
Matthew Brewster is a junior majoring in mathematics with a minor in 
environmental science. He hopes to continue his education studying 
environmental science. Matthew is a member of the Undergraduate 
Training Program in Biology and Mathematics (UBM) and has partici-
pated in the Interdisciplinary Program in High Performance Comput-
ing at UMBC. Matthew is also a member of several honor societies. 
He would like to thank his advisor, Dr. Matthias Gobbert, for his guid-
ance, patience, and encouragement during the course of this project. 
He would also like to thank his friends, family, and everyone who 
supported him throughout his education at UMBC. 

MATTHEW  
BREWSTER   



ALTERNATIVES 
TO THE 
MATHEMATICAL 
SOFTWARE 
PACKAGE MATLAB 
IN RESEARCH  
AND EDUCATION

AS A NEW FRESHMAN, I ENROLLED IN DR. NAGARAJ NEERCHAL’S 
First  Year Seminar, Crime Busting with Mathematics and Statistics. Dr. 
Neerchal suggested that I contact Dr. Matthias Gobbert about research 
opportunities. The following summer, I applied to the Interdisciplinary 
Program in High Performance Computing at UMBC, and wrote a tech-
nical report on my comparative analysis of MATLAB, Octave, FreeMat, 
and Scilab. A year later, I took Introduction to Parallel Computing with 
Dr. Gobbert, and learned the basics of parallel computing and how it 
is applied to numerical algorithms. I also helped extend my technical re-
port to R and IDL, along with Sai Popuri and Oana Coman. In addition 
to my research with Dr. Gobbert, I am involved in the UBM Program as 
part of the Erill-Gobbert group for bioinformatics research. 
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INTRODUCTION

THERE ARE SEVERAL NUMERICAL COMPUTATIONAL  
packages that serve as educational tools and are available for  
commercial use. MATLAB (www.mathworks.com) is the most  
widely used of these packages. MATLAB is used in many cours-
es at UMBC and in a wide range of disciplines, but many of these 
courses only utilize the basic features of the software that require  
limited computer power. It would be valuable to students to have a free  
alternative with the necessary features that can be used on a laptop or 
home computer. 

This study examines three free numerical computational pack-
ages: Octave (www.octave.org), FreeMat (www.freemat.org), and 
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Scilab (www.scilab.org), and analyzes the compatibility of each  
package with MATLAB. We use a comparative approach to the  
packages based on a MATLAB user’s perspective. We perform  
both basic and complex studies on each of the four software  
packages. The basic studies include simple operations such as solv-
ing systems of linear equations, computing the eigenvalues and  
eigenvectors of a matrix, and plotting two-dimensional data. The 
complex studies involve direct and iterative solutions of a large 
sparse system of linear equations resulting from finite difference  
discretization of an elliptic test problem. The complex test case is  
designed to emulate a practical research problem. This study as-
sumes that the needs of a typical student user are limited to the basic 
functionalities of MATLAB. Although MATLAB has a rich set of tool-
boxes for more sophisticated algorithms, this study does not consider 
alternatives to MATLAB for research or applications that require these 
features.

Similar work on comparing MATLAB and its alternatives on a 
research computer at UMBC are available in the HPCF Technical  
Report [Coman et al. 2012], which also considers other packages 
such as R and IDL, which are not intended to be similar to MAT-
LAB and not necessarily free. This paper specifically focuses on 
free packages with a high degree of compatibility to MATLAB, and  
organizes the results for a direct comparison. Previous work used 
a matrix-free implementation of the conjugate gradient method 
[Brewster and Gobbert 2011] that makes the results less direct-
ly applicable for most users. Additionally, earlier work compared 
the software packages in a home computer setting [Sharma 2010;  
Sharma and Gobbert 2010], which makes it less reproducible for us-
ers working from a school computer or laptop. 

The computations for this study are performed using MATLAB  
R2012a, Octave 3.6.2, FreeMat v4.0, and Scilab 5.3.1 under the Linux 
operating system Redhat Enterprise Linux 5. The same server in the 
UMBC High Performance Computing Facility was used to carry out 
all computations to maintain consistency in the results. The server, 
named cluster tara, has 86 nodes, each with two quad-core Intel Ne-
halem processors (2.66 GHz, 8 MB cache) and 24 GB of memory, but 
only one node – equivalent to a desktop computer – is used for this 
study. 
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BASIC OPERATIONS TEST

IN THIS SECTION, we describe the basic operations test using 
MATLAB, Octave, FreeMat, and Scilab. One of the basic functionalities 
of these software packages is the capability to solve a system of linear 
equations by Gaussian elimination. For example, we consider the fol-
lowing system of linear system of equations,

             – u2 + u3 =    3, 
      u1 – u2 – u3 =    0,
    –u1         – u3 =  –3, 

where the solution to this system is (1, –1,2)T . To solve this system In 
MATLAB, let us express the linear system as a single matrix equation

Au = b,

where A is a square matrix consisting of the coefficients of the un-
knowns, u is the vector of unknowns, and b is the right-hand side 
vector. For the particular system we have

                     0 –1    1                        3    
       A =         1 –1 –1     ,    b =        0      .
                   –1    0 –1                      –3

To find a solution u for this system in MATLAB, the matrix A and vec-
tor u are entered using the commands

A = [0 –1 1; 1 –1 –1; –1 0 –1]

b = [3; 0; –3].

The backslash operator \ invokes Gaussian elimination to solve the 
linear system (i.e. find the vector u) by calling u=A\b . The resulting 
vector, which is assigned to u, is 

                              1
                 u =     –1       .
                     2       

[ ] [ ]

[ ]
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The backslash operator works identically for all of the packages to 
produce a solution to the linear system given and is an example of 
seamless compatibility among all packages.

We also investigate other basic operations in these numerical 
computation packages and examine the commands needed the ex-
ecute them [Brewster and Gobbert 2011; Coman et al. 2012]. The 
command eig has the same functionality in Octave and FreeMat as 
in MATLAB for computing eigenvalues and eigenvectors, whereas 
Scilab uses the equivalent command spec to compute them. Plotting 
is another important feature we analyze using an m-file containing 
the two-dimensional plot function, along with some common an-
notations commands. Once again, Octave and FreeMat use the same 
commands as MATLAB for plotting, and similar commands for anno-
tating, whereas Scilab requires a few changes. For instance in Scilab, 
the number ! is defined using %pi instead of simply pi as in MAT-
LAB, and the command grid that adds grid lines to the plot from 
MATLAB is replaced with xgrid. To overcome these conversions, the 
MATLAB-to-Scilab translator can be used, which largely takes care of 
these command differences. However, the translator is unable to con-
vert the xlim command, which returns the limits of the current axes, 
from MATLAB to Scilab. To rectify this, the axis boundaries must be 
manually specified in Scilab using additional commands in Plot2d. 
This issue brings out a major concern: despite the existence of the 
translator, there are some functions that require manual conversion.

COMPLEX TEST PROBLEM

THIS SECTION TESTS the performance of the software packag-
es using a classical complex test problem [Demmel 1997; Watkins 
2010] from partial differential equations that puts a strain on the 
code both in terms of execution speed and memory consumption. 
The Poisson problem with homogeneous Dirichlet boundary condi-
tions is given as:

                    – 6u = f     in 1 ,
                        u = 0    on  ∂ 1
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We consider this problem on the two-dimensional unit square  
1 = (0,1) × (0,1)∈!2 where the function f is given by

f(x,y) =  –2π2 cos(2πx)sin2(πy) – 2π2sin2(πx) cos(2πy).

The test problem solution is designed to admit a closed-form solu-
tion as the true solution

  u(x,y) = sin2(πx)sin2(πy).
Let us define a grid of mesh points with resolution (N + 2) × (N + 
2), with mesh spacing h = 1/ (N + 1). By applying the second-order 
finite difference approximation, we obtain equations that can be or-
ganized into a linear system of dimension N � 

  Au = b
with system matrix A that is symmetric positive definite. The theory 
of the finite difference method [Braess 2007; Iserles 2009] tells us 
that the norm of the error u – uh behaves like

  ||u – uh||L∞(1) ≤ C h2

and as the mesh width h tends to zero, h �     0. We can use this 
theoretical result to predict how the norm of the error is expected 
to behave, as the mesh width decreases for finer and finer meshes: 
Whenever the mesh width is halved by a refinement of the mesh, the 
ratio of errors on consecutively refined meshes approaches four.

To create the matrix A, we use the observation that it is given by a 
sum of two Kronecker products [Demmel 1997]: Namely, A can be 
interpreted as the sum 

∈ !N 2×N 2

T          2I  –I
     T          –I  2I  –I
                                             +                                 
                                                                
                                                

     T            –I  2I  –I
         T                    –I  2I

A =

∈ !N×N

T          2   –1
     T         –1  2   –1
                                                           

                                                                
                                                

     T            –1   2  –1
         T                    –1  2

T =
where
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and I is the N×N Identity matrix, and each of the matrices in the sum 
can be computed by Kronecker products involving T and I, so that A 
= I �T + T � I. To store the matrix A efficiently, all packages provide 
a sparse storage mode, in which only the non-zero entries are stored. 
    

     FIGURE 1: Numerical solution 

     FIGURE 2: Numerical error

Figure 1 shows the mesh plot of the numerical solution versus (x,y), 
while Figure 2 shows the error at each mesh point, which is comput-
ed by subtracting the numerical solution from the analytical solution. 
Notice the different scales for each vertical axis. The maximum error 
is attained at the center of the domain in the x-y plane and has a value 
of approximately 3 × 10–3.
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We solve the Poisson problem on finer meshes with mesh resolu-
tions N = 2υ for υ = 1, 2, 3,...,13 in order to obtain a more precise  
solution. The results of this test are summarized in Table 1, which lists 
the mesh size of the discretization N×N, the dimension of the

TABLE 1: CONVERGENCE OF FINITE DIFFERENCE ERROR 

linear system N 2, the norm of the finite difference error ||u – uh||, and 
the ratio of the error norms when doubling the mesh resolution (i.e., 
practically speaking from one row of the table to the next).

In the first row, for the resolution 32 × 32 , we note that the norm 
of the finite difference error of 3.0128 ×10–3 confirms the approxi-
mate observation from the plot in Figure 2. The entries for the norm 
of the finite difference error in Table 1 show that the error is converg-
ing toward zero and the ratio of the consecutively refined meshes 
is approaching four. The ratio and finite difference error behave in 
agreement with the finite difference theory, indicating that the code 
is working correctly. The previous table focused on the numerical  
results of the solution to the Poisson problem. 

Table 2 lists the mesh resolution N, the dimension of the linear sys-
tem N2, and the observed wall clock time in hours:minutes:seconds 

N×N

32×32

64×64

128×128

256×256

512×512

1,024×1,024

2,048×2,048

4,096×4,096

8,192×8,192

N2

1,024

4,096

16,384

65,536

262,144

1,048,576

4,194,304

16,777,216

67,108,864

||u - uh||

3.0128e-3

7.7811e-4

1.9765e-4

4.9797e-5

1.2494e-5

3.1266e-6

7.8019e-7

1.9353e-7

4.6797e-8

Ratio

N/A

3.8719

3.9368

3.9690

3.9856

3.9961

4.0075

4.0313

4.1355
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for the different software packages when solving the problem with 
Gaussian elimination. The notation O.M. for an entry indicates that 
the code ran out of memory and could not solve the problem. For 
each mesh resolution, we found the numerical results to be identical 
for all packages, in all cases for which a solution was obtained. It is 
therefore appropriate to compare the performance of the packages.

TABLE 2: PERFORMANCE OF GAUSSIAN ELIMINATION

Table 2 shows that the Gaussian elimination method built into the 
backslash operator successfully solves the problem up to a mesh reso-
lution of 4,096 × 4,096 in both MATLAB and Octave. While the Gauss-
ian elimination method built into the backslash operator in FreeMat 
successfully solves the problem up to a mesh resolution of 2,048 × 
2,048, in Scilab it is only able to solve up to a mesh resolution of 1,024 
× 1,024. The wall clock results show that MATLAB was faster than 
Octave, FreeMat, and Scilab. Octave was faster than both FreeMat and 
Scilab, and was able to solve a larger mesh resolution. Scilab was the 
slowest and could not solve the same mesh resolution as the other 
packages. We see that none of the packages considered were able to 
solve the problem with an 8,192 × 8,192 mesh. The desire to solve 
larger systems leads us to another method known as conjugate gradi-
ent method to solve the linear system. This iterative method is an al-
ternative to using Gaussian elimination to solve a linear system with a 

N×N
32×32

64×64

128×128

256×256

512×512

1,024×1,024

2,048×2,048

4,096×4,096

8,192×8,192

N2

1,024

4,096

16,384

65,536

262,144

1,048,576

4,194,304

16,777,216

67,108,864

Matlab

< 00:00:01

< 00:00:01

< 00:00:01

< 00:00:01

00:00:01

00:00:05

00:00:23

00:01:50

O.M.

Octave

< 00:00:01

< 00:00:01

< 00:00:01

< 00:00:01

00:00:02

00:00:16

00:01:57

00:15:37

O.M.

FreeMat

< 00:00:01

< 00:00:01

< 00:00:01

 00:00:04

00:00:28

00:03:15

00:14:29

O.M.

O.M.

Scilab

< 00:00:01

< 00:00:01

00:00:11

 00:03:19

00:39:04

09:09:32

O.M.

O.M.

O.M.
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symmetric positive definite system matrix, such as the given matrix. 
We use the zero vector as the initial guess and a tolerance of 10–6 on 
the relative residual of the iterates. Table 3 lists the mesh resolution 
N×N, the dimension of the linear system N2, the number of itera-
tions taken by the iteration method to converge (#iter), and the ob-
served wall clock times in hours:minutes:seconds for each software 
package. For each mesh resolution, we again found the numerical 
results to be equivalent among the packages, as well as equivalent 
to the results obtained by Gaussian elimination, in all cases where a 
solution was obtained.

TABLE 3: PERFORMANCE OF THE CONJUGATE GRADIENT METHOD

Table 3 shows that, for each package, the conjugate gradient meth-
od is able to solve for mesh resolutions as large as (or larger than) 
those solved using Gaussian elimination. The sparse matrix storage 
implementation of the conjugate gradient method allows us to solve 
a mesh resolution up to 8,192 × 8,192 for MATLAB and Octave. 
Scilab is able to solve the system for a resolution up to 4,096 × 4,096. 
In FreeMat, we wrote our own cg (conjugate gradient) function be-
cause it does not have a built in pcg (preconditioned conjugate gradi-
ent) function, and we were able to solve the system for a resolution 
of 2,048 × 2,048 within a reasonable amount of time. The notation 

N×N

32×32

64×64

128×128

256×256

512×512

1,024×1,024

2,048×2,048

4,096×4,096

8,192×8,192

N2

1,024

4,096

16,384

65,536

262,144

1,048,576

4,194,304

16,777,216

67,108,864

#iter

48

96

192

387

783

1,581

3,192

6,452

13,033

Matlab

< 00:00:01

< 00:00:01

< 00:00:01

00:00:02

00:00:12

00:01:34

00:12:42

00:41:10

13:43:55

Octave

< 00:00:01

< 00:00:01

< 00:00:01

 00:00:02

00:00:14

00:01:56

00:17:50

02:34:29

20:01:27

FreeMat

< 00:00:01

00:00:02

00:00:17

00:02:29

00:21:16

02:59:08

E.T.R

E.T.R

E.T.R

Scilab

< 00:00:01

< 00:00:01

< 00:00:01

 00:00:02

00:00:22

00:03:19

00:026:57

O.M.

O.M.
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E.T.R. indicates excessive time requirements of over five days. The wall 
clock times show that MATLAB was faster than Octave, but Octave was 
faster than both FreeMat and Scilab. The times also show that FreeMat 
was slower than Octave, MATLAB, and Scilab, and was not able to 

FIGURE 4: Log(N) vs. Log(Time) for Conjugate Gradient Method

 

FIGURE 3: Log(N) vs. Log(Time) for Gaussian elimination
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solve as large of a system before the time required to solve the prob-
lem became excessively long. Scilab performed better than FreeMat, 
but it ran out of memory for the finest resolution attempted. We see 
that only MATLAB and Octave were able to obtain the solution on 
all desired meshes. In Figures 3 and 4, log(time) is plotted against 
log(N) for the data reported in Tables 2 and 3, respectively, to see how 
the run times for each software package are affected by the mesh size 
for both Gaussian elimination and the conjugate gradient method. 
Figure 3 shows the results for Gaussian elimination. MATLAB was 
the fastest of all of the numerical computation packages with a time 
of about one hour for the largest mesh of N × N = 4,096 × 4,096.  
Octave was somewhat slower than MATLAB, but could solve a prob-
lem of the same size. The plots reveal that FreeMat and Scilab were 
much slower and not able to solve problems of the same sizes as 
MATLAB and Octave. In fact, Scilab was so slow that its line goes far 
beyond the limit of the plot already for a mesh of 1,024 × 1,024.

Figure 4 displays the results for the conjugate gradient method. 
The plot shows that MATLAB and Octave can solve the problem for 
the largest mesh of N × N = 8,192 × 8,192, but MATLAB is some-
what faster than Octave. FreeMat and Scilab could not solve problems 
on the same meshes as MATLAB and Octave, and were somewhat 
slower on the meshes they were able to solve. Overall, the different 
scales of both axes in Figures 3 and 4 highlight that the absolute run 
times are larger for the conjugate gradient method than for Gauss-
ian elimination, but that the conjugate gradient method allowed for 
larger meshes than Gaussian elimination.

CONCLUSIONS AND FUTURE WORK

WE  TESTED THE usability and performance of four software pack-
ages: MATLAB, Octave, FreeMat, and Scilab. The usability of each soft-
ware package was determined by comparing its syntax and functions 
to MATLAB. A package is considered more usable when its syntax is 
similar to the syntax in MATLAB. Octave was determined to be the 
most usable because its commands and syntax were compatible with 
MATLAB for all of our tests. Scilab exhibited the most differences in 
both syntax and commands. For example, instead of using the eig 
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function to compute eigenvalues like MATLAB, Octave, and FreeMat, 
Scilab uses a function called spec. 

To test the performance of the software packages, Gaussian elimi-
nation and conjugate gradient methods were used to solve the Pois-
son equation. The results from Table 2 reveal that MATLAB performed 
the best when solving the system via Gaussian elimination. Octave 
performed better than the other free software packages tested and 
was able to solve the same size systems as MATLAB. The backslash 
operator in Scilab was much slower than in MATLAB and Octave, and 
was also the least powerful. The results from Table 3 reveal that MAT-
LAB, Octave, and Scilab were all able to solve the system with compa-
rable speed, but Scilab was not able to solve as large a system as Octave 
or MATLAB. FreeMat was the weakest and could not solve the system 
for larger mesh resolutions without requiring an excessive amount 
of time.

In summary, FreeMat and Scilab are far less compatible with MAT-
LAB, and do not compare in regards to usability and performance. 
However, MATLAB and Octave appear fully compatible in their syntax 
and availability of commands. Our tests demonstrate that Octave is 
slower only in one test, and when absolute run times are considered, 
the performance difference is only an issue for very large problems. 

Octave is of particular interest since it is known to work with a free 
distributed-memory parallel extension pMATLAB [Kepner 2009]. 
The complex test problem used here is a classical test problem also 
for parallel computing [Raim and Gobbert 2010; Sharma and Gob-
bert 2009]. In the future, we hope to continue testing Octave and its 
parallel extensions to further analyze its performance and capabilities.
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