outperforms current forecasting in terms of predicting whether or not a supercell
storm will generate some type of tornadic event.

However, we argue that skill scores comparing the classes of significantly tornadic to weakly /non-
tornadic are of more importance in real forecasting, since significant tornadoes account for the ma-
jority of damage and human causalities. Misdiagnosing a significant tornado as a nontornadic event
is substantially more catastrophic to the public. In Table 5.2 (b), we see that the Random Forest
model skill scores are less desirable when viewed in comparison to current forecasting methods.
The main exception is that RF has a lower FAR. This is expected, given that Tables 5.1 (a) and
(b) indicate that our model is biased towards nontornadic events.

Feature Importance Analysis. The ability to easily and efficiently perform feature importance
analysis was our primary motivation for using the Random Forest model on this data set. Feature



(a) Tornadic vs. Nontornadic

Score | RF Prediction | Forecasting
POD 0.67 0.56
FAR 0.21 0.37
CSI 0.57 0.42
TSS 0.52 0.23
(b) Significantly vs. Weakly /Nontornadic
Score | RF Prediction STP
POD 0.24 0.68
FAR 0.53 0.71
CSI 0.19 0.25
TSS 0.22 0.45

Table 5.2: Skill scores for Random Forest model compared to current forecasting ability. We
consider two cases: tornadic vs. nontornadic (classes [1,2] vs. [0]) and Significantly tornadic vs.
Nontornadic (class [2] vs. class [0]). POD stands for probability of detection, FAR for false alarm
ratio, CSI for critical success index, and TSS for true skill statistic.

importance analysis can lead to insights regarding our data, can lead to model improvements, and
will play a role in the construction of our Convolutional Neural Network (CNN) model that we will
discuss further in Section 5.3. There are multiple ways to perform feature importance analysis. For
this research, feature importance for a given decision tree is defined as the decrease in node impurity
weighted by the probability of reaching that node. Once that tree-specific feature importance is
calculated for each tree in our forest, we average the results to compute a feature importance score.
This is done automatically using the sklearn function feature_importances_. The cumulative sum
of all feature importance scores is one. Higher feature scores indicate higher importance.

Recall that our data has 222 features, however, these features are split equally across six vari-
ables, temperature, dewpoint, humidity, u-wind, v-wind, and pressure, corresponding to thirty-
seven standardized heights ranging from 10 m to 16.3 km. Since each feature is linked to a specific
height, we plotted the feature importance scores of each variable across the range of heights in
Figure 5.2, along with the cumulative feature importance scores for each variable, in which we add
up each variable’s feature importance scores for every height. These figures indicate the v-wind
variable scored significantly higher than other variables, specifically at heights below 4 km. We
also note that the first few humidity readings were of more importance than subsequent humidity
readings. The pressure variable score consistently lower than other variables across all height levels.

These feature importance results are consistent with known key features of tornado formation.
Low-altitude relative humidity is a decent predictor of downdraft coldness. Lower relative humidity
allows for more evaporation and typically colder downdrafts. This colder, denser air at the surface
resists being converged and stretched into a tornado. Along these lines, low-altitude vertical wind
shear is well correlated with the strength of the convergence and stretching by the supercell on
developing vortices. The combination of high low-altitude relative humidity and vertical wind
shear make tornadogenesis more likely. On tornado outbreak days, the lower troposphere can be so
humid that cloud bases are just a few hundred meters above the ground, and the wind shear can
be so extreme that winds can vary by 20 m/s within the lowest 1 km [21].

Revised Random Forest Model and Feature Importance Analysis. Given the results of
our feature analysis, we built a revised Random Forest model without the pressure variable. We
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Figure 5.2: Feature importance scores and variable contributions from Random Forest model.
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(b) Accuracy By Class

Actual Class | Total | Predicted | Accuracy
Predicted | [0] | [1] | [2] [0] 2165 1803 83.28%
[0] 1803 | 570 | 59 [1] 1572 958 60.94%
1] 324 | 958 | 171 [2] 302 72 23.84%
[2] 38 44 | 72

Table 5.3: Confusion table and individual class accuracy for Random Forest model without pressure
variable. Class [0] refers to nontornadic, class [1] refers to weakly tornadic, and class [2] refers to
significantly tornadic.

drop pressure due to its overall lower importance score. Figure 5.3 gives the updated Feature
importance scores and cumulative contributions for each variable, illustrating the same trends
discussed above for the original model.

The resulting accuracy score of this exercise is 70.14%, approximately 1.46% decrease in accu-
racy from our base model. Upon examining the confusion table and class accuracy scores in Tables
5.3 (a) and (b), we see that the Random Forest model built by dropping the pressure variable
performs comparably to our original model.
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Figure 5.3: Feature importance scores and variable contributions from Random Forest model with-
out pressure variable.
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(a) Simple CNN Confusion Table

(b) Accuracy By Class

Actual Class | Total | Predicted | Accuracy
Predicted | [0] (1] [2] [0] 2207 1873 84.87%
[0] 1873 953 211 (1] 1521 557 36.62%
[1] 323 557 94 [2] 311 6 1.91%
[2] 11 11 6

Table 5.4: Confusion table and individual class accuracy for the Convolutional Neural Network
simple model. Class [0] refers to nontornadic, class [1] refers to weakly tornadic, and class [2] refers
to significantly tornadic.

5.3 Convolutional Neural Network

We built and tested a one-dimensional Convolutional Neural Network model using the machine
learning package Keras (https://keras.io) in Python. For our base model, the network was cre-
ated using two 1D convolution networks, both with 64 filters. This is followed by a 1D MaxPooling
layer and then two dense layers, with ReLLU and softmax activation functions, respectively. The
base model is compiled with Analysis Data model (ADaM) optimization for stochastic gradient de-
scent and the categorical crossentropy loss function. Based on the feature importance results from
the Random Forest model in Section 5.2, pressure was removed as a training variable. After train-
ing for 100 epochs and using a training-testing split of 80-20, the Convolutional Neural Network
model predictions on the testing data result in an overall accuracy score of 60.83%. As discussed
in Section 5.2, the total accuracy does not illustrate how well our model performs predicting the
various classes of storms. Table 5.4 (a) presents the confusion table and Table 5.4 (b) gives the
accuracy scores by class, comparing model predictions with actual events in each class. Evident in
both tables, the simple CNN model performs especially poorly on the significantly tornadic class
and most accurately at predicting nontornadic storms.

A more complex CNN model is also constructed. This model consists of three 1D convolution
networks, with increasing number of filters (32, 64, and 128). The activation function for each of
the layers is Leaky ReLU (« = 0.1). Each layer is followed by a batch normalization layer and a 1D
MaxPooling layer. Finally, there are two dense layers, with Leaky ReLLU and softmax activation
functions, respectively. This more complex model is compiled with stochastic gradient descent
optimization and the mean squared error loss function. After training for 100 epochs and using a
training-testing split of 80-20, the Convolutional Neural Network model predictions on the testing
data results in an overall accuracy score of 67.84%. Table 5.5 (a) presents the confusion table and
Table 5.5 (b) gives the accuracy scores by class, comparing model predictions with actual events in
each class. The complex model considerably improves the accuracy for tornadic and significantly
tornadic supercells, at the expense of a slight decrease in accuracy for nontornadic supercells.

Similar to Section 5.2, we put our results in context by computing and comparing forecasting
skill scores for the CNN to current tornado forecasting, using the operational version of the Signif-
icant Tornado Parameter [11], and present them in Tables 5.6 (a) and (b). We compute these skill
scores in two ways: tornadic vs. nontornadic (classes [1,2] vs. class [0]) and significantly tornadic vs.
weakly /nontornadic (class [2] vs. class [0,1]). The CNN outperforms current forecasting parameter
in terms of predicting whether or not a supercell storm will generate some type of tornadic event.
However, the CNN performs considerably poorer when comparing significantly tornadic supercells
from nontornadic supercells in comparison to current forecasting methods, which is not too sur-
prising since the Significant Tornado Parameter was specifically designed and tuned to differentiate
significant tornadic supercells from nontornadic supercells.
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(a) Complex CNN Confusion Table (b) Accuracy By Class

Actual Class | Total | Predicted | Accuracy
Predicted | [0] (1] [2] [0] 2207 1774 80.38%
[0] 1774 567 75 [1] 1521 885 58.19%
[1] 390 885 153 [2] 311 83 26.69%
[2] 43 69 83

Table 5.5: Confusion table and individual class accuracy for the Convolutional Neural Network
complex model. Class [0] refers to nontornadic, class [1] refers to weakly tornadic, and class [2]
refers to significantly tornadic.

(a) Tornadic vs. Nontornadic

Score | CNN Prediction | Forecasting
POD 0.65 0.56
FAR 0.27 0.37
CSI 0.53 0.42
TSS 0.45 0.23
(b) Significantly vs. Weakly/Nontornadic
Score | CNN Prediction STP
POD 0.27 0.68
FAR 0.57 0.71
CSI 0.19 0.25
TSS 0.23 0.45

Table 5.6: Skill scores for the Convolutional Neural Network complex model compared to current
forecasting ability. We consider two cases: tornadic vs. nontornadic (classes [1,2] vs. [0]) and
Significantly tornadic vs. Nontornadic (class [2] vs. class [0]). Currently forecasting skill scores
were calculated from [32].

5.4 Randomly Undersampling/Oversampling the Classes

The higher accuracy in the Random Forest and CNN models for the majority class of nontornadic
supercells suggests that the model is much better trained for this storm type, likely because it
is training on much more data. As an initial attempt to combat this issue, during the training
phase, either the majority class was undersampled or the minority class was oversampled using the
RandomUnderSampler/RandomOverSampler function in the machine learning toolbox Imbalanced
Learn® in Python.

The Random Forest model using a training-testing split of 80-20 results an overall accuracy score
of 60.48% for the random undersampling (RUS) and an accuracy score of 68.43% for the random
oversampling (ROS) on the testing data. Table 5.7 presents the confusion tables and the accuracy
scores by class, comparing model predictions with actual events in each class for both the random
undersampling (RUS) and random oversampling (ROS). The random undersampling (RUS) of the
majority class greatly improves the accuracy for significantly tornadic supercells, resulting in an
increase from 23.84% to 65.85%. However, this comes at a steep expense as it decreases accuracy
for nontornadic supercells from 83.28% to 69.78% and decreases the accuracy for weakly tornadic
supercells from 60.94% to 47.02%. Fewer training examples of these two majority classes is the main
reason for this decrease in accuracy. Comparatively, the random oversampling (ROS) also increases

Shttps://pypi.org/project/imbalanced-learn/
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(a) RF w/ RUS Confusion Table

(b) Accuracy By Class

Actual Class | Total | Predicted | Accuracy
Predicted | [0] (1] [2] [0] 2118 1478 69.78%
[0] 1478 380 31 (1] 1593 749 47.02%
[1] 403 749 81 [2] 328 216 65.85%
2] 237 464 216
(¢c) RF w/ ROS Confusion Table (d) Accuracy By Class
Actual Class | Total | Predicted | Accuracy
Predicted | [0] 1] [2] [0] 2132 1782 83.58%
(0] 1782 596 78 [1] 1564 867 55.43%
(1] 303 867 150 [2] 343 115 33.53%
2] a7 101 115

Table 5.7: Confusion table and individual class accuracy for the Random Forest model with random
undersampling of the majority class (i.e., Class [0]). Class [0] refers to nontornadic, class [1] refers
to weakly tornadic, and class [2] refers to significantly tornadic.

the accuracy for significantly tornadic supercells from 23.84% to 33.53%, while maintaining about
the same accuracy for the nontornadic class and leads to a small decrease in accuracy for the
weakly tornadic class by about 5%. From these results, we conclude that undersampling may be
more suitable for imbalanced datasets when the prediction accuracy of the minority class is most
important.

Using the complex CNN, training for 100 epochs with a training-testing split of 80-20, the
Convolutional Neural Network model predictions on the testing data resulted in an overall ac-
curacy score of 55.73%. Table 5.8 (a) presents the confusion table and Table 5.8 (b) gives the
accuracy scores by class, comparing model predictions with actual events in each class for both
the random undersampling (RUS) and random oversampling (ROS). The random undersampling
of the majority class further improves the accuracy for significantly tornadic supercells, however
this comes at a steep expense in the accuracy for nontornadic supercells. The lower accuracy for
nontornadic supercells is almost certainly due to fewer training samples of this class. Compara-
tively, the random oversampling also increases the accuracy for significantly tornadic supercells,
but without severely decreasing the accuracy for nontornadic supercells. This is consistent with
previous literature that oversampling is the a more robust technique for dealing with imbalanced
datasets than undersampling [17].

In summary, these results suggest that the imbalanced dataset is a meaningful contributor to
the lower accuracy for tornadic storms, however the simple method of randomly undersampling
(oversampling) the majority (minority) class can yield undesirable effects as well. Future work
should investigate alternative methods of dealing with imbalanced datasets in a CNN, including
more sophisticated undersampling/oversampling techniques [18] or using a Generative Adversarial
Network (GAN) to create synthetic sounding data for tornadic supercells.

5.5 Comparison between Random Forest and CNN

To compare the two machine learning techniques, Random Forest and CNN, we summarize the

accuracy and skill score results for all models constructed herein in Tables 5.9 (a) and (b).
Random undersampling (RUS) applied to Random Forest produces the highest class accuracy

for the significant tornado class when compared to all other models. At the same time, RUS results
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(a) CNN w/ RUS Confusion Table (b) Accuracy By Class

Actual Class | Total | Predicted | Accuracy
Predicted | [0] | [1] (2] [0] 2207 1249 56.59%
[0] 1249 | 431 64 (1] 1521 885 58.19%
(1] 818 | 885 129 [2] 311 118 37.94%
(2] 140 | 205 118
(¢) CNN w/ ROS Confusion Table (b) Accuracy By Class
Actual Class | Total | Predicted | Accuracy
Predicted | [0] 1] [2] [0] 2207 1700 77.03%
[0] 1700 | 511 75 [1] 1521 874 57.46%
[1] 431 | 874 124 [2] 311 112 36.01%
[2] 76 | 136 112

Table 5.8: Confusion table and individual class accuracy for the Convolutional Neural Network
complex model with random undersampling of the majority class (i.e., Class [0]). Class [0] refers
to nontornadic, class [1] refers to weakly tornadic, and class [2] refers to significantly tornadic.

in an approximate 14% decrease in class accuracy in both the nontornadic and weakly tornadic
categories in comparison to the base Random Forest model. Upon examining the forecasting skill
scores for significantly tornadic vs. weakly/nontornadic (class [2] vs. class [0,1]), given in Table 5.9
(b), the Random Forest RUS model has essentially the same skill in POD, FAR, CSI, and TSS as
the current STP forecasting scores, without any preconceived notions of what the data looks like.

Random oversampling (ROS) applied to CNN exhibits the best balance of increased accuracy
in the significantly tornadic category with less adverse impact other accuracy measures. With
36.01% class accuracy in the significant tornado category, this exceeds the accuracy of the base
Random Forest, ROS Random Forest, and Base CNN model performance for this class. While
there is a decrease in nontornadic and weakly tornadic class accuracy when compared to the base
CNN model, this decrease is significantly less severe than what occurs with random undersampling
(RUS) of CNN. CNN with ROS has a higher Probability of Detection (POD) score than the base
model of CNN, with a smaller increase in false alarm ratio (FAR) than CNN with RUS. Both the
Critical Success Index (CSI) and True-Skill Statistic (T'SS) scores improve when ROS is applied
to the base CNN model. Based on these skill score measures, while less accurate than current
STP forecasting, this model has similar performance to the base CNN model, but with improved
accuracy in the significantly tornadic class.

6 Conclusions and Future Work

Accurate prediction of significant tornadoes using machine learning algorithms is a relatively new
and challenging data science problem. Solutions to this problem could, in time, provide a useful
tool in severe weather forecasting and may provide additional insight into conditions surrounding
tornado formation. The work conducted herein represents an initial exploration into using environ-
mental sounding data that describes the pre-storm atmospheric conditions of a supercell to create
and train Random Forest classification and Convolutional Neural Network models for tornado pre-
diction. We present several Random Forest (RF) and Convolutional Neural Network (CNN) models
for tornado prediction, each model created and trained using Rapid Update Cycle (RUC) sounding
data for supercell storms. Feature analysis of the Random Forest model indicates that the pressure
variable has little impact on the classification process, which is consistent with known key physical
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(a) Comparison of Accuracy Scores

Random Forest CNN
Accuracy Base RUS ROS Base RUS ROS
Nontornadic 83.28% | 69.78% | 83.58% || 80.38% | 56.59% | 77.03%
Weakly-Tornadic 60.94% | 47.02% | 55.43% || 58.19% | 58.18% | 57.45%
Significantly-Tornadic | 23.84% [ 65.85% | 33.53% [ 26.69% | 37.94% | 36.01%
| Total Accuracy | 70.14% | 60.48% [ 68.43% [ 67.84% | 58.26% | 65.12% |

(b) Comparison of Forecast Skill Metrics

Random Forest CNN Forecasting
Score || Base | RUS | ROS | Base | RUS | ROS STP
POD 0.24 | 0.65 | 0.34 0.27 | 0.38 | 0.36 0.68
FAR 0.53 | 0.76 | 0.56 0.57 | 0.75 | 0.65 0.71
CSI 0.19 |0.21 |0.23 0.19 | 0.18 | 0.21 0.25
TSS 0.22 | 047 | 0.29 0.23 | 029 | 0.30 0.45

Table 5.9: Comparison metrics for Random Forest and CNN models (both without the pressure
variable). The Base Random Forest model refers to the revised model presented in Section 5.2. The
Base CNN model refers to the complex CNN model presented in Section 5.3. The Forecast Skill
metrics represent the Significantly Tornadic vs. Weakly /Nontornadic Skill Scores compared with
current forecasting ability. STP refers to the Significant Tornado Parameter from Equation (2.1).

attributes of tornado formation. Initial results point to the imbalanced dataset as being a barrier
for obtaining high accuracy in predicting the most severe types tornadic events. While random
oversampling and undersampling offer some improvement to these results, this comes at a cost in
other accuracy measures.

Future work should consider other techniques for handling imbalanced data, including: over-
sampling techniques involving the generation of new samples (e.g., SMOTE, ADASYN), under-
sampling using different selection rules (e.g. Near Miss, Nearest Neighbors), undersampling by
generation of new samples (K-means clustering), and combinations of over- and under-sampling.
Another technique that may also improve performance is to use a Generative Adversarial Net-
work (GAN) to synthetically create more data for the significantly tornadic class, creating a more
balanced training dataset. In addition to addressing the imbalanced data, expanding the dataset
from one-dimensional sounding profiles into three-dimensional profiles is another possible avenue
for improvement in tornado prediction using machine learning.
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