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Maryland Proton Treatment Center

Maryland Proton Treatment Center

This work was done in collaborations with the Maryland Proton Treatment
Center located in Baltimore, Maryland. Opened in 2016, the center was the
first in the Maryland/DC region to offer proton therapy for cancer treatment.
In the past four years it has trained more than 200 health care professionals in
proton therapy and, with its state of the art facilities and four treatment
rooms, has been able to treat over 2,000 patients (www.mdproton.com).
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Proton Beam Therapy

Treatment table in MD Proton
Treatment Center (Maggi 2019)

Radiation levels in proton beam
therapy

Proton beams’ advantage in cancer research is their finite range. they reach
their highest dose just before they stop, at what is called the Bragg peak.
Little to no radiation is delivered beyond this point.
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The Need for Real-Time Imaging

(a) Optimal trajectory. Notice the or-
ange bar, which represents uncertainty,
intersects the heart (magenta) but
completely covers the tumor (green).

(b) Suboptimal trajectory necessary to
protect heart (magenta). A low dosage
irradiates healthy lung tissue (black)
while still covering the tumor (green).
(Polf, Physics Today, 2015).

Uncertainties in the beam’s position limit proton beam therapy’s
advantages.

Imaging the beam in near real time would reduce uncertainties and allow
the advantages of the Bragg peak to be fully exploited.
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Image Reconstruction Using Compton Camera

(Phys. Med. Biol., 2010.)

(a) (b)

(a) Nuclear reactions between beam and tissue produce prompt gamma rays.
A Compton camera records the position and energies of each interaction.

(b) By analysing how prompt gammas scatter through the Compton camera we
can reconstruction their origin, thereby imaging the beam.
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Limitations of the Compton Camera

The Compton camera simply records events as a single,
double, or triple scatters.

The Compton camera cannot determine the correct orderings
of camera events.

The Compton camera cannot determine if a double or triple
scatter event was triggered by prompt gammas originating
from different physics events that just happened to enter the
camera at the same time.

1 This lack of distinction means that single events can end up
paired together as a double or triple event.

2 Coupled singles are referred to as false events.
3 A double to triple or, dtot, is when a true double is incorrectly

paired with a single which appears as a triple.



Motivation & Background Neural Network Design Results Conclusions and Future Work

The Data Layout

An interaction consists of all of the data for a gamma ray’s specific
collision.

An event is all three interactions together.

Since the Compton camera cannot determine the correct ordering, the
interactions are mixed up causing noise and corruption.

If we say that an event is a 123 event that means that the interactions
are correctly ordered. If an event is a 231 event then we know that the
2nd interaction is actually the 1st, the 3rd is actually the 2nd, and the
1st is actually the 3rd.

Doubles Data uses simplified 2-digit labels 12, 21, 44.
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Deep Fully Connected Neural Network at a High Level

The general mode of operation in the feed-forward process is:

1 A layer takes in some input vector.
2 The layer multiplies a matrix of weights with the input vector then adds

bias to the result.
3 We then use a non-linear transformation, called an activation function, on

the result.

This process is repeated for every layer until the final output is obtained.

Check how close the output vector is to the desired vector using a loss function.

Chollet, Deep Learning with Python, 2018
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Residual Blocks

Our network uses residual blocks with our fully connected layers instead of
simply stacking them.

A block consists of some number of layers.

The input to the first layer is concatenated to output of the block’s last layer.

That concatenated data is passed as the input to the next block.

This helps remove problem typically associated with deep networks and fully
connected networks.
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Our Network Constants

Hyperparameter Value
Inter-layer activation Leaky ReLU

Final activation Softmax
Output Layer 13 Neurons
Optimizer Adam

Loss Function Categorical Crossentropy
Block size 8

Learning Rate 10−3

These are the hyperparamters that we hold constant during our hyperparameter
study to create our neural network that we will use for training and testing.

We also transform our energy deposition data before use via sklearn’s
PowerTransformer Yeo-Johnson method.

We transform our spatial data using sklearn’s MaxAbsScaler.

The above parameters are determined by a hyperparameter experimentation
done previously.
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Hardware and Software Used

Hardware: UMBC High Performance Computing Facility (hpcf.umbc.edu).

HPCF2018 GPU Cluster

1 node contains four NVIDIA Tesla V100 GPUs
(5120 computational cores over 84 SMs, 16 GB onboard memory),
connected by NVLink, and two 18-core Intel Skylake CPUs.
The node has 384 GB of memory and a 120 GB SSD disk.

Software packages used:

Python 3.7.6

Tensorflow 2.4.0

Keras TF2.4.0

Numpy 1.16.0

sklearn 0.23.dev0

hpcf.umbc.edu
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Hyperparameter Study Set

Hyperparameter Possible Values
Dropout rate 0, 0.1, 0.4

Neurons per layer 32, 64, 128, 256
Total Layers 8, 16, 32, 64, 128, 256
Batch size 1024, 2048, 4096, 8192

Our hyperparameter study was done using the grid search method.

With the grid search method we have (3)(6)(4)(4) = 288 total studies to run.
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Best Performing Network

All of our networks trained for 1024 epochs.

The network had a dropout rate of 0, 64 neurons per layer, 256 layers, and a
2048 batch size.

We see that our training accuracy and validation accuracy are between 70% and
80% for most of the training process.

Our peak validation accuracy is approximately 77%.
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Best Performing Network’s Confusion Matrix – 20kMU
123 132 213 231 312 321 124 214 134 314 234 324 444

123 66.3 8.1 2.1 3.4 3.0 2.7 8.1 0.6 0.1 0.1 3.5 1.4 0.6
132 3.8 71.2 2.6 2.2 2.9 3.1 0.3 0.1 7.8 0.8 1.4 3.3 0.5
213 3.3 3.5 70.6 3.4 2.0 2.9 1.1 6.7 4.4 1.2 0.3 0.0 0.6
231 1.5 3.2 4.8 71.1 3.0 5.4 0.1 0.4 1.6 2.5 4.8 1.1 0.3
312 2.7 2.7 2.3 2.7 74.6 4.0 3.0 1.5 0.9 5.1 0.1 0.2 0.3
321 2.5 3.3 2.8 2.2 5.9 72.1 1.4 2.8 0.0 0.3 0.7 5.6 0.3
124 3.5 0.4 0.6 0.1 3.2 2.1 71.5 9.3 0.9 0.4 0.4 1.7 5.8
214 0.8 0.3 4.5 0.3 2.3 3.3 13.6 66.8 0.5 1.2 0.8 0.5 5.0
134 0.4 4.0 3.7 2.5 0.4 0.1 1.0 0.6 71.3 8.8 1.8 0.5 5.0
314 0.1 0.8 2.1 5.1 6.8 0.4 0.3 1.4 8.9 66.5 0.6 0.9 6.1
234 2.6 2.4 0.3 7.6 0.1 1.5 0.8 1.1 1.3 0.7 62.2 13.8 5.7
324 1.3 4.6 0.2 0.8 0.2 8.0 1.1 0.6 0.9 0.6 8.9 67.6 5.2
444 0.6 0.3 0.9 0.6 0.6 0.3 6.3 6.6 4.1 5.0 8.5 6.3 59.9

The dominant classification is the correct class for all classes.

For triples, the second highest prediction is the corresponding dtot.
For dtot, the second highest prediction is a reversed double ordering.

For false triples, we see it is often mistaken as a dtot.
Triples often become valid doubles which keeps the data usable.

Reverse dtot orderings can be recovered using a network trained on
doubles.
The testing accuracy for each class is considerably lower than the average
validation accuracy seen in our previous plot. This is usually due to no
dropout rate.
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Long Running Studies

We wanted to see if training our best performing studies yielded even better
better results.

We extend the studies from 1024 epochs to 4096 epochs.

We opt for a dropout rate greater than 0 to help combat the training/validation
testing accuracy discrepancy.

We used the following parameters sets for our longer running, reduced set, of
hyperparameter studies:

Hyperparameter Values
Dropout Rate 0.1

Neurons per layer 64, 128
Number of layers 64, 128

Batch size 2048, 4096, 8192
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Best Long Running Network

The network had a dropout rate of 0.1, 128 neurons per layer, 128 layers, and a
8192 batch size.

We see that our training accuracy and validation accuracy are between 70% and
80% for most of the training process.

Our peak validation accuracy is approximately 77%.
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Best Long Running Network’s Confusion Matrix – 20kMU
123 132 213 231 312 321 124 214 134 314 234 324 444

123 77.0 6.4 1.4 1.9 1.9 2.0 5.0 0.4 0.1 0.0 2.5 1.0 0.3
132 3.8 72.8 1.9 2.4 6.4 2.7 0.2 0.0 5.1 1.0 1.0 2.6 0.2
213 3.1 2.5 71.3 9.1 1.8 2.5 0.5 5.0 2.1 1.7 0.1 0.0 0.2
231 2.5 2.6 2.9 73.5 2.4 8.0 0.0 0.1 0.9 2.1 3.4 1.4 0.2
312 3.4 1.8 1.9 2.9 77.1 3.2 2.3 1.3 0.6 5.3 0.0 0.1 0.1
321 2.6 3.0 3.1 2.1 3.4 77.8 0.6 2.1 0.0 0.1 0.6 4.3 0.3
124 5.0 0.4 1.0 0.1 3.7 2.1 68.9 11.1 0.6 0.6 0.4 1.3 4.7
214 0.8 0.3 5.4 0.6 1.8 4.0 7.0 74.3 0.3 1.0 0.3 0.4 3.8
134 0.7 4.5 2.6 2.8 1.1 0.2 0.6 0.2 63.8 18.1 1.3 0.8 3.3
314 0.1 0.7 1.8 5.0 6.1 0.4 0.6 1.2 6.8 72.1 0.2 0.8 4.2
234 3.0 2.3 0.1 6.5 0.1 1.5 0.5 0.8 1.1 0.6 62.3 16.7 4.5
324 1.5 4.5 0.1 0.6 0.3 7.2 0.9 0.4 0.5 0.8 7.8 72.0 3.5
444 0.6 0.6 0.3 0.9 0.0 0.6 4.1 5.3 4.7 3.8 5.6 7.5 65.8

The dominant classification is the correct class for all classes.

For triples, the second highest prediction is the corresponding dtot.
For dtot, the second highest prediction is a reversed double ordering.

For false triples, we see it is often mistaken as a dtot.
Triples often become valid doubles which keeps the data usable.

Reverse dtot orderings can be recovered using a network trained on
doubles.
The testing accuracy for each class is much closer to the average
validation accuracy seen in our associated plot than the shorter study.
Increasing dropout rate could bring them even closer.
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Conclusions and Future Work

Conclusions

Note that the fewer neurons the network has, the more computationally cheap it
is to use, and the faster the network can classify records.

We see that the usage of even a small amount of dropout has brought our
confusion matrices’ accuracies much closer to our validation accuracy seen in
the training and validation plots.

The triples now have comparable accuracy to a more complex network but the
doubles-to-triples and false data are still 1% to 7% worse than the more
complex network seen in previous works.

Our networks fall short in classification accuracies, but if we can tackle the long
training times then, with more hyperparameter tuning, we may be able to create
a network that is easier to train and cheaper to use than previous networks.

Future Work

Particular studies, if given considerably more training time, could yield
competitive, if not superior, testing accuracy to existing architectures while
maintaining a simpler structure.

We are currently experimenting with recurrent neural networks to test the
viability of this type of architecture for this application.
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