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Cardiac arrhythmias affect millions of adults in the U.S. each year. This
irregularity in the beating of the heart is often caused by dysregulation
of calcium in cardiomyocytes, the cardiac muscle cell. Cardiomyocytes
function through the interplay between electrical excitation, calcium sig-
naling, and mechanical contraction, an overall process known as calcium
induced calcium release (CICR). A system of seven coupled non-linear
time-dependent partial differential equations (PDEs), which model phys-
iological variables in a cardiac cell, link the processes of cardiomyocytes.
Through parameter studies for each component system at a time, we create
a set of values for critical parameters that connect the calcium store in the
sarcoplasmic reticulum, the effect of electrical excitation, and mechanical
contraction in a physiologically reasonable manner. This paper shows the
design process of this set of parameters and then shows the possibility to
study the influence of a particular problem parameter using the overall
model.

Keywords: Cardiac Arrhythmia, Calcium Induced Calcium Release, Re-
action Diffusion Equations, Finite Volume Method, Parallel Computing

1. Introduction

The leading cause of death in the United States is currently heart disease [M+14].
In order to continue searching for methods to combat heart disease, it is vital that
the heart and its underlying processes are understood with greater depth. The
importance of having a greater understanding of the heart provides the motivation
for this research.

The line of work of this project focuses on a single cardiac cell and uses a math-
ematical model in order to represent the electrical excitation, calcium signaling,
and mechanical contraction components of a cardiomyocyte. The study of a single
cardiac cell is important as it is the basic building block of cardiac behavior. The
original model for calcium induced calcium release (CICR) was introduced by Izu
and co-workers [IMBW01, IWB01] with a three variable model and included only
calcium signaling. This original model comprises the heart of the Calcium Signaling
component of the system indicated in Figure 1 (a). Figure 1 (b) sketches the domain
of the simulation. We use an hexahedron elongated in the z-direction for the shape
of a cell, since the focus of CICR research is on estimating reasonable physiological
parameter values. A key of the model[IMBW01, IWB01] is to place the calcium
release units (CRUs) on a regular lattice of size, for instance, 15× 15× 31 = 6,975
throughout the cell; Figure 1 (b) shows three z-planes of 3 × 3 CRUs as example.
At these many locations, calcium ions are released from the calcium store in the
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Figure 1. (a) The three components of the model and their links
labeled 1© to 4©. (b) The CRU lattice with spacings ∆xs, ∆ys,
∆zs throughout the three-dimensional cell.

sarcoplasmic reticulum (SR) into the cytosol of the cell, and CRUs can open (‘fire’)
and close repeatedly over time[IMBW01, IWB01].

The model was extended for the first time to include the Electrical Excitation
component in Figure 1 (a) [ADFI+15], which implemented a one-way interaction
from electrical excitation to calcium signaling indicated by link 1© in Figure 1 (a).
Studies with six variables in [ABM+16] extended the coupling to include a two-way
cycle between electrical excitation and calcium signaling by incorporating both
links 1© and 2© in Figure 1 (a). The 2016 paper [ABM+16] also introduced the
formulation of the complete eight variable model for all components in Figure 1 (a),
but not all model variables were used in the simulations, and the studies did not
incorporate the mechanical system.

The most recent work in [DFL+17a, DFL+17b] studies the introduction of the
Mechanical Contraction component in Figure 1 (a) by activating the links 3© and
4© in Figure 1 (a). This is facilitated by adding a buffer species whose concentration

can be related to the contraction of the cell. Thus, this work uses a model with
seven variables to represent the excitation-contraction coupling (ECC) occurring
in the cardiomyocyte, in which CICR is the mechanism through which electrical
excitation is coupled with mechanical contraction through calcium signaling. The
initial results for the newly extended model when studying model in its entirety
make simulations promising in their predictive capability.

From the previous work, the linkage of the mechanical contraction was existent,
but not physiologically correct with the previous set of parameters. The resulting
simulations may not have provided realistic behaviors of a cardiac muscle cell. As
such, it is important to create a set of parameters with physiologically reasonable
simulations. To do this, we reduce the seven variable model to the three variable
model from [IMBW01, IWB01] by setting key parameters to zero. This removes
several CICR components: the calcium store in the SR, electrical excitation, and
mechanical contraction. By this process, the additional CICR components are
negated as they all reduce to zero. From this base case, we reintroduce physi-
ologically reasonable values for these parameters in successive order. First, the
corresponding parameter for the calcium store was implemented, reconnecting this
component to the system. The selected parameters which negated electrical exci-
tation are then introduced. To complete the system, the key variable connecting
mechancial contraction to the rest of the model is included. By creating this set of
parameters that included the CICR components, we are eventually able to study
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the model as a whole rather than individual components. This paper shows the
design process of this set of parameters and then studies the influence of mechanical
contraction on the rest of the model for simulations to an extended final time. This
shows the possibility to study the influence of a particular problem parameter using
the overall model.

This paper is organized as follows: Section 2 details the seven variable model
used in this work. Section 3 specifies the numerical method used including its
parallelization and implementation. Section 4 is divided into several subsections.
Subsections 4.1-4.4 show the step-by-step implementation of the CICR components
of the seven variable model. With the complete construction of the set of parame-
ters, Subsection 4.5 presents a sample application using the new set of parameters.
Section 5 collects the conclusions of the work.
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2. Dynamics of a Cardiac Cell

This section details the seven variable model used in this work. The seven
variables of the model are calcium in the cytosol c(x, t), a florescent dye b

(c)
1 (x, t),

a contractile protein (troponin) b
(c)
2 (x, t), a contractile force b

(c)
3 (x, t), calcium in

the sarcoplasmic reticulum (SR) s(x, t), voltage V (x, t), and the potassium gating
function n(x, t). and are listed in Table 1 with their units and initial values. The
evolution of the system is modeled by the system of seven time-dependent, coupled,
non-linear reaction diffusion equations

∂c

∂t
= ∇ · (Dc∇c) +R

(c)
b1

+R
(c)
b2

+
(
JCRU+Jleak−Jpump

)
(1)

+ κJLCC +
(
Jmleak

−Jmpump

)
,

∂b
(c)
1

∂t
= ∇ · (D

b
(c)
1
∇b(c)1 ) +R

(c)
b1
, (2)

∂b
(c)
2

∂t
= ∇ · (D

b
(c)
2
∇b(c)2 ) +R

(c)
b2
, (3)

∂b
(c)
3

∂t
= ∇ · (D

b
(c)
3
∇b(c)3 ) +R

(c)
b3
, (4)

∂s

∂t
= ∇ · (Ds∇s)− γ(JCRU + Jleak − Jpump), (5)

∂V

∂t
= ∇ · (Dv∇V ) + τv

1

C

[
Iapp − gL(V − VL)− gK n (V − VK) (6)

− 2F
S τflux

JLCC − ω (Jmleak
− Jmpump

)
]
,

∂n

∂t
= ∇ · (Dn∇n) + τv λn cosh

(
V−V3

2V4

) (
n∞(V )− n

)
. (7)

The domain in our model is a hexahedron

Ω = (−6.4, 6.4)× (−6.4, 6.4)× (−32.0, 32.0) (8)

with units of µm with isotropic CRU distribution as sketched in Figure 1 (b) with
a sample of three z-planes of 3 × 3 CRUs. A typical cell has on the order of
15 × 15 × 31 = 6,975 calcium release units (CRUs) throughout the cell. A cell
is reasonably modeled by the hexahedral shape elongated in the z-direction, since
the focus of CICR research is on estimating correct physiological parameter values.
The model uses no-flux boundary conditions for all dependent variables, so that no
species escapes or enters the cell through the domain boundary ∂Ω; this corresponds
to the goal of modeling the behavior of a single cell. To finish the well-posed
statement of an initial-boundary value problem of parabolic type such as the seven
equations (1)–(7), values for all dependent variables need to be specified at the
initial time t = 0, which is done by the values in Table 1.

The following text will detail the mathematical model for each of the three sys-
tem components in Figure 1 (a) containing the variables in Table 1: the Calcium

Signaling component containing variables c, b
(c)
1 , b

(c)
2 , and s. the Electrical Excita-

tion component that contains V and n and is connected to the calcium signaling
in both the feedforward and feedback directions represented by link 1© and link 2©,

and the Mechanical Contraction component that contains b
(c)
3 and is also connected

to the calcium signaling in both the feedback and feedforward directions represented
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Table 1. Independent and dependent variables of the seven vari-
able model and their initial conditions. The concentration unit
M is shorthand for mol/L (moles per liter). The last column in-
dicates, which system component in Figure 1 (a) contains each
dependent variable: A = Calcium Signaling, B = Electrical Exci-
tation, C = Mechanical Contraction.

Variable Definition Initial value
x spatial position variable (x, y, z) µm
t time variable ms
c(x, t) calcium in the cytosol c0 = 0.1 µM A

b
(c)
1 (x, t) free flourescent dye in the cytosol 45.918 µM A

b
(c)
2 (x, t) free troponin in the cytosol 111.818 µM A

b
(c)
3 (x, t) inactive actin-myosin cross-bridges [X] 145.20 µM C
s(x, t) calcium in the SR s0 = 10,000 µM A
V (x, t) membrane potential (voltage) −50 mV B
n(x, t) fraction of open potassium channels 0.1 B

by links 3© and 4©. Table 1 also lists the initial conditions along with the units of all
variables. The initial value c0 = 0.1 µM is the basal level of calcium in the cytosol,
which is a physiologically measured value for the system at rest. The initial values

for all buffer species b
(c)
1 , b

(c)
2 , and b

(c)
3 are calculated from their reaction rates, see

following text, such that no reactions take place for cytosol calcium c = c0 at rest.
The initial value s0 = 10,000 µM for calcium in the SR is selected very high, so
that the amount of calcium in the store is not a limiting factor for the release of
calcium at first; this is a common technique to promote non-trivial behavior of the
model in simulations. The initial values for membrane potential V and fraction of
open potassium channels n represent the resting state of the electrical system of
the cell.

Tables 2 and 3 contain the parameters in the PDEs of the calcium system with
their values (if fixed) and units; some of the values are varied in the experiments in
Section 4. The coefficients Dc, Db

(c)
i

, and Ds are the 3× 3 diffusivity matrices for

Ca2+ in the cytosol, buffer species i in the cytosol, and Ca2+ in the SR, respectively;
these matrices are diagonal, as indicated in Table 2, with potentially different values
in the x-, y-, z-directions, or potentially zero, if the species does not diffuse.

The calcium signaling portion of the model consists of the equations (1)–(5). The

reaction terms R
(c)
bi

describe the reactions between calcium and the buffer species.

They are the connections between (1)–(4). More precisely, we have

R
(c)
b1

(
c, b

(c)
1

)
= − k+

b
(c)
1

c b
(c)
1 + k−

b
(c)
1

(
b
(c)
1,total − b

(c)
1

)
, (9)

for reaction between cytosol calcium and the flourescent dye.
When troponin binds to Ca2+, the protein as a whole changes shape: this not

only allow actin-myosin cross-bridges to form, but also traps the calcium in its con-
nection to the troponin so that the disassociation rate of troponin binding to Ca2+

decreases dramatically. To account for this, the shortening factor ε describes how
the separation of troponin and calcium has been physically, but not chemically, im-
paired. When there are open CRUs that resultantly release calcium in the cytosol,
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Table 2. Parameters for calcium signaling.

Variable Definition Values/Units

Dc diffusivity matrix for c(x, t) diag(0.15,0.15,0.3) µm2/ms

D
b
(c)
1

diffusivity matrix for b
(c)
1 diag(0.01,0.01,0.02) µm2/ms

D
b
(c)
2

diffusivity matrix for b
(c)
2 diag(0.00,0.00,0.00) µm2/ms

D
b
(c)
3

diffusivity matrix for b
(c)
3 diag(0.00,0.00,0.00) µm2/ms

Ds diffusivity matrix for s(x, t) diag(0.78,0.78,0.78) µm2/ms

R
(c)
bi

reactions of cytosol Ca2+ with buffers µM/ms

k+
b
(c)
1

forward reaction coefficient for b
(c)
1 0.080 (µM ms)−1

k+
b
(c)
2

forward reaction coefficient for b
(c)
2 0.100 (µM ms)−1

k+
b
(c)
3

forward reaction coefficient for b
(c)
3 0.040 ms−1

k−
b
(c)
1

reverse reaction coefficient for b
(c)
1 0.090 ms−1

k−
b
(c)
2

reverse reaction coefficient for b
(c)
2 0.100 ms−1

k−
b
(c)
3

reverse reaction coefficient for b
(c)
3 0.010 ms−1

b
(c)
1,total total amount of b

(c)
1 in the cytosol 50 µM

b
(c)
2,total total amount of b

(c)
2 in the cytosol 123 µM

b
(c)
3,total total amount of b

(c)
3 in the cytosol 150 µM

γ ratio of volume of cytosol to SR 14

Jleak calcium leak from SR 0.3209684 µM/ms
Jpump calcium transfer from cytosol to SR µM/ms
Vpump maximum pump rate 4 µM/ms
Kpump pump sensitivity to Ca2+ 0.184 µM

npump Hill coefficient for pump function 4.0

JCRU calcium flux from SR to cytosol via CRUs µM/ms
O gating function for JCRU 0 or 1

Jprob probability of CRU opening 0 to 1
xs three-dimensional vector for CRU location µm
∆xs CRU spacings in x 0.8µm

∆ys CRU spacings in y 0.8µm
∆zs CRU spacings in z 2.0µm
σ̂ maximum rate of release 110 µMµm3/ms

δ(x− x̂) Dirac delta distribution 1/µm3

urand uniformly distributed random variable 0 to 1
Pmax maximum probability for release 0.3

Kprobc sensitivity of CRU to cytosol calcium 2 µM
nprobc Hill coefficient for probability function 4

Kprobs sensitivity of CRU to SR calcium 550 µM

nprobs Hill coefficient for probability function 4

this chain of changes of variables increases in severity. However, after t = 5 ms
of being open, the CRUs close and remain in a refractory state for t = 100 ms.
During this period, the unbinding of troponin and calcium increase to the intial
rate of unbinding and myosin cross-bridges become inactive. This results in these
terms returning to their orignal states. This cycle is continuous triggered and reset

by the calcium waves produced by a cardiomyocyte. Note, again, that R
(c)
b2

remains
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Table 3. Parameters for electrical excitation and mechanical con-
traction with base units of mho = (s3A2)/(kg m2) and F =
(s4A2)/(kg m2).

Variable Definition Values/Units

Dv diffusivity matrix for V (x, t) diag(100,100,100) µm2/ms

Dn diffusivity matrix for n(x, t) diag(0,0,0) µm2/ms
τv scaling factor in voltage equation 0.1 µM µm3/ms

τflux scaling factor in JLCC term 0.1

V1 potential at which m∞ = 0.5 −1.0 mV
V2 reciprocal of slope of voltage dependence of m∞ 15.0 mV

V3 potential at which n∞ = 0.5 10.0 mV

V4 reciprocal of slope of voltage dependence of n∞ 14.5 mV
VL equilibrium potential for leak conductance −50 mV

VCa equilibrium potential for Ca2+ conductance 100 mV

VK equilibrium potential for K+ conductance −70 mV
C membrane capacitance 20 µF/cm2

Iapp applied current 50 µA/cm2

gL maximum/instantaneous conductance for leak 2 mmho/cm2

gCa maximum/instantaneous conductance for Ca2+ 4 mmho/cm2

gK maximum/instantaneous conductance for K+ 8 mmho/cm2

m∞ fraction of open calcium channels at steady state 0 to 1

n∞ fraction of open potassium channels at steady state 1
λn maximum rate constant for opening of K+ channels 0.1 ms−1

JLCC influx of calcium via L-type calcium channels µM/ms

S surface area of the cell 3604.48 µm2

F Faraday constant 95484.56 C/mol
κ scaling factor of JLCC 0.1

ω feedback strength (scaling factor) for Ca2+ efflux 100 µA ms/µM cm2

Jmleak leak of calcium via L-type calcium channels 0.1739493 µM/ms
Jmpump pump of calcium via L-type calcium channels µM/ms

Vmpump maximum pump rate 0.3 µM/ms
nmpump membrane pump Hill coefficient 4
Kmpump membrane pump Ca2+ sensitivity 0.18

[XB]0 initial concentration of active cross-bridges 142.6805 µM

ε shortening factor 0 to 1

Fmax maximum force by actin-myosin crossbridges 1 µN
ks stiffness of actin filament 0.025 N/m

a function of cytosol calcium concentration c(x, t) by its equation

R
(c)
b2

(
c, b

(c)
2

)
= − k+

b
(c)
2

c b
(c)
2 +

k−b(c)2

ε

 (
b
(c)
2,total − b

(c)
2

)
(10)

with

ε = exp

(
Fmax ks

(
b
(c)
3,total − b

(c)
3 − [XB]0

b
(c)
3,total − [XB]0

))
(11)

and [XB]0 = b
(c)
3,total − b

(c)
3 (x, 0). This shortening factor ε links 3© and 4© in Fig-

ure 1 (a). It is important to note that the disassociation rate of troponin binding
to Ca2+ is highest when the calcium concentration in the cytosol is lowest.

The shortening factor refers back to the concentration of b
(c)
3 (x, t), the actin-

myosin cross-bridges, and to the force that their linkage generates. It is scaled
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by the maximum possible contractile force Fmax, the actin stiffness ks, and the
proportion of active to inactive actin-myosin cross-bridges. As the proportion of
active actin-myosin cross-bridges increases due to an increase in bounded troponin,

the value of b
(c)
3,total − b

(c)
3 − [XB]0 increases. This results in a larger value of ε. As

ε becomes larger, the rate at which the bounded troponin unbinds slows down. As
described earlier, the lack of calcium provided by CRU resting periods results in a
reset in this mechanism.

The contractile proteins in question, though considered as a single species, are
the combination of actin and myosin when linked via cross-bridges. This linkage

is made possible by Ca2+ binding to troponin, the cytosol buffer species b
(c)
2 (x, t):

it is this binding that allows the actin-myosin cross-bridges to form. The cytosol

species, b
(c)
3 (x, t), describes these actin-myosin cross-bridges and constructs a third

cytosol reaction term

R
(c)
b3

(
c, b

(c)
2 , b

(c)
3

)
= −k+

b
(c)
3

(
b
(c)
2,total − b

(c)
2

b
(c)
2,total

)2

b
(c)
3 + k−

b
(c)
3

(b
(c)
3,total − b

(c)
3 ). (12)

Notice that this is not the same as the generic pattern for buffer species reaction
terms from the initial model. There is no immediately clear dependence on cytosolic
calcium c(x, t). However, while c(x, t) is not explicitly included, it is present in the

proportion involving troponin, b
(c)
2 (x, t), which itself depends explicitly on cytosol

calcium levels; R
(c)
b3

, like the other two reaction equations, does in fact depend on

the cytosol calcium concentration. Unlike the other two reaction equations, R
(c)
b3

indirectly impacts calcium levels.
These two reaction terms (10) and (12) connect the three components of our

model. The calcium signaling is linked to the pseudo-mechanical contraction by
the cross-bridge term, and the pseudo-mechanical contraction is in turn connected
to the calcium signaling through the inclusion of the cytosol calcium concentration
in the modified reaction equation for troponin. Thus all links 1©, 2©, 3©, and 4©
in Figure 1 (a) are established, and thus the three systems of the model are fully
linked.

Note that in the reaction terms (9), (10), and (12), b1
(c), b2

(c), and b3
(c) are the

amount of unbound buffer known as “free” buffer. The constants b
(c)
i,total, i = 1, 2, 3,

denote the total bound and unbound buffer, thus leaving the differences b
(c)
i,total−bi

(c)

in the reaction terms to be the buffer bound with cytosol calcium c. Since the model
uses no-flux boundary conditions, no buffer species escapes or enters the cell, thus

we only need to track the “free” buffer species and use b
(c)
i,total − bi

(c) for the bound

species. The values for the constants b
(c)
i,total, i = 1, 2, 3, are model parameters and

specified in Table 2.
The flux terms JCRU , Jleak, and Jpump in (1) describe the calcium induced release

of Ca2+ into the cytosol from the SR, the continuous leak of Ca2+ into the cytosol
from the SR, and the pumping of Ca2+ back into the SR from the cytosol. The
terms JLCC , Jmleak

, and Jmpump describe the fluxes of calcium into and out of the
cell via the plasma membrane. The coupling between (1) and (5) is achieved by
the three flux terms shared by both.

More precisely, JLCC , Jmleak
, and Jmpump

in (1) describe the fluxes of calcium
into and out of the cell via the plasma membrane. Jpump replenishes the calcium
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stores in the SR; it increases SR calcium concentration by decreasing cytosol calcium
concentration. Jleak is a continuous leakage of those SR calcium stores into the
cytosol; it increases cytosol concentration by decreasing SR calcium concentration.
The pump term

Jpump(c) = Vpump

(
cnpump

K
npump
pump + cnpump

)
(13)

is thus a function of cytosol calcium c(x, t). The leak term Jleak is a constant
defined by

Jleak = Jpump(c0), (14)

which balances Jpump(c) at basal level c0 = 0.1 µM of cytosol calcium. The pump
term Jpump, a function of cytosolic calcium c(x, t), consists of the maximum pump
velocity Vpump multiplied against the relationship between c(x, t) and the pump
sensitivity Kpump; the exponent npump refers to the Hill coefficient (quantifying the
degree of cooperative binding) for the pump function. This has the practical effect of
multiplying the maximum possible pump velocity against a number between 0 and
1, exclusive. Jleak, which continuously leaks calcium into the cytosol from the SR,
is simply Jpump evaluated at the basal cytosolic calcium concentration c0 = 0.1µM .
As noted, Jpump has two roles, namely to balance Jleak in the absence of sparking,
but also to balance JCRU under conditions of active calcium release.

The term JCRU in (1) is the Ca2+ flux into the cytosol from the SR via each
individual point source at which a CRU has been assigned. The effect of all CRUs
is modeled as a superposition such that

JCRU (c, s,x, t) =
∑
x̂∈Ωs

σ̂
s(x, t)

s0
O(c, s) δ(x− x̂) (15)

with

O(c, s) =

{
1 if urand ≤ Jprob,
0 if urand > Jprob,

(16)

where

Jprob(c, s) = Pmax

(
cnprobc

K
nprobc

probc
+ cnprobc

) (
snprobs

K
nprobs

probs
+ snprobs

)
. (17)

The effect of each CRU is modeled here as a product of three terms: (i) Similarly
to how in Jpump the maximum pump rate is scaled against the concentration of
available cytosol calcium, the maximum pump rate is scaled against the concentra-
tion of available cytosol calicum, the maximum rate of Ca2+ release σ̂ is scaled here
against the ratio of calcium concentration in the SR. (ii) Following the same pat-
tern a maximum value multiplied against some scaling proportion between 0 and
1 the gating function O(c, s) has the practical effect of “budgeting” the calcium
SR stores such that when the stores are low, the given CRU becomes much less
likely to open; each CRU is assigned a uniformly distributed random value urand,
which is compared to the single value returned by the CRU opening probability
Jprob to determine whether or not the given CRU will open. Jprob is characterized
after traits of a CRU, which open for 5 ms and then proceed to close and remain
in a refractory state for the following 100 ms. (iii) The Dirac delta distribution
δ(x − x̂) models each CRU as a point source for calcium release, which is defined
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by requiring δ(x − x̂) = 0 for all x 6= x̂ and
∫
R3 ψ(x)δ(x − x̂) dx = ψ(x̂) for any

continuous function ψ(x).
The linking between calcium signaling and electrical excitation consists of (6)–

(7). The membrane potential of the cell depends on both the cytosol calcium ion
concentration and also on the cytosol potassium ion (K+) concentration [BHJ+12,
ML81]. In our model, the ω term in (6) quantifies a dependence of V on c to
complete the coupling from the chemical to the electrical systems in link 2© in
Figure 1 (a) [ABM+16], after c in (1) already contains several terms that depend
on V to implement link 1© in Figure 1 (a). The Ca2+ conductance is much faster
than the K+ conductance, so the calcium conductance can be approximated as m∞
or instantaneously steady-state at all times; the potassium conductance requires a
separate description in (7). Needed parameter functions in (6)–(7) are

m∞(V ) =
1

2

(
1 + tanh

(
V − V1

V2

))
, (18)

n∞(V ) =
1

2

(
1 + tanh

(
V − V3

V4

))
. (19)

The connection between (1) and (6), link 1© in Figure 1 (a), the link from the
electrical system to the calcium system, comes through

JLCC =
τflux
2F

S gCam∞(V ) (V − VCa), (20)

the only calcium flux term to involve voltage. Note the parameter κ in (1), which is
an external scaling factor for JLCC rather than an intrinsic physiological component;
if the value of κ is set to 0, the connection, link 1© in Figure 1 (a), is effectively
switched off and the calcium dynamics are then modeled as though voltage were not
involved. The surface area, S, of the cell is included in light of the fact that JLCC
describes the influx of calcium through L-type calcium channels (LCCs), which are
present in the enclosing plasma membrane of the cell: the surface area of the cell
is the surface area of the membrane.

We model the effect of the cytosol calcium concentration on the voltage by
treating the calcium efflux term (Jmpump

− Jmleak
) as equivalent to the sodium-

calcium exchanger current: we are thus able to describe the current generated by
the sodium-calcium exchange as a function of simple calcium loss.

The individual components of the calcium efflux term are near-duplicates in form
of the earlier Jpump and Jleak functions in (13) and (14), respectively. As Jpump
described the removal of calcium from the cytosol and its transfer into SR stores,

Jmpump
(c) = Vmpump

(
cnmpump

K
nmpump
mpump + cnmpump

)
(21)

describes the removal of calcium from the cytosol and its transfer to outside the
cell across the membrane. The leak term Jleak described a gradual leak of calcium
into the cytosol from the SR, while JCRU described an abrupt, high-concentration
(high relative to the leak) release of calcium into the cytosol from the SR. Similarly,

Jmleak
= Jmpump

(c0) (22)

describes a gradual leak of calcium into the cytosol from outside the cell via the
plasma membrane, while JLCC describes a sudden spike of calcium release into the
cytosol via the LCCs.
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The seven variable model presented in this section reduces to the three variable
model in the original sources [IMBW01, IWB01] by the following choies: setting γ
= 0,τv = 0, ω = 0, κ = 0, and Fmax = 0. With these parameters set to 0, linkages
1©, 2©, 3©, and 4© in Figure 1 (a) are all cut off.
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3. Numerical Method

In order to do calculations for the CICR model, we need to solve a system of time-
dependent parabolic partial differential equations (PDEs). These PDEs are coupled
by several non-linear reaction and source terms. The current simulations use ns = 7
physiological variables in (1)–(7). The domain in our model is a hexahedron Ω in (8)
with isotropic CRU distribution as shown in Figure 1 (b). A typical cell has on the
order of 15×15×31 = 6,975 calcium release units (CRUs) throughout the cell. A cell
is reasonably modeled by the hexahedral shape elongated in the z-direction, since
the focus of CICR research is on estimating correct physiological parameter values.
Taking a method of lines (MOL) approach [Str04] to spatially discretize this model,
we use the finite volume method (FVM) as the spatial discretization to ensure mass
conservation on the discrete level and also to accommodate advection terms in the
future, with N = (Nx + 1) (Ny + 1) (Nz + 1) control volumes. Applying this to
the case of the ns PDEs results in a large system of ordinary differential equations
(ODEs). A MOL discretization of a diffusion-reaction equations with second-order
spatial derivatives results in a stiff ODE system. The time step size restrictions, due
to the CFL condition, are considered too severe to allow for explicit time-stepping
methods. This necessitates the use of a sophisticated ODE solver such as the family
of implicit numerical differentiation formulas (NDFk). We use Newton’s method
as the non-linear solver, and at each Newton step we use the biconjugate gradient
stabilized method (BiCGSTAB) or other Krylov subspace methods as the linear
solver. Complete details of the numerical method can be found in [SHK+15] and
the references therein.

Table 4. Sizing study with ns = 7 variables using double pre-
cision arithmetic, listing the mesh resolution Nx × Ny × Nz, the
number of control volumes N = (Nx+1) (Ny+1) (Nz+1), the num-
ber of degrees of freedom (DOF) neq = nsN , the number of time
steps taken by the ODE solver up to final time tfin = 100 ms, and
the predicted and observed memory usage in GB for a one-process
run.

Mesh resolution N DOF neq time steps memory (GB)
Nx ×Ny ×Nz predicted observed
32× 32× 128 140,481 983,367 2667 0.125 < 1
64× 64× 256 1,085,825 7,600,775 3295 0.963 1.093

128× 128× 512 8,536,833 59,757,831 3867 7.569 8.476
256× 256× 1024 67,700,225 473,901,575 4470 60.024 67.103

While the form of the PDEs in (1)–(7) is customary, the thousands of point
sources at the calcium release units (CRUs) in the forcing terms imply that standard
codes have difficulty. This explains why our research centered around creating a
special-purpose code [Gob08, HGI04, SGTK12, SHK+15]. Additionally, we leverage
the regular 3-D shape of the domain to program all methods in matrix-free form.
Table 4 demonstrates thus, how despite fully implicit time-stepping, even relatively
fine meshes use only reasonable amounts of memory. This provides the key benefit
now for the complete complex model with complete sophisticated numerical method
stack, even with 7 or 8 variables, to fit into the memory of a single cluster node
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with extended memory. The table also shows how large the number of degrees
of freedom (DOF) is, that is, the number of variables that have to be computed
at every time step. With even modest meshes, there are millions of unknowns,
and possibly hundreds of millions for fine meshes. This characterizes the numerical
problem that needs to be tackled to resolve the large number of thousands of calcium
release units (CRUs) in a cell. Note that Table 4 presents a numerical test on a
shortened time frame with final time tfin = 100 ms, which is large enough to include
significant non-linear behavior, but small enough to allow for reasonable run times.
In the following result sections, final times of tfin = 1,000 ms and tfin = 5,000 ms
are used, as specified in the subsections as well as summarized in Table 5

The implementation of this model is done in C using MPI and OpenMP to paral-
lelize computations. Parallelization is accomplished through block-distribution all
large arrays to all MPI processes. We split of the mesh in the z-direction with one
subdomain on each of the parallel processes. MPI commands such as MPI_Isend and
MPI_Irecv, which are non-blocking point-to-point communication commands, send
messages between neighboring processes. The collective command MPI_Allreduce

is used for the computation of scalar products and norms.
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4. Results

This section shows the results of simulations for the seven variable model de-
tailed in Section 2 with variables aand their values at the initial time t = 0 ms
specified in Table 1. The following subsections show physiological output that is
possible through long-time computational simulations to a final time that is large
enough to include several calcium waves. Tables 2 and 3 specify all model parame-
ters, their names, and their values or ranges with units, except certain parameters
that are varied in this section. Table 5 specifies for each of the subsections, what
values are used. In Tables 2 and 3, the values of the variables are selected from
Table 5. Subsection 4.1 connects to the original modeling in [IMBW01, IWB01] by
performing simulations with parameters chosen such that the seven variable model
reduces to the original three variable model used in these papers. The following
Subsections 4.2, 4.3, and 4.4 successively vary parameters shown in Table 5, in ad-
dition to the parameter changes made in the previous subsections. This approach
allows for the construction of the entire model by adding new components on top
of previous ones. With the entire model pieced together, we can test the model as
a whole. Subsection 4.5 briefly exhibits the power of the physiologically connected
model by showing the impact of Fmax = 1 and Fmax = 100 on the entire system for
t = 5,000 ms, a longer duration of time. These results show the power of the model
with the physiologically linked components and motivate further studies using this
model.

Table 5. Parameter differences between cases in this section.

Parameter Base case SR store Voltage system Mechanical system
Sec. 4.1 Sec. 4.2 Sec. 4.3 Sec. 4.4 Sec. 4.5

γ 0.0 0.01 to 1000 14.0 14.0 14.0
τv 0.0 0.0 0.1 0.1 0.1
Vmpump

0.0 0.0 0.001 to 1 0.3 0.3
ω 0.0 0.0 0.1 to 1000 100.0 100.0
κ 0.0 0.0 0.001 to 10 0.1 0.1
Fmax 0.0 0.0 0.0 0.001 to 100 1, 100
tfin 1000 1000 1000 1000 5000
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4.1. Base Case. The seven variable model in (1)–(7) reduces to the three variable
model in the original sources [IMBW01, IWB01] by the following choices: setting
κ = 0, Fmax = 0, and γ = 0. When looking at the seven equations, changing these
parameters to zero is most appropriate as they result in removing the calcium store
in the Sarcoplasmic Reticulum (SR) and the effects of mechanical contraction.

The final addition of the three variable model, electrical excitation, can be abso-
lutely removed by setting (6 and 7) to zero. Changing τv = 0 acheives this. These
three components are only unique to the seven variable model. To confirm that the
first equation, (1), acts identically to the first equation in [IMBW01], we must be
absolutely sure that Jmleak

− Jmpump
= 0. To do this, we change Vmpump

= 0 and
ω = 0, resulting in (21) negating to zero and both sides of (22) equaling zero. With
these additional changes, the seven variable model functions identically to the three
variable model in the original sources [IMBW01, IWB01].

The first set of plots, in Figure 2, display the locations of open calcium release
units by a dot. The more dark dots are visible, the more CRUs are open at that
specific time. More specifically, since one open CRU tends to promote neighboring
CRUs to open through the diffusion of calcium, a clustering of dots indicates a
region of several open CRUs. Note that we start with initial conditions in Table 5
for which there are no open CRUs and the right-hand sides of all equations in (1)–
(7) are zero. Thus, these simulations represent a study in spontaneous sparking,
in which some CRUs happen to open according to the probabilistic model in (15)–
(17). This model embodies the effect of a higher concentration of cytosol calcium
increasing the probability for a CRU to open in (17). The result of this spontaneous
self-initiation is seen in the first sub-plot in Figure 2, where a number of CRUs in
one region of the cell have opened by t = 100 ms. The study of self-initiation was
the original purpose of this model of calcium induced calcium releases [IMBW01,
IWB01] and only required modest final times. The extension of the simulations to
larger final times allows to study if the opening and closing of CRUs self-organizes
into a sustained wave. This is seen in the following sub-plots in Figure 2. The
model requires CRUs to close for 100 ms after opening for 5 ms; thus the sub-plots
indicate that the original cluster of open CRUs travels in both directions through
the elongated direction of the cell and roughly repeats every 100 ms. Movies of the
full results including intervening times confirm this behavior.

Figure 3 shows a collection of isosurface plots for calcium concentration in the
cytosol. An isosurface plot displays the surface in the three-dimensional cell, where
the species concentration is equal to a critical value, stated in the caption of the
figure, here 65 µM for the concentration of cytosol calcium c(x, t). Blue represents
when the species’ concentration equals 65 µM. For densities lower than 65 µM, there
are no markings. More extreme concentrations of each species are indicated with
the spectrum from yellow to red, where darker hues are more intense in density. As
we can see from the sub-plots in Figure 2, we have an original cluster in the middle
at t = 100 ms that diffuses towards the ends of the cell and repeats on a 100 ms
cycle. Due to the connection of the calcium in the cytosol with open CRUs through
the effect of calcium induced calcium release, calcium concentrations in the cytosol
corresponds to locations of open CRUs.

This physiological concept is shown with each sub-plot in Figure 3 where the
species’ concentration colors are in agreement with the amount of open CRUs in
Figure 2 at that time.
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The concentrations of b
(c)
1 (x, t) and b

(c)
2 (x, t) have the same charactersitics as

the calcium levels in the cytosol since they are all influenced in the same way,
therefore, we do not show them. The remaining isosurface plots for the base case are
not included because each of the additional species concentration remain constant.
Resultantly, each subplot would remain uneventful. As the CICR components are
added to the base case in the following subsections, the respective isosurface plots
will also be included.
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Figure 2. Open calcium release units throughout the cell.

Figure 3. Concentration of c(x, t) with a critical value of 65 µM.
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4.2. Adding the Calcium Store in the Sarcoplasmic Reticulum (SR). To
add the calcium store in the Sarcoplasmic Reticulum (SR), (5) must provide non-
constant concentrations of calcium. We can set γ = 14 to remove the previous
reduction of this equation in Subsection 4.1. These values for γ and Ds are from
Table 5.

We can look at the isosurface plots for calcium in the SR to determine the func-
tionality of the calcium store in the SR with the two changed parameters. The
seven equations allows for a range of concentrations for calcium in the SR from
0.01 to 10,000 µM. Figure 4 shows a collection of isosurface plots for calcium con-
centration in the SR with a critical value of 5,000 µM. Concentrations more extreme
than the critical value are represented with a spectrum start from blue to yellow,
where yellow represents concentrations closest to the maximum. When looking at
Figure 4 the lighter concentrations of calcium in the SR directly correspond to the
extreme concentrations of calcium throughout the cell.

Figure 4 shows that the calcium store was implemented. Unlike in Subsection 4.1
where the concentration of calcium in the SR remained constant at 10,000 µM, the
subplots in Figure 4 contain numerous examples of varying concentration of calcium
in the SR.

Setting γ = 14 was determined through an analysis of several other cases with
different values for γ. From the range that was tested, 0.01 to 1000, every value
eventually resulted in continuous calcium waves. This is expected as adding the
caclium store does not hinder the continuous calcium waves. However, γ values
100 and above resulted in a range of calcium concentration in the SR that included
negative values. The seven equation model is limited for large γ values as it does
not account for negative concentrations, which physiologically are inconceivable.
Simulations for γ values 1 and below resulted in insignificant changes to the calcium
in the SR, showing that the smaller values of gamma do not sufficiently add the
decrease in calcium from the store according to the increase of calcium in the
cytosol. From the parameter study, γ = 10 was idealistic as continuous calcium
waves are apparent and an appropiate calcium store was successfully implemented.
In this paper, γ = 14 is used to keep consistency with previous studies that used
γ = 10. No significant differences can be found between γ = 14 and γ = 10.

The CRU plots and the isosurface plots for c(x, t), b
(c)
1 (x, t), and b

(c)
2 (x, t) re-

mained nearly identical to the plots in Subsection 4.1 This shows that the imple-
mentation of the calcium store did not heavily influence the concentrations of free
flourescent dye from (2) and free troponin from (3).
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t = 900 t = 1,000

Figure 4. Concentration of s(x, t) with a critical value of 5000 µM.
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4.3. Adding the Effect of Electrical Excitation. Implementing the effect of
electrical excitation on top of the calcium store in the SR is achieved through
activating (6) and (7). From the reduced version of the seven variable model,
setting τv = 0.1µM µm3/ms, Vmpump

= 0.3µM /ms, ω = 100, and κ = 0.1 results
in functional equations for electrical excitation. We can make several other cases
with various values of each varied parameter to see how different extremes for each
variable changes the resulting calcium wave.

From Subsection 4.2, we performed three separate one-dimensional studies in
order to find values for Vmpump

, ω, and κ that fully add the voltage system without
significant changes to the various species concentrations in Subsection 4.2.

The first one-dimensional study varied Vmpump
from 0.001 to 1. Changing this

parameter a non-zero value allows for the functionality of the function (21) and
consequently (22). Both Vmpump and Vmleak

have an influence on equations (1) and
(6). From this study, the largest value that retains the continous calcium waves
described in Subsection 4.1 was Vmpump

= 0.3µM /ms.
With this fixed value for Vmpump

, we can perform a one dimensional study of

ω, the feedback strength for Ca2+ efflux, and following an additonal study of κ.
When varying ω, we noted that from ω = 0.1 to 1000, the CRU plots are almost
identical to our CRU plots from Subsection 4.2. We this as such, can set ω = 100.0,
a fixed value, as all tested cases of ω simulated similar results to the plots shown
in Subsection 4.2.

To fully implement the voltage system, we need to test values of κ to find what
nonzero value of κ would allow for continous calcium waves with a fully implemented
voltage system and calcium in the SR. When varying κ from 0.001 to 10, we noted
that κ = 0.1 was the largest value in which the calcium waves were comprable to
the previous subsections.

Setting κ = 0.1, ω = 100, τv = 0.1µM µm3/ms, and Vmpump
= 0.3µM /ms

in addition to the predetermined values for the parameters in Table 5 allows for
the full implementation of the voltage system without fundamentally changing the
outflow of calcium.

The CRU plots and the isosurface plots for c(x, t), b
(c)
1 (x, t), and b

(c)
2 (x, t) did

not significantly change with the implementation of the voltage system. However,
there are more notable differences when comparing the calcium concentrations of
the stores shwon in Figure 5 and Figure 4. In Figure 5, the latter plots have
colorless space between each clump of calcium. As these spaces are representative
of lower calcium concentrations, these plots show that the store in the SR has
lower concentrations of calcium. Larger time studies may indicate that the calcium
concentration in the store continues to lower past t = 100 ms.

The voltage plot in Figure 6 shows that the electrical system was implemented.
The voltage plots from the previous subsections remained constant at −50 mV .
In Figure 6, there is a clear repetition of the voltage rising up to approximately 26
mV back down to approximately -23 mV. This figure confirms that external voltage
is present. Based on these comparisions, these plots maintain the same behaviors
from Subsection 4.2 with the addition of the voltage system.
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Figure 5. Concentration of s(x, t) with a critical value of 5000 µM.

Figure 6. Voltage levels throughout the cell over period of 1000 ms
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4.4. Adding the Effect of Mechanical Contraction. In the seven variable
model, mechanical contraction is described through (3) and (4). From the parame-
ters added in Subsection 4.3 shown in Table 5, a parameter study was performed on
the values for Fmax. By changing this parameter to nonzero values, we can study
the effects of mechanical contraction on top of the previously included calcium store
and electrical excitation. In additon to these set values, we created other cases with
various values for Fmax to note the physiological changes with various values of (3)
and (4).

For this parameter study, we tested a range from Fmax = 0.001 to Fmax = 100.
For Fmax values less than 1, there shortening factor remained the same, where after
about 125 ms ε began to cycle between a small range and remained this way up to
1000 ms. For Fmax = 100, the shortening factor loses its period, where the value
does not cycle. Rather, the shortening factor spikes up two times throughout the
1,000 ms. While Fmax = 10 maintains the cyling value of the shortening factor,
there is an apparent delay for the cycle to begin. Unlike the start time of 125 ms
for the lower values of Fmax, for Fmax = 10, the start time is 250 ms. Since the
simulations are only 1,000 ms in length the desired value for Fmax is 1.

As in the previous subsections, the CRU plots and the isosurface plots for c(x, t),

b
(c)
1 (x, t), and b

(c)
2 (x, t) appear to be extremely similar if not identical to plots from

the previous subsections. Additionally, the concentrations shown in Figures 5 and
6 remain the same with the addition of Fmax This shows that the implementation
of the mechanical contraction did not heavily influence the other components to
the extent of changing the system.

With Fmax set to a nonzero value, the shortening factor, described in (11),
is able to vary based on inactive actin-myosin cross-bridges described in (4). In
the previous subsections, the lack of the variance in the shortening factor led to
inability for the continuous contractions of the cross-bridges to take place. Unlike
the previous subsections, this shortening factor is able to vary in severity allowing
for the repetition of inactive cross-bridges switching to active ones. This repetitive
cycle is displayed in Figure 7. In previous subsections, the plots for inactive actin-
myosin cross-bridges remained constant throughout the 1,000 ms.

As in the previous subsections, the CRU plots and the isosurface plots for c(x, t),

b
(c)
1 (x, t), and b

(c)
2 (x, t) appear to be extremely similar to plots from the previous

subsections. Additionally, the concentrations shown in Figures 5 and 6 remain
the same with the addition of Fmax This shows that the implementation of the
mechanical contraction with the so-far chosen parameters did not heavily influence
the other components to the extent of changing the system.
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Figure 7. Concentration of b
(c)
3 (x, t) with a critical value of 50 µM.
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4.5. Influence of Fmax on the Entire System. With these set parameters de-
scribed in Subsection 4.1, we are able to test questions retaining to the entire
model. One example of this is the study of Fmax for the much longer final time
tfin = 5,000 ms rather than 1,000 ms on the seven variable model. From the
tested values for Fmax from 0.001 to 100, values 1 and 100 are shown in the plots
below. These values were determined through the parameter study of Fmax from
Subsection 4.4.

Figures 8 and 12 show plots of both the voltage V and shortening factor ε vs. time
for the model. While the content is different, the structure of the voltage plots is
identical to the voltage plots described in Subsection 4.3. The shortening factor ε
vs. time plots track the value of the shortening factor, ε, used in (3).

There are several differences between how each Fmax value affects the system.
Figures 8–11 are representative of the same simulations as in Subsection 4.4, except
the duration of time was extended from tf in = 1,000 ms to 5,000 ms. As previously
described, around 125 ms the calcium concentration in the cytosol shown in Figure 9
jumps from 0 to slightly less than 4 × 105 and slowly decreases as the calcium
concentration in the store depletes. In Figure 11, the calcium concentration in the
store drops at the same time. The calcium concentration in the store continues to

drop until about 2,500 ms, where it then levels out. The concentration of b
(c)
3 (x, t)

in Figure 10 drop at the same time as the calcium change in the cytosol. Once the

calcium in the cytosol depletes, the concentration of b
(c)
3 (x, t) returns to its initial

state.
When comparing Figures 8–11 using Fmax = 1 and Figures 12–15 using Fmax =

100, there are clear differences. In Figure 13, the calcium concentration jumps
from its initial state similarly to the calcium concentration of Figure 9. However, it
shortly returns to its initial state and remains so for several hundred milliseconds
before jumping back up. This spike back downards is not characterized in Figures 8–
11. The concentration around 1,000 ms jumps up to nearly 9×105, more than double
the peak concentration of calcium in the cytosol for Fmax = 1. Furthermore, the
range of concentration levels in 100 ms is much larger than in Figure 9. The calcium
in the store, shown in Figure 11, overall has a downard trend until around 3,000 ms,
where the calcium concentration in the store levels out. The calcium concentration
in the cytosol in Figure 9 correspondingly drops down to nearly 0. Similar to the

first spike of calcium in Figure 9, in Figure 10, the concentration of b
(c)
3 (x, t) drops

with the spike and almost returns to its initial state before dropping a second time
around 1,000 ms. The concentration remains relatively constant until the calcium

in the cytosol drops. At this point the concentration of b
(c)
3 (x, t) rises back up to

the same concentration as its initial state and remains around that level until the
final time tfin = 5,000 ms.

There are also notable differences between the plots of the shortening factor ε
vs. time in Figures 8 and 12. Both plots generally have the same characteristics as

the plots of b
(c)
3 . Where the value for ε is greater, the concentration of b

(c)
3 is lower.

Between the plots in Figures 8 and 12, the range of oscillation is much smaller in
Figure 12 than in Figure 8 during the period where the value of ε oscillates.

Unlike the other plots, the plots of voltage V vs. time in Figures 8 and 12 retain
consistency throughout the entire 5,000 ms. The voltage level in both plots oscilates
from a negative value to a positive value. It appears that the range of one oscillation
of voltage shrinks slightly as the calcium levels in the cytosol increase. Other than
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this, it appears that the change in Fmax does not have such a drastic impact on the
characteristics of voltage compared to the concentrations of each species of the cell.
As such, it appears that the influence of the mechanical system is directed towards
calcium signaling and therefore has an indirect influence on voltage. This might be
expected as there are no direct links between the mechanical system and electrical
excitation.
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Figure 8. Plots of voltage V and shortening factor ε vs. time with
Fmax = 1 for tfin = 5,000 ms.

Figure 9. Total concentration of c(x, t) vs. time with Fmax = 1
for tfin = 5,000 ms.

Figure 10. Total concentrations of b
(c)
3 (x, t) vs. time with Fmax =

1 for tfin = 5,000 ms.

Figure 11. Total concentrations of s(x, t) vs. time with Fmax = 1
for tfin = 5,000 ms.
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Figure 12. Plots of voltage V and shortening factor ε vs. time
with Fmax = 100 for tfin = 5,000 ms.

Figure 13. Total concentration of c(x, t) vs. time with Fmax =
100 for tfin = 5,000 ms.

Figure 14. Total concentrations of b
(c)
3 (x, t) vs. time with Fmax =

100 for tfin = 5,000 ms.

Figure 15. Total concentrations of s(x, t) vs. time with Fmax =
100 for tfin = 5,000 ms.
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5. Conclusions and Outlook

We successfully created a table of parameters in Section 4 that allow for a more
complete functioning model. This model includes the calcium store, electrical ex-
citation, and mechanical contraction of the cardiac muscle cell. Unlike before, this
table allows for the cohesion of all components of the model. With this, we are
able to study the model in its entirety. As an example, we showed some influences
of Fmax, a constant of the shortening factor, on the entire system over a period of
5,000 ms. When comparing a small and large value for Fmax, we noticed that the
influence of Fmax was much less extreme on the electrical excitation compared to
the calcium signaling. When comparing the plots of the relevant species of the sys-
tem, this conclusion becomes apparent. This is important as it allows us to grasp
a better understanding of the linkage between the mechanical system and calcium
signaling, shown by Link 1© in Figure 1.

Future research on this could look more in depth at different values of other
parameters with a final time of 5,000 ms. This would allow for studies on the
system for longer periods of time. Studying multiple cases for each parameter
value with randomized locations for calcium sparking would allow for more concrete
conclusions with a stronger representation of the physiological processes of the cell.
While this is one further area of study, this complete set of parameters opens many
areas to study the model in its entirety.
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