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Abstract. Predicting violent storms and dangerous weather conditions
with current models can take a long time due to the immense complexity
associated with weather simulation. Machine learning has the potential
to classify tornadic weather patterns much more rapidly, thus allowing
for more timely alerts to the public. A challenge in applying machine
learning in tornado prediction is the imbalance between tornadic data
and non-tornadic data. To have more balanced data, we created in this
work a new data synthesization system to augment tornado storm data
by implementing a deep convolutional generative adversarial network
(DCGAN) and qualitatively compare its output to natural data.
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1 Introduction

Forecasting storm conditions using traditional, physics based weather models can
pose difficulties in simulating particularly complicated phenomena. These models
can be inaccurate due to necessary simplifications in physics or the presence of
some uncertainty. These physically based models can also be computationally
demanding and time consuming. In the cases where the use of accurate physics
may be too slow or incomplete using machine learning to categorize atmospheric
conditions can be beneficial [1]. Machine learning has been used to accurately
forecast rain type [2,1], clouds [2], hail [3], and to perform quality control to
remove non-meteorological echos from radar signatures [4]. For more related
works, see Appendix A below.

A forecaster must use care when using binary classifications of severe weather
such as those which are provided in this paper. The case of a false alarm warning
can be harmful to public perception of severe weather threats and has unneces-
sary costs. On the one hand, an increased false alarm rate will reduce the public’s
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trust in the warning system [5]. On the other hand, a lack of warning in a severe
weather situation can cause severe injury or death to members of the public.
Minimizing both false alarms and missed alarms are key in weather forecasting
and public warning systems.

With advances in deep learning technologies, it is possible to accurately and
quickly determine whether or not application data is of a possibly severe weather
condition like a tornado. Specifically one can use a supervised neural network
such as a convolutional neural network (CNN) for these binary classification
scenarios. These CNNs require large amounts, hundreds of thousands and even
millions, of data samples to learn from. Without an ample amount of data to
learn from a CNN has no hope of achieving accurate predictions on anything
except the original training data provided. Of the 183,723 storms in the data
set used in this work only around 9,000 entries have conditions which lead to
tornadic behavior in the future [6]. This imbalance of tornado versus no tornado
results in a situation where a machine is very good at predicting no potential
tornado but is very bad at predicting when there is a tornado imminent hence
false negatives.

It is for these reasons there is a real motivation to acquire more data that
would result in tornadic conditions. This heralds the need of synthetic data to
bolster the amount of data used for training a neural network. Synthetic data
must be generated such that it is indistinguishable from real data and can be
used in conjunction with the natural data to train a neural network on a more
balanced data set which produces less if any false negatives. Contributions of this
note include: (1) We use DCGAN to synthesize tornado data to address its class
imbalance challenge; (2) We conduct experiments to evaluate the feasibility of
our approach qualitatively; (3) We discuss how to configure DCGAN to generate
the best synthetic tornado data.

2 GAN based Data Augmentation

Each generative adversarial network (GAN) has not just one neural network
but rather two networks which compete against each other to generate the best
synthetic data possible. There are two parts of a GAN that make it an effective
producer of synthetic data. The overall structure can be seen in Figure 1. The
generator takes in random data and uses this to generate fake data. The discrim-
inator understands what real data looks like and because of this it is capable
of determining whether or not any given data is fake or real. Together these
two pieces make a GAN capable of producing synthetic data similar to given
data that is indistinguishable from the original data qualitatively. The process
of training the GAN means providing the discriminator enough data that it
can judge whether or not provided data is fake or real. Given this feedback the
generator must adapt by generating more realistic data such that discriminator
cannot tell the difference between the falsified data and the real natural data. If
the generator can fool the discriminator, which is designed to be an expert on
the data, then the synthetic data is considered just as good as naturally collected
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Fig. 1. The GAN is comprised of two models, the discriminator and the generator. The
discriminator is training to detect whether input is fake or real and feed this output to
the generator. The generator is designed to produce realistic looking data from noise
based such that it passes the validation check of the discriminator.

data. Data obtained from this properly tuned GAN is typically considered more
robust and a much more effective method for training than the primitive method
of duplication [7].

This allows for the generation of a plethora of new data which is distinct from
all previously generated data and also unique in that it is not an augmented
version of any of the original data. The more interesting prospect is that, given
data which is tornadic in nature, a GAN can be used to generate synthetic data
that is also promised to be tornadic [8]. With a GAN, new original data can be
generated for the training of the CNN that would be used for prediction. This
CNN when given real natural data from an upcoming storm would be able to
accurately and instantly deliver a verdict of tornadic or not, rather than waiting
for a simulation to finish days later.

3 Data

The data set used in this analysis was obtained from the Machine Learning
in Python for Environmental Science Problems AMS Short Course, provided by
David John Gagne from the National Center for Atmospheric Research [9]. Each
file contains the reflectivity, 10 meter U and V components of the wind field,
2 meter temperature, and the maximum relative vorticity for a storm patch, as
well as several other variables. These files are in the form of 32 x 32 x 3 images
describing the storm. We treat the underlying data as an image and push it
through the CNN as if it were a normal RGB image. This allows our findings to
generalize to other non-specialized CNNs. Figure 2 shows two examples image
from one of these files. Storms are defined as having simulated radar reflectivity
of 40 dBZ or greater as seen in Figure 2 (b). Reflectivity, in combination with
the wind field, can be used to estimate the probability of specific low-level vor-
ticity speeds. In the case of Figure 2 (a) the reflectivity and wind field were not
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Fig. 2. Sample images of radar reflectivity and wind field for a storm which (a) does
not and (b) does produce future tornadic conditions.

sufficient enough to cause future low-level vorticity speeds. The dataset contains
nearly 80,000 convective storm centroids across the central United States.

We preprocessed the original NCAR storm data containing 183,723 distinct
storms, each of which consists of 32 x 32 x 3 grid points, and extracted composite
reflectivity, 10 m west-east wind component in meters per second, and 10 m
south-north wind component in meters per second at each grid point giving
approximately 2 GB worth of data. We use the future vertical velocity as the
output of the network. This gives us 3 layers of data per storm entry producing
a total data size of 183,723 x 32 x 32 x 3 floats to feed into the neural network.
We use 138,963 storms for training the model and 44,760 storms for testing the
accuracy of the model. We track the total wall time for training and testing over
both image sets.

With only a handful of tornadic cases present in the base dataset we used
primitive augmentation techniques to bolster the number of tornadic cases to
be fed into the DCGAN. The only primitive augmentation technique used was
rotation. Reflection and translation could generated a storm that might not
physically possible.

4 Results: DCGAN based Weather Data Synthesization

The numerical studies in this work use one GPU node from 2018 containing
four NVIDIA Tesla V100 GPUs connected by NVLink. The node has 384 GB
of memory (12 x 32 GB DDR4 at 2666 MT/s) connected through two 18-core
Intel Xeon Gold 6140 Skylake CPUs (2.3 GHz clock speed, 24.75 MB L3 cache,
6 memory channels).

The input data was the original input data inflated by primitive augmenta-
tion techniques covered in Section 3. The constants for training were: learning
rate of 0.001, batch size of 128, data multiplier of 1, and 1 GPU. The images pro-
duced by the generator are logged every 25 epochs and evaluated qualitatively
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as they improve in realism. For more implementation details, see Appendix B
below.

First for reference recall that Figure 2 contains examples of a tornadic and
non-tornadic image. All of the images in example images should be the base
of which these qualitative comparisons happen. A layperson would observe the
tornadic case and say that there are clearly centers of activity with regards to
reflectivity and wind patterns relative to that activity. However note that this
is just one storm that happened to look like this and that many of the other
tornadic cases have several areas of high reflectivity. Take note that for both
the tornadic and non tornadic images transitions from high reflectivity to low
reflectivity are smooth with clear edges of transition.

Consider Figure 3 which contains several rows of images. Each row represents
three images generated at the listed epoch number. The first row of the figure
contains three images generated before any training was done. whereas the last
row represents three images generated after all the training had been done. The
images in the first row are more like noise than real weather which is to be
expected as the generator takes in raw noise from a Gaussian distribution. The
second row of images are from the 25 epoch marker. Each image has some of
the hallmarks of tornadic storm. There are clear attempts at nesting reflectivity
levels such putting higher reflectivity in centers or groups. Yet the generator has
not been able to really gauge how sensitive the ranges should be and is mixing
high and low reflectivity where one might expect the centers to be areas with the
most reflectivity. Additionally the wind velocities appear to be very random and
non-sensical. At 50 epochs the generator has learned how to more properly gauge
relative reflectivity levels. The sizes of the high reflectivity clusters seem very
small and uneventful. Additionally there is not enough variation in reflectivity.
The images are just mostly high levels of reflectivity rather than concentrated
area of high reflectivity which transitions to very low reflectivity over time. The
wind patterns are being created in ways that they are moving in ways relative
to the clusters of reflectivity which is a positive sign.

75 and 100 epochs are where the generator has a solid grasp of what it should
be doing and the differences between these stages are subtler than previous ones.
The storms for 75 and 100 epochs have a rich variation of high and low reflectivity
especially when compared to previous epoch counts. Each has a clear set of
centers that smoothly transition into lower reflectivity as you move away them.
The wind patterns have a clear dependence on the centers position and intensity.
This is especially apparent when compared to previous epoch markers. At 75
epochs the storms were either very mundane or had a single high activity center
or two. The majority of the storms looked well formed but still not as distinct
as would be expected. The 100 epoch benchmark produced the most varied and
interesting data set. All of the storms have different shapes, sizes, intensities,
and centers. There is a clear and smooth transition from high reflectivity to
low reflectivity. The wind patterns seem to interact with the centers and have
purpose.
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5 Conclusions

The DCGAN is the first complex network trained using the new framework from
[6]. The images started out as nothing more than plottable noise. As the epochs
progress every new set of generated images slowly gained additional qualities that
put them closer to the realm of realism. At the 75 epoch mark most of the storms
were mostly indistinguishable from the real storms in the data set, however
there were small features which were still not accurate to the careful eye of a
layperson. At 100 epochs the images were completely indistinguishable from the
real storm data set by a layperson. The transitions, the realistic concentrations of
reflectivity, the obvious correlation of wind velocity relative to the concentrated
activity, and the rich variety of storms produced were all quality. The data set
might be able to be used to train the predictive network to predict real storms
as the data is indistinguishable by the casual observer.
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A Related Works

Class Imbalance is a well known challenge in machine learning and a large num-
ber of approaches have been proposed with respect to this specific issue. These
methods fall into three main categories: data-level solutions [10] using oversam-
pling and undersampling techniques such as SMOTE [11], algorithm-level solu-
tions [12], and hybrid solutions [13,14] are proposed that combine the strong
points of previous two methods to address classification with uneven data repre-
sentation. Our work falls in the first category and addresses Class Imbalance via
data argumentation of the minority class. As our previous study at [15] shows,
common oversampling and undersampling techniques only work for 1D data, not
2D data. So our work in [15] worked on data argumentation via perturbation of
original images, such as rotations, zooming and flipping.
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In climate/weather domain, data could be augmented via simulation models,
such as [16]. These are very computationally expensive, often taking days for
only a few hours of simulated data. On top of that there are variations between
each of the models used to simulate storms, each with their own meaningful
results and possible drawbacks. The computational cost of these models and the
time to generate the synthetic data is what gives machine learning based data
argumentation an edge. If a storm can be predicted without the need for simu-
lations, because a machine learning model takes raw satellite data and quickly
produces a prediction, then solving the data imbalance for the initial training
gives machine learning based approach a clear advantage.

GAN based image data augmentation techniques have been used for medical
images, e.g., [17,18] and human images, e.g., [19,20]. Yet we have not seen
many studies on GAN techniques being useful for weather data argumentation.
We believe our work is the first to apply DCGAN to tornados.

B Storm Synthesization with DCGAN

The DCGAN used in Section 4 is covered in this section. The exact structure of
the DCGAN varies slightly from the typical GAN by using an alternative final
activator for the discriminator. The layer setup for discriminator, generator, and
GAN structure are detailed in Section B.1. Additionally the actual training of
the GAN is handled by the parallel framework in [6] but the standard fitting
methods implemented by Keras are not enough for training the DCGAN. To
prevent changes to the framework a pseudo-subclass of Keras.Sequential, referred
to as wGAN, is used that comes with a model building method and a custom
fitting method which are detailed in Section B.2.

B.1 Structure of the DCGAN

The DCGAN is made up of two separate neural networks: the discriminator
which is a CNN and the generator which is also a CNN. All layers are merged
together using a Keras.Sequential object and all layer names are directly from
the Keras.layers api. The discriminator is based on the proposed DCGAN dis-
criminator in [8]. The input layer takes a 32 x 32 x 3 image and pushes it through
a Conv2D layer converting it into a 16 x 16 x 32 tensor followed by a LeakyReLU
activator with a = 0.01. The output is then fed into a Conv2D layer converting
the layer input into a 8 X 8 x 64 tensor which is immediately piped into a Keras
BatchNormalization layer. The BatchNormalization layer helps keep each inter-
mediate result between the layers normalized to prevent problems with outliers
from arising in between layers. The BatchNormalization layer is then connected
to a LeakyReLU activator with « = 0.01. Then the last Conv2D layer con-
verts the layer input into 4 x 4 x 128 tensor the same BatchNormalization layer
and LeakyReL'U as mentioned for the previous layers. The kernel size and square
stride length for all Conv2D layers is 3 and 2 respectively. Then the final Conv2D
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result is sent to a Flatten layer with a Sigmoid activator. The Sigmoid activa-
tor allows for better learning as it returns a what we consider to be a percent
chance of the input being real rather than the traditional binary classification
of real and not real [8]. The model uses the Adam optimizer and computes loss
as binary crossentropy.

The generator is designed in a similar but reverse fashion and is similar
to the one for a DCGAN in [8]. The input layer for the generator takes in a
100 x 1 vector. The vector is pushed through a fully connected Dense layer
with 32,768 neurons and reshaped into into a 8 x 8 x 512 tensor. This input is
fed into a Conv2DTranspose layer which converts it to a 16 x 16 x 256 tensor
with a square stride of 2 and a kernel size of 3. Then a BatchNormalization layer
followed by LeakyReLU activator as discussed in the discriminator. The following
layer is another Conv2DTranspose layer which converts the layer input into a
16 x 16 x 128 tensor with a square stride 1, to prevent a change in dimensions,
and a kernel size of 3. This is followed by a BatchNormalization layer with a
LeakyReLU. Then the final Conv2DTranspose takes the previous tensor input
and converts it into a 32 x 32 x 3 image with a square stride of 2 and a kernel size
of 3. The final activator is hyperbolic tangent which is known to result in better
image quality [8]. This also means that all images output by the generator will
be compressed to numbers from —1 to 1 and will need to be reinflated for real
use and evaluation.

The final GAN structure puts the generator into a Keras.Sequential object
first, followed immediately by the discriminator whose trainability is disabled.
The discriminator serves as a judge of the generators creative prowess so its
knowledge must remain static while the generator is trained via this combined
structure. The GAN model uses the Adam optimizer and computes loss as binary
crossentropy.

In order to conform with the parallel training frameworks API the creation
of the discriminator, generator, and GAN are all wrapped inside a python object
which acts a pseudo-subclass of the Keras.Sequential object. The training process
that the GAN must undergo is not the same as a traditional neural network as the
generator and discriminator must be trained entirely separate while maintaining
their connectedness. Thus a custom fitting object named wGAN is written such
that the parallel framework does not have to change its interactions with model
but we can still do the special training process required.

B.2 Training the DCGAN with wGAN

The fitting object will be referred to as wGAN for easy reference. The wGAN’s
fitting method takes all the same inputs as the regular Sequential.fit and is our
solution to training the DCGAN in an HPC compliant way. The wGAN first
isolates the data which result in tornadic conditions and attempts to honor the
original batch size provided. If there are not data to honor the batch size it opts
for all tornadic data to be used. The wGAN randomly rearranges the order of the
images for each epoch as is customary for training neural networks to prevent
training via familiarity. All images are compressed to the range [—1, 1] so that
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discriminator can sensibly compare the outputs of the generator to the real
images. For one epoch a batch of these rearranged images is considered. These
images are marked as 1 for real. The generator is then fed as many 100 x 1
Gaussian noise vectors as the number of real images being used. These fake
images are tagged as 0 for fake. The discriminator is then trainined to recognize
the real images as real. Then the discriminator is fed the fake images and told
that they are all fake. The generator is then given as many 100 x 1 noise vectors
as the number of real images being used and its output images and funneled to
the discriminator. A batch of real data is also provided to the discriminator in
additional to the output of the generator. The discriminator reports a percent
chance that each image provided is real. The generator uses this feedback to
compute weights in a manner such that next time, it will come closer to fooling
the discriminator. This process is repeated for the provided number of epochs.
Every 25 epochs 10 of the generated images are reinflated to their intended values
and saved to disk. After all epochs have been completed 100 generates images
are reinflated to their intended values and saved to disk.



