
Big Data Research 25 (2021) 100212

Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Performance Benchmarking of Parallel Hyperparameter Tuning for 

Deep Learning Based Tornado Predictions

Jonathan N. Basalyga a, Carlos A. Barajas a, Matthias K. Gobbert a,∗, Jianwu Wang b

a Department of Mathematics and Statistics, University of Maryland, Baltimore County, USA
b Department of Information Systems, University of Maryland, Baltimore County, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 May 2020
Received in revised form 14 October 2020
Accepted 23 January 2021
Available online 11 February 2021

Keywords:
Deep learning
Data augmentation
Parallel performance
TensorFlow
Keras
GPU programming

Predicting violent storms and dangerous weather conditions with current models can take a long 
time due to the immense complexity associated with weather simulation. Machine learning has the 
potential to classify tornadic weather patterns much more rapidly, thus allowing for more timely alerts 
to the public. To deal with class imbalance challenges in machine learning, different data augmentation 
approaches have been proposed. In this work, we examine the wall time difference between live data 
augmentation methods versus the use of preaugmented data when they are used in a convolutional 
neural network based training for tornado prediction. We also compare CPU and GPU based training 
over varying sizes of augmented data sets. Additionally we examine what impact varying the number of 
GPUs used for training will produce given a convolutional neural network on wall time and accuracy. We 
conclude that using multiple GPUs to train a single network has no significant advantage over using a 
single GPU. The number of GPUs used during training should be kept as small as possible for maximum 
search throughput as the native Keras multi-GPU model provides little speedup with optimal learning 
parameters.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Forecasting storm conditions using traditional, physics based 
weather models can pose difficulties in simulating particularly 
complicated phenomena. These models can be inaccurate due to 
necessary simplifications in physics or the presence of some uncer-
tainty. These physically based models can also be computationally 
demanding and time consuming. In the cases where the use of 
accurate physics may be too slow or incomplete using machine 
learning to categorize atmospheric conditions can be beneficial [1]. 
Machine learning has been used to accurately forecast rain type 
[1,2], clouds [2], hail [3], and to perform quality control to remove 
non-meteorological echos from radar signatures [4].

A forecaster must use care when using binary classifications of 
severe weather such as those which are provided in this paper. The 
case of a false alarm warning can be harmful to public perception 
of severe weather threats and has unnecessary costs. On the one 
hand, an increased false alarm rate will reduce the public’s trust 
in the warning system [5]. On the other hand, a lack of warning 
in a severe weather situation can cause severe injury or death to 

* Corresponding author.
E-mail address: gobbert@umbc.edu (M.K. Gobbert).
https://doi.org/10.1016/j.bdr.2021.100212
2214-5796/© 2021 Elsevier Inc. All rights reserved.
members of the public. Minimizing both false alarms and missed 
alarms are key in weather forecasting and public warning systems.

With advances in deep learning technologies, it is possible to 
accurately and quickly determine whether or not application data 
is of a possibly severe weather condition like a tornado. Specifi-
cally one can use an supervised neural network such as a convolu-
tional neural network (CNN) for these binary classification scenar-
ios. However these CNNs must be heavily tuned and hardened to 
prevent false positives, or worse, false negatives from being pro-
duced. These CNNs require large amounts, hundreds of thousands 
and even millions, of data samples to learn from. Without an am-
ple amount of data to learn from a CNN has no hope of achieving 
accurate predictions on anything except the original training data 
provided. Of the 183,723 storms in the data set used in this work 
only around 9,000 entries have conditions which lead to tornadic 
behavior in the future [6]. This imbalance of tornado versus no 
tornado results in a situation where a machine is very good at 
predicting no potential tornado but is very bad at predicting when 
there is a tornado imminent leading to false negatives.

It is for these reasons that there is a real motivation to acquire 
more data that would result in tornadic conditions however one 
cannot simply go outside hoping to collect storm data that re-
sult in these conditions. This heralds the need of synthetic data 
to bolster the amount of data used for training a neural network. 

https://doi.org/10.1016/j.bdr.2021.100212
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2021.100212&domain=pdf
mailto:gobbert@umbc.edu
https://doi.org/10.1016/j.bdr.2021.100212


J.N. Basalyga, C.A. Barajas, M.K. Gobbert et al. Big Data Research 25 (2021) 100212
Synthetic data must be generated such that it is indistinguishable 
from real data and can be used in conjunction with the natural 
data to train a neural network on a more balanced data set which 
produces fewer if any false negatives. To train and tune a neural 
network of this nature is very time consuming and resource in-
tensive, taking anywhere from several hours to several days given 
enough data. In order to quickly tune, train, and test the validity 
of a neural network with several different hyperparameter combi-
nations, a parallel framework originally introduced in [7] to train 
many networks simultaneously with varying hyperparameter val-
ues in a high performance computing environment is used. We 
use this framework to investigate the effect of hyperparameters on 
wall time, taking a close look at how each hyperparameter impacts 
training time of the neural network using both preaugmented data 
and live data augmentation, respectively. Then we examine how 
varying the number of GPUs impacts wall time performance, the 
central idea being that this helps determine an optimal hardware 
configuration for future training of similar networks with an im-
mense data size. Finally, we investigate how batch size and GPU 
count affect accuracy; to ensure the networks are fully trained as 
well as to reflect real world usage patterns, these experiments use 
a much greater number of epochs then are used in the previous 
tests. The source code for our framework can be found at [8].

This paper has several contributions. (1) Benchmarking of two 
data augmentation approaches and their effects to deep learning 
training times. Through the benchmarking, we examine their dif-
ferences in terms of the effective use of resources. (2) Benchmark-
ing of MPI-based parallel deep learning hyperparameter tuning. 
This is done with a custom framework that allows for in-depth 
examination of all possible hyperparameter configurations in an 
HPC environment. (3) Benchmarking of CPU and GPU based par-
allel deep learning hyperparameter tuning. (4) Lastly, investigation 
of the effect of multiple GPUs on accuracy. This paper is an ex-
tension of our conference paper [9]. Our conference paper focuses 
on the first three above mentioned contributions. In this paper, we 
first expand our analysis of the benchmarking experiments and our 
findings from them. Our second major extension examines how 
different GPUs affect our deep learning model on accuracy, namely 
the fourth contribution above.

The remainder of this paper is organized as follows. Section 2
connects the present one to related work. Section 3 gives a basic 
introduction to convolution neural networks and the problem of 
data augmentation. Section 4 introduces the natural data used for 
training the neural networks and the preprocessing method used 
on the data prior to training. Section 5 discusses hyperparameters 
and their importance in training and the parallel framework used 
for hyperparameter tuning in a high performance computing envi-
ronment. Section 6 presents the effect of various hyperparameter 
configurations on the wall time for training as well as on accuracy 
of the training. Lastly Section 7 collects the conclusions and future 
goals of this work.

2. Related work

There are a plethora of papers and textbooks on deep learning 
and neural networks that go over methods for solving data im-
balances. These texts, such as [10], [11], and [12] all talk about the 
importance of data augmentation to prevent bias, overfitting of the 
network, and more. Pundits and blogs may talk about the use of 
live augmentations as a cure all to an imbalanced data set because 
tools are readily available to do this task however there is little 
consideration for the possible performance benefits of using data 
that has been augmented apriori to run time. This work seeks to 
demonstrate that there is a clear difference in training time with 
regards to preaugmented data and live augmented data even in 
2

the case of an idle CPU during GPU training sessions rather than 
discuss the benefits of augmentation versus not.

There are several tools that exist for hyperparameter search-
ing yet they do not solve all of the problems presented for tuning 
in our HPC environment or do not solve them adequately enough. 
Two mainstream frameworks are Talos and sklearn’s GridCVSearch. 
Talos aims to the fix the clunky interface of sklearn by replacing 
the Keras fit method with a method that takes dictionary inputs 
and automatically searches over them during fitting. However both 
these frameworks are limited to a single node and as such would 
not automatically fully utilize a HPC system if given the resources 
to do so. The framework mentioned Section 5.2, from [6,7], exists 
to solve that problem by creating an HPC based framework for hy-
perparameter searching. This framework has innate limitations like 
a lack of in-depth analytics on a hyperparameter by hyperparam-
eter basis, lacks support for live data augmentation, and only has 
one type of parallel schema available. This work creates a paral-
lel framework which solves all of the aforementioned problems. 
There is also the Ray framework seen in [13] which is a HPC en-
abled framework which specializes in hyperparameter tuning. We 
aim to use a different interface set for our framework using closely 
resembles sklearn’s searching objects. Additionally we use different 
sets of supporting software and techniques like JSON, SLURM, and 
MPI. This gives the user a lot of control through the use of JSON 
rather than python while leveraging MPIs highly optimized paral-
lelism for InfiniBand and low latency ethernet communication.

To talk more specifically about related search methods, hyper-
parameter search methods fall under two categories ones which 
can be parallelized and ones which cannot be parallelized. Some 
great examples of methods which could be easily parallelized are 
the random search method and grid search method. A random 
search need only ensures that the same configuration cannot be 
selected twice by two separate workers. A grid search can be paral-
lelized in a similar but more deterministic way. However methods 
like a Bayesian search [14], gradient-based search [15], or an evo-
lutionary search [16] have iterative dependencies which could be 
inescapable in practice. We are currently using an exhaustive grid 
search method which does not reliance on previous iterations or 
any other progression markers. The framework has the capability 
to be expanded for additional search methods but current does not 
support them.

There are a slew of technical reports and papers that talk about 
the importance of benchmarking and improving parallel timings 
such as [17], [18], and [19]. Texts which deal specifically with 
training neural networks even go so far as to mandate GPUs for 
training like in [10]. In the case where one may have access to 
many mid to high end GPUs, or may be considering a purchase 
of them, how many is too many? This work aims cover, in a high 
level manner, how use case is an important factor for the number 
of GPUs that should be used for optimal training times.

3. Deep learning with convolutional neural networks

The general idea and information behind neural networks is 
that when given a set of inputs and known outputs we train a neu-
ral network to make predictions about future data inputs whose 
output is unknown. In order to gauge how accurate the network 
has become we provide data that was not in the learning data set 
and the CNN uses the knowledge gained from training to guess the 
outcome of data that it has not seen before [10]. We test against a 
testing set of data where our outputs are still known but the an-
swers are not provided to the network. We then grade its accuracy 
based on the correctness of these predictions. A general neural net-
work is made of three phases as seen in [11]. There is the input 
layer where the data is pushed into the network. Then there are 
some number of hidden layers which are responsible for digest-



J.N. Basalyga, C.A. Barajas, M.K. Gobbert et al. Big Data Research 25 (2021) 100212

Fig. 1. The structure for the convolutional neural network used for tornado prediction.
ing the input data and learning from it. Then finally the output 
layer whose output meaning is predetermined by the context of 
the problem. For example the output can be a binary classification 
of the input data, maybe even a new image entirely, but what-
ever output is produced, the network itself has no understanding 
of what the output truly means. In the context of tornado predic-
tion consider a 32 × 32 grid of data points where each data point 
contains the composite reflectivity, 10 m west-east wind compo-
nent, and the 10 m south-north wind component as the data used 
to predict future conditions. Then the mean future vertical wind 
velocity will serve as the indicator that a tornado will occur [6,7]. 
A single input to the neural network would be a 32 × 32 × 3 ar-
ray with each variable in its own grid. This data would then be 
evaluated by the first hidden layer whose result would be pushed 
into the second hidden layer, and so on until the final result is put 
into the output layer. The output layer would contain an integer, 
specifically 0 or 1 in this case. A binary classifier in the context of 
mean future vertical wind velocity might seem nonsensical with 
regards to the question: what is the mean future vertical wind ve-
locity given these input conditions? However the network is not 
attempting to, nor is it capable of, answering that question. With 
this binary classification the network provides an answer to: is the 
mean future vertical wind speed large enough to be considered 
tornadic? With regards to this question the network sensibly out-
puts either 0 for no or 1 for yes. These three weather conditions 
from a storm snapshot can be made into images as seen in Fig. 2
which predicts if the winds result in a future tornado. With the 
lack of natural data available researchers must turn to synthetic 
data.

There are several methods to acquire synthetic data for fitting a 
CNN. The current method, outside of machine learning, is through 
storm simulation models. These are very computationally expen-
sive often taking days for only a few hours of simulated data. On 
top of that there are variations between each of the models used to 
simulate these storms each with their own meaningful results and 
possible drawbacks. The computational expensive of these models 
and the time taken to generate the synthetic data is what gives 
machine learning an edge. If a storm can be predicted without 
the need for simulations, because the neural network takes raw 
satellite data and quickly produces a prediction, then solving the 
data imbalance for the initial training gives CNNs a clear advan-
tage. Similarly, if we can train the CNN using quickly generated 
synthetic data we can forgo the need for these expensive simula-
tions altogether in the prediction process.

An alternative to simulated data would be using primitive du-
plication methods like data reflection and data rotation, which can 
be used to fill out an existing data set rather than generating 
strictly new data. If the conditions present on the data grid can 
cause a tornado then simply reflecting the data grid over an axis 
results in a technically different storm that also results in a tor-
nado. When only five percent of the data is storms that result in 
a tornado you would need to augment every entry in 19 unique 
ways to balance the data set to a perfect fifty-fifty balance of tor-
nadic versus not tornadic.
3

The CNN we use as a test is a 3 layer network with a couple 
average pooling layers whose structure can be seen in Fig. 1. The 
network accepts a 32 by 32 by 3 tensor for each record as input. 
The first layer is a 2D convolutional layer with 8 filters, a 5 by 5 
kernel, padding set to same, and ReLU activation. Then we use a 
2 by 2 average pooling layer. The next layer is a 2D convolutional 
layer with 16 filters, a 5 by 5 kernel, padding set to same, and 
ReLU activation. Now we use a 2 by 2 average pooling layer. The 
next layer is a 2D convolutional layer with 32 filters, a 5 by 5 
kernel, padding set to same, and ReLU activation. Finally we flatten 
the data with a single dense layer.

4. Data

The data set used in this analysis was obtained from the Ma-
chine Learning in Python for Environmental Science Problems AMS 
Short Course, provided by David John Gagne from the National 
Center for Atmospheric Research [20]. The original NCAR data is 
provided as a collection of over 100 CSV files with over 80 columns 
per row. Between all of our given CSVs we have 183,723 distinct 
storms. One row in the CSV only contains values for a single point 
in some storm. For any given storm it takes multiple CSV rows 
to convert a storm to our intended data structure. Each row con-
tains more data than we intend to use for predictions thus we 
only use four specific columns which are known for their direct 
connection to tornadic behavior as detailed in the short course at 
[20]. For completeness we detail the variables and their associ-
ated pandas column names. First we read the data in from disk 
using python pandas. For any storm patch we need composite re-
flectivity (REFL_COMM_curr), 10 m west-east wind component 
in meters per second (U10_curr), 10 m north-south wind com-
ponent in meters per second (V10_curr), 2 m temperature in 
Kelvin (T2_curr), hourly maximum vertical vorticity at 1 km 
above ground level (RVORT1_MAX_future). With Pandas and 
NumPy we take data for a single given storm into 32 × 32 × 3
image. We compute the mean hourly maximum vertical vortic-
ity at 1 km above ground level for each storm. Any storm which 
has a mean of at least 0.008 will have the output class of 1 for 
tornadic, and 0 otherwise. We use sklearn’s StandardScaler object 
to normalize the input data to have a mean 0 and a standard 
deviation of 1 for all features. This whole preprocessing method 
allows us to treat the underlying data as an image and push it 
through the CNN as if it were a normal RGB image. This allows 
our findings to generalize to other non-specialized CNNs. Fig. 2
shows two examples image from one of these files. Storms are de-
fined as having simulated radar reflectivity of 40 dBZ or greater as 
seen in Fig. 2(b). Reflectivity, in combination with the wind field, 
can be used to estimate the probability of specific low-level vor-
ticity speeds. In the case of Fig. 2(a), the reflectivity and wind 
field were not sufficient enough to cause future low-level vortic-
ity speeds. The dataset contains nearly 80,000 convective storm 
centroids across the central United States. By the end of our pre-
processing we have 3 layers of data per storm entry producing a 
total data size of 183,723 × 32 × 32 × 3 floats to feed into the 
neural network. We use 138,963 storms for training the model 



J.N. Basalyga, C.A. Barajas, M.K. Gobbert et al. Big Data Research 25 (2021) 100212

Fig. 2. Sample images of radar reflectivity and wind field for a storm which (a) does not and (b) does produce future tornadic conditions. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)
and 44,760 storms for testing the accuracy of the model. We 
track the total wall time for training and testing over both image 
sets.

5. Parallelism of hyperparameter tuning

5.1. Hyperparameters

As the popularity and depth of deep networks continues to 
grow, efficiency in tuning hyperparameters, which can increase to-
tal training time by many orders of magnitude, is also of great 
interest. Efficient parallelism of such tasks can produce increased 
accuracy, significant training time reduction and possible mini-
mization of computational cost by cutting unneeded training.

We define hyperparameters as anything that can be set before 
model training begins. Such examples include, but are not limited 
to, number of epochs, number and size of layers, types of layers, 
types and degree of data augmentation, batch size, learning rates, 
optimizer functions, and metrics. The weights that are assigned 
to each node within a network would be considered a parame-
ter, as opposed to a hyperparameter, since they are only learned 
through training. With so many hyperparameters to vary, and the 
near infinite amount of combinations and iterations of choices, hy-
perparameter tuning can be a daunting task. Many choices can 
be narrowed down by utilizing known working frameworks and 
model structures, however, there is still a very large area to ex-
plore even within known frameworks. This is compounded by the 
uniqueness of each dataset and the lack of a one-size-fits all frame-
work that is inherent with machine learning.

Section 5.2 talks about the new MPI based framework which 
used the Dask framework in [7] as a baseline conceptually but 
many aspects, including how analytics are handled, have been im-
proved or redesigned entirely.

5.2. MPI framework for parallelized training

The Dask framework for hyperparameter tuning in an HPC envi-
ronment from [6,7] was used as a baseline for the new framework. 
We replace Dask with MPI by using the latest mpi4py. Dask had 
predetermined configurations for a SLURM based master-worker 
setup. With MPI we created two parallelism setups. The first is 
4

Fig. 3. The flow pattern for the synchronous execution of the MPI framework.

a typical master-worker configuration. The master-worker system 
allows one master process to distribute a specific combination of 
hyperparameters to each process. This allows for the most opti-
mal load balancing scheme at the cost of using one node for book 
keeping. The master node distributes a hyperparameter configura-
tion to a worker node, waits for the work to finish, then collects all 
timing results and other metrics from the worker node and saves 
the results into a collection of JSON files.

Fig. 3 is the visual flow of the second parallelism configu-
ration which we call the fully sychronized setup. We created a 
custom combination generator that takes in a dictionary full of 
all possible hyperparameter values and a process id and returns 
a dictionary that contains specific combinations of hyperparame-
ters. At a higher level this generator allows all combinations of 
hyperparameters to be indexed without actually being generated 
until they are needed by the workers. This generator also attempts 
to balance the loads by distributing the more theoretically inten-
sive jobs evenly among all processes such that each process gets 
heavy and light work periodically throughout the training pro-
cess.

By replacing Dask with these systems we have enabled a 
method which allows us to measure the effects of every single hy-



J.N. Basalyga, C.A. Barajas, M.K. Gobbert et al. Big Data Research 25 (2021) 100212
perparameter combination rather than just viewing things grouped 
by batch size. We now have the ability to group by any arbi-
trary hyperparameter and examine how each one plays a role in 
the training time and accuracy of the model. We also changed 
the base CNN used for testing to use multiple GPUs by using 
Keras’ multi_gpu_model wrapper. TensorFlow will always al-
locate memory on all GPUs but may not bother to use the any 
additional GPUs provided. By using multi_gpu_model Keras 
duplicates the network on every GPU and trains each network 
with mini-batches of the original batch and then computes new 
weights based on each of the mini-batches. In this way Keras does 
all high level management for multiple GPUs rather than Tensor-
Flow.

We used several notable softwares and packages for testings 
the framework and creating the framework. We used an Anaconda 
environment with Intel Python 3.6.8 for both the network and 
framework. The main software used for machine learning was Ten-
sorFlow 1.12.0 with Keras 2.2.4 linked against CUDA 9.0. All array 
based operations and preprocessing were done with NumPy 1.16.2 
and sklearn 0.23.3.

6. Results

We use the framework detailed in Section 5.2 to investigate the 
effect of hyperparameters on wall time; to reflect that these are 
tests, relatively small numbers of epochs are used. Subsections 6.1.1
and 6.1.2 take a close look at how each hyperparameter impacts 
training time of the neural network using both preaugmented data 
and live data augmentation, respectively. All hyperparameters for 
Section 6.1 and Section 6.2 can be found in Table 1. Then with the 
same framework we examine how varying the number of GPUs 
impacts wall time performance in Subsection 6.1.3, the central idea 
being that this helps determine an optimal hardware configura-
tion for future training of similar networks with an immense data 
size. All forms of augmentation are done using Keras’ datagen API 
with identical inputs. It is important to note that the nature of our 
data, storms and wind, that we can only allow keras to use rota-
tion, translation, and cropping for data augmentation. If we allow 
reflection we would end up with storms that have mathematically 
viable data that is not physically appropriate. Any differences in ac-
curacy are an artifact of seeding or data shuffling during training. 
With this in mind we present only wall times as a demonstration 
of how some hyperparameters can have a meaningful impact on 
wall time and thus should be tuned carefully, perhaps even last, to 
prevent cumbersome training times.

Extending the results presented originally in the conference pa-
per [9], the additional Section 6.2 investigates how batch size and 
GPU count affect accuracy; to ensure the networks are fully trained 
as well as to reflect real world usage patterns, in this section we 
use a much greater number of epochs than are used in the previ-
ous sections.

The numerical studies in this work use a distributed-memory 
cluster of compute nodes with large memory and connected by a 
high-performance InfiniBand network. The CPU nodes feature two 
multi-core CPUs, while the 2018 GPU node has four GPUs. The fol-
lowing specifies the details:

• 2018 CPU nodes: 42 compute nodes, each with two 18-core 
Intel Xeon Gold 6140 Skylake CPUs (2.3 GHz clock speed, 
24.75 MB L3 cache, 6 memory channels). Each node has 
384 GB of memory (12 × 32 GB DDR4 at 2666 MT/s). The 
nodes are connected by a network of four 36-port EDR (En-
hanced Data Rate) InfiniBand switches (100 Gb/s bandwidth, 
90 ns latency).

• 2018 GPU node: 1 GPU node containing four NVIDIA Tesla 
V100 GPUs connected by NVLink and two 18-core Intel Sky-
5

Table 1
All possible values for all hyperparameter in the studies.

Hyperparameter Values

(a) Hyperparameters for Section 6.1
Epochs 5, 10, 15
Learning rate 1e–3
Data multiplier 1, 2, 4
Num GPUs 1, 2, 3, 4
Batch size 128, 256, 512, 1024, 2048, 4096

(b) Hyperparameters for Section 6.2
Epochs 5, 10, 15, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000
Learning rate 1e–3
Data multiplier 1, 2, 4
Num GPUs 1, 2, 3, 4
Batch size 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536

Fig. 4. The preaugmented data is saved to disk before training begins. It is then 
loaded from disk to be used during training.

lake CPUs. The node has 384 GB of memory (12 × 32 GB DDR4 
at 2666 MT/s).

6.1. The effect of data augmentation on wall time

6.1.1. Preaugmented data
Each network was trained using a single node’s total re-

sources with the framework mentioned in Section 5.2 regardless 
of whether CPUs or GPUs were used during training. All possible 
hyperparameter values for all runs can be seen in Table 1. This 
section contains the wall time results for training all neural net-
works using data which has been preaugmented before training 
with primitive methods and saved to disk. This means that the 
network will not perform any live augmentation but rather read in 
the preaugmented data directly from disk. By timing in this way 
all the computational time will be tied directly to moving data and 
training the network. This is sketched in Fig. 4. Additionally the 
words “data multiplier” refers to data that has been augmented 
enough that the total size of the data has increased multiplica-
tively by the multiplier. A data multiplier of 2 means that data has 
been augmented to be twice as large in size.

The results in Table 2 are made of up of the total times to 
train networks with various hyperparameter configurations using 
the 2018 CPU hardware. The timing in the upper left corner of 
the first subtable is the time taken to train a network on preaug-
mented data which has the same number of total records as the 
original nonaugmented data using a batch size of 128, 5 epochs, 
and a learning rate of 0.001. Similarly the bottom right entry of 
that same subtable is the time taken to train a network on preaug-
mented data which has four times as many entries as the original 
unaugmented dataset using a batch size 4096, 5 epochs, and a 
learning rate of 0.001.

The first subtable in Table 2 used 5 epochs and a learning rate 
of 0.001 for training all subconfigurations within the table. The 
first column of this subtable uses as many records as the origi-
nal dataset but each network in the column used a different batch 
size for training. As the batch size increases the time taken to 
train the network decreases. However the time saved after each in-
crease in batch size does not scale proportionally with the change 



J.N. Basalyga, C.A. Barajas, M.K. Gobbert et al. Big Data Research 25 (2021) 100212
Table 2
Wall time for batch size versus data multiplier grouped by epochs with learning 
rate 0.001 for the 2018 CPUs with preaugmented data in seconds.

5 Epochs Data multiplier

Batch size 1 2 4

128 195 369 737
256 124 253 484
512 95 194 384

1024 77 159 310
2048 64 125 251
4096 56 107 211

10 Epochs Data multiplier

Batch size 1 2 4

128 373 720 1494
256 238 486 962
512 189 382 763

1024 154 313 629
2048 123 240 506
4096 110 210 422

15 Epochs Data multiplier

Batch size 1 2 4

128 574 1120 2239
256 367 740 1408
512 284 558 1140

1024 233 468 929
2048 184 370 730
4096 158 308 649

in batch size. Now consider only the first row of the first sub-
table. All networks trained in this row use the same number of 
epochs, the same learning rate, and the same batch size of 128
but the total number of records increase multiplicatively with the 
column’s associated multiplier. The first entry in the row uses the 
same number of entries as the original dataset but the second en-
try in that row uses twice as many entries and the last row uses 
four times as many entries. As the number of total entries used 
doubles the timings grow proportionally larger. With two times 
the amount of data used to train the network, the network takes 
twice as long to train. Similarly using four times as much data re-
sults in the time taken to train being four times larger than the 
first entry in the row. The more data used the longer it takes 
to train. These changes in timings hold for all subtables in Ta-
ble 2.

Examine the upper right entry in each of the subtables. Each 
of these entries were trained using the same learning rate, batch 
size, and dataset but with a varying number of epochs. The first 
subtable uses the least number of epochs and also has the fastest 
time among the three. The second subtable uses double the num-
ber of epochs as the first and also takes twice as long to train. 
Similarly the third subtable takes three times as long to train and 
uses three times as many epochs as the first subtable. An increase 
in the number of epochs means the data is passed that many 
more times to the network for training. It is sensible then that 
the time taken to train would increase linearly with the num-
ber of epochs used so long as all other hyperparameters are the 
same.

Table 3 contains the times taken to train networks with various 
hyperparameter configurations using the 2018 GPU hardware. All 
timing results draw the same conclusions as Table 2 except all tim-
ings for the GPUs are 10× faster and in some instances even 12×
faster. This massive increase in speedup is expected by researchers 
in the machine learning community and is a common theme seen 
when comparing CPU based training versus GPU based training. 
The process of training a convolutional neural network such as the 
one discussed in Section 1 uses many complex matrix operations 
in the process of computing weights for the hidden layers of the 
network. GPUs are specifically designed to do matrix operations of 
6

Table 3
Wall time for batch size versus data multiplier grouped by epochs with learning 
rate 0.001 for the 2018 GPUs with preaugmented data in seconds.

5 Epochs Data multiplier

Batch size 1 2 4

128 20 36 72
256 12 24 47
512 11 18 38

1024 10 17 32
2048 10 16 30
4096 13 18 37

10 Epochs Data multiplier

Batch size 1 2 4

128 36 74 146
256 24 48 96
512 22 36 77

1024 19 32 62
2048 17 30 58
4096 20 36 67

15 Epochs Data multiplier

Batch size 1 2 4

128 56 110 223
256 37 72 144
512 32 55 109

1024 25 48 99
2048 25 48 88
4096 32 56 98

Fig. 5. The original data is first loaded from disk. When an epoch starts the one 
batch of data is augmented and trained on. While the network trains on that batch 
another is augmented in parallel as indicated by the green arrow.

many flavors and it is accepted fact that they do these operations 
much faster than CPUs. Sensibly then, these specialized acceler-
ators perform the training process considerably faster than a CPU. 
In the case of the 2018 GPUs there are four GPUs training the neu-
ral network at any one time as opposed to the two CPUs used to 
train the neural networks in the CPU tables.

Since there is no data augmentation happening during training, 
all the times listed are pure training times. The timings for the 
CPUs improve dramatically as the batch size is increased regardless 
of the number of epochs. The GPUs are so effective with regards 
to training that batch size plays a smaller role in the training time. 
GPUs are, in all regards, faster than CPUs for training.

6.1.2. Live augmentation
This section contains the results that use live data augmenta-

tion during training. All possible hyperparameter values for all runs 
can be seen in Table 1. The original natural data is loaded, but 
while training the data is pushed through the primitive augmenta-
tion methods provided by Keras. The training times that are seen 
represent the wall time taken to move data, augment the data on-
the-fly, and train the network. A high level view of this process can 
be seen in Fig. 5. Keras’ primitive augmentation supports parallel 
augmentation meaning that data is being augmented in parallel to 
the networks being trained. This parallel operation can be seen as 
the green arrows in Fig. 5.



J.N. Basalyga, C.A. Barajas, M.K. Gobbert et al. Big Data Research 25 (2021) 100212
Live augmentation is typically done so that one does not need 
to preaugment gigabytes or even terabytes of unbalanced data. In 
some cases, you may even do live augmentation to turn small 
amounts of balanced or unbalanced data into larger amounts of 
balanced data so while the original dataset may fit into memory 
the larger augmented dataset might not. If your data is too large 
to fit into memory then preaugmented data would be I/O bound 
as it is read from disk rather than being CPU bound by being aug-
mented on-the-fly.

Table 4 shows similar timing behaviors to Table 2 when exam-
ining how the data multiplier scales the timing results but a much 
stronger diminishing return when batch size is increased. In or-
der to do live data augmentation Keras starts as many processes 
as there are cores on a node. The processes rotate, scale, and so 
on in parallel and send the data back to the main process. These 
processes are then cleaned up by the operating system forcing the 
main process to block during this time. This becomes a clear bot-
tleneck as we can see that the timings for smaller batch sizes 
are much worse than the larger batch sizes. However the times 
approach the preaugmented timings as the overhead of process 
creation becomes a smaller player in the time it takes to augment 
the data. The less data that can be live augmented the less time 
the spawned processes work meaning they spend more time being 
created and cleaned up than they do actually generating new data.

The overhead is even more apparent when examining Table 5
compared to Table 3. The scaling in each individual row has the 
same behavior but all of the rows in Table 5 are much slower 
than expected. Subtable 3 is 2× to 3× slower than the preaug-
mented numbers in the same positions. This is clearly due to the 
CPU bounded operations that are inherent with live data augmen-
tation. Additionally if you examine the data multiplier 4 column of 
subtable 3 the time savings as batch size increase disappears and 
makes way for varying wall times that are completely unrelated to 
the increase in batch size. Any savings that would normally be ob-
tained from increasing batch size are lost due to the overhead of 
live augmentation.

The timings for primitive live augmentation methods using 
CPUs and GPUs are anywhere from a few minutes to a couple 
hours. The GPU training is so efficient the GPU spends most of 
its time waiting for the data to be augmented rather than training. 
In cases where you are doing CPU based training the processor is 
working hard to both train and augment the data in tandem and 
often does not have the spare resources to balance both tasks.

6.1.3. The effect of GPU count on wall time
This section contains the wall time results for varying the num-

ber of GPUs while training. The number of GPUs used during 
training can be treated as a hyperparameter, as it has an im-
pact on both training time and prediction accuracy.” If the impact 
of using more GPUs is negligible then all future hyperparameter
sweeps should use the lowest number of GPUs possible. If luck 
would have it that the optimal number of GPUs can be evenly 
divided amongst the MPI processes during training, then result 
would be great boon for efficient training in the future. All pos-
sible hyperparameter values for all runs can be seen in Table 1. 
We use Keras’ mult_gpu_model which will automatically force 
TensorFlow to use all available GPUs by duplicating the graph 
on each GPU and training each of these with mini-batches in a 
process we refer to as “forced” parallelism. Additionally it has al-
ready been show in Subsection 6.1.2 that live augmentation is far 
slower than preaugmented data thus for this section we only use 
preaugmented data to cut down the wall time as much as possi-
ble.

Table 6 contains the wall times for the numbers of GPUs ver-
sus data multiplier grouped by epochs on the 2018 GPUs with 
preaugmented data, forced parallelism, and a batch size of 32768. 
7

Table 4
Wall time for batch size versus data multiplier grouped by epochs with learning 
rate 0.001 for the 2018 CPUs with live augmented data in seconds.

5 Epochs Data multiplier

Batch size 1 2 4

128 2534 5052 9859
256 1324 2597 5174
512 723 1445 2897

1024 390 776 1527
2048 210 425 852
4096 154 302 527

10 Epochs Data multiplier

Batch size 1 2 4

128 5066 10122 19627
256 2626 5271 10322
512 1376 2766 5520

1024 762 1501 3026
2048 429 847 1735
4096 305 620 1636

15 Epochs Data multiplier

Batch size 1 2 4

128 7369 14779 30372
256 3893 7950 15476
512 2083 4161 8304

1024 1155 2327 4511
2048 631 1278 2555
4096 388 798 1689

Table 5
Wall time for batch size versus data multiplier grouped by epochs with learning 
rate 0.001 for the 2018 GPUs with live augmented data in seconds.

5 Epochs Data multiplier

Batch size 1 2 4

128 37 70 142
256 35 69 138
512 36 72 140

1024 37 72 142
2048 38 76 150
4096 44 83 163

10 Epochs Data multiplier

Batch size 1 2 4

128 73 146 285
256 71 143 286
512 69 141 278

1024 73 144 284
2048 77 150 295
4096 83 161 329

15 Epochs Data multiplier

Batch size 1 2 4

128 108 214 442
256 105 211 429
512 107 216 426

1024 109 217 432
2048 117 229 445
4096 126 245 502

Consider the first row of 5 epoch table. For one GPU as the data 
multiplier increases the wall time increases proportionally. Now 
consider the data multiplier 1 column of the 5 epoch table. As the 
number of GPUs increases the time remains nearly identical de-
spite the doubling, tripling, and quadrupling of the compute power 
being used during training. Even considering the entire 5 epoch 
subtable yields the same behavior: as the number of GPUs increase 
the wall time remains qualitatively the same. All other subtables 
exhibit the same behavior as the 5 epoch subtable. While the in-
crease in epochs causes a general increase in the subtable timings, 
changing the number of GPUs does nothing to improve these tim-
ings. Conceptually the batch size of the table is 1/5 of all data with 



J.N. Basalyga, C.A. Barajas, M.K. Gobbert et al. Big Data Research 25 (2021) 100212
Table 6
Wall time for GPUs versus data multiplier grouped by epochs with batch size 32768, 
learning rate 0.001 for the 2018 GPUs with preaugmented data and forced paral-
lelism in seconds.

5 Epochs Data multiplier

GPUs 1 2 4

1 11 18 34
2 11 18 33
3 11 18 33
4 11 18 33

10 Epochs Data multiplier

GPUs 1 2 4

1 17 29 58
2 16 30 59
3 16 30 57
4 18 31 60

15 Epochs Data multiplier

GPUs 1 2 4

1 25 44 92
2 23 44 88
3 23 45 84
4 26 45 88

regards to a multiplier of 1. Multiple GPUs should have a real edge 
over a single GPU yet there this is not demonstrated. This is to 
say that the number of GPUs does nothing to improve wall time 
despite differences in data size.

Table 7 contains the wall times for the number of GPUs ver-
sus epochs grouped by data multiplier with preaugmented data, 
forced parallelism, and a batch size of 128. Consider the first row 
of the first subtable. For one GPU with a data multiplier of 1 and a 
varying number of epochs as the number of epochs increases the 
wall time increases proportionally. This proportional increase holds 
for all rows of the subtable and similarly this table wide behavior 
holds for the data multiplier 2 and 4 subtables. Examine the first 
column of the last subtable which is the 5 epoch column of data 
multiplier 4 table with a varying number of GPUs. As the number 
of GPUs increases the time also increases though the increase in 
time is steepest from one GPU to two GPUs. From there the time 
increase is 10 seconds per GPU additional GPU. As the number of 
epochs increases from 5 to 10 the increase from one GPU to two 
GPUs triples from around 20 seconds to approximately 60 seconds. 
Every additional GPU increases time by 20 seconds per GPU. As 
the number of epochs increases from 5 to 15 the increase from 
one GPU to two GPUs goes from around 20 seconds to approxi-
mately 90 seconds. Every additional GPU is around 30 seconds per 
GPU. At the smallest batch size the more GPUs used the slower the 
training time.

When even larger cases are run in isolation, this behavior is 
more easily observed with the tool nvidia-smi. With just one 
GPU and a batch size of 32,768 the GPU is entirely saturated for 
the majority of run-time with only occasional drops in GPU usage 
when the training rolls over to the next epoch. Similarly submit-
ting a 4 GPU job with a batch size of 131,072, meaning each GPU 
gets as much data as the multiplier 1 case, results in maximum 
saturation as well. This is why timings at much larger batch sizes 
seem much closer in time as the GPUs spend around the same 
amount of time computing and idling. This would give the impres-
sion that it takes Keras more time to distribute the data to the 
GPUs than compute and finalize all other information associated 
with computation.

6.2. The effect of batch size and GPU count on accuracy

In this section we present accuracy results for varying batch 
size and the number of GPUs used during training. In order to en-
8

Table 7
Wall time for GPUs versus epochs grouped by data multiplier with batch size 128, 
learning rate 0.001 for the 2018 GPUs with preaugmented data and forced paral-
lelism in seconds.

1 Data multiplier Epochs

GPUs 5 10 15

1 20 38 61
2 27 51 77
3 31 55 83
4 41 61 92

2 Data multiplier Epochs

GPUs 5 10 15

1 42 76 114
2 53 103 154
3 59 112 168
4 64 123 182

4 Data multiplier Epochs

GPUs 5 10 15

1 85 157 229
2 106 215 311
3 116 231 340
4 125 247 368

sure the network is fully trained, greater numbers of epochs are 
used (up to 1000) than in the previous sections. The data multi-
plier is kept to 1 so as not to artificially inflate run time.

Fig. 6 shows training accuracy curves varied by number of 
GPUs for batch sizes 128, 4,096, and 32,768. Note that the sudden 
drops in accuracy (especially prominent in the batch size 4,096 
plot) result from the use of dropout layers. In the batch size 128 
plot accuracy plateaus after only a small number of epochs and 
the curves for each GPU count lie on top of each other, virtu-
ally indistinguishable. As batch size increases a tendency emerges 
for higher GPU counts to have a slightly higher accuracy for any 
given number of epochs. With a batch size of 32,768, throughout 
most of the time spent training the 4 GPU curve has an accu-
racy about 1% higher than the 1 GPU curve with the same batch 
size.

The training accuracy curves resulting from keeping GPU count 
fixed and varying batch size are shown in Fig. 7. The 2 GPU plot 
on the left and the 4 GPU plot on the right are virtually identi-
cal, as would be expected from the results in Fig. 6. For any fixed 
number of epochs increasing batch size decreases accuracy. Even 
after 1,000 epochs there is an approximately 10% difference in ac-
curacy between the batch size 128 curve and the batch size 65,536 
curve.

When using Keras’ mult_gpu_model a copy of the network 
is sent to each GPU. For every batch, each copy of the network 
is trained on a smaller subset of the original batch, then the re-
sulting weights are aggregated together and copied back to each 
network. This ensures that after every batch each copy of the 
network is identical, even though they have all been trained on 
different subsets of the original batch. The size of these subsets 
is equal to the total batch size divided by the number of GPUs 
used. Therefore, when comparing the training of two different net-
works, one might expect that when the respective batch sizes 
divided by the respective GPU counts equal some constant, their 
training curves will be more or less the same. Fig. 8 does exactly 
this, varying both GPUs and batch size at the same time so that 
the batch size divided by GPU count is constant. We see that in 
fact the training curves are not the same. The effect of a smaller 
batch size outweighs the effect of a lower GPU count, and vice 
versa.

Table 8 contains the testing accuracies of the network, orga-
nized by batch size versus epochs, with 2 GPUs, data multiplier 
1, learning rate 0.001, preaugmented data, and forced parallelism. 



J.N. Basalyga, C.A. Barajas, M.K. Gobbert et al. Big Data Research 25 (2021) 100212

Table 8
Training accuracies for batch size versus epochs with 2 GPUs, data multiplier 1, learning rate 0.001 for the 2018 GPUs with preaugmented data and forced parallelism.

2 GPUs Batch size

Epochs 128 256 512 1024 2048 4096 8192 16384 32768 65536

5 87.96 90.26 82.55 85.23 87.86 89.28 83.00 79.98 76.21 68.57
10 92.02 86.88 87.37 88.21 89.18 88.95 89.00 84.44 83.55 77.65
15 91.41 88.41 89.98 91.11 88.79 87.60 85.75 86.20 85.98 76.67

100 93.03 93.15 91.90 90.02 88.68 87.09 88.68 88.54 89.23 88.09
200 93.45 93.26 93.14 93.57 92.39 89.91 87.14 88.49 87.48 86.60
300 93.50 93.77 93.41 93.21 92.27 92.53 89.66 87.63 89.03 86.80
400 92.19 93.43 93.52 93.08 92.63 92.90 90.88 88.30 88.53 87.12
500 91.12 93.40 93.49 93.14 93.11 92.27 92.90 90.87 90.37 88.32
600 93.27 92.94 93.23 93.27 92.86 92.49 91.71 90.95 88.81 88.95
700 93.29 93.48 93.62 93.08 92.98 92.77 92.28 90.11 87.71 88.18
800 92.58 93.32 93.41 93.26 93.23 92.81 92.33 90.93 90.97 89.84
900 93.96 93.38 93.24 93.11 89.23 93.36 92.70 89.98 87.06 90.34

1000 92.12 92.98 93.23 93.48 92.92 93.34 92.37 91.29 89.05 87.21

Table 9
Timing for batch size versus epochs with 2 GPUs, data multiplier 1, learning rate 0.001 for the 2018 GPUs with preaugmented data and forced parallelism.

2 GPUs Batch size

Epochs 128 256 512 1024 2048 4096 8192 16384 32768 65536

5 00:31 00:17 00:12 00:11 00:10 00:13 00:13 00:14 00:15 00:15
10 00:59 00:33 00:23 00:18 00:17 00:18 00:21 00:21 00:23 00:24
15 01:22 00:48 00:34 00:27 00:25 00:27 00:27 00:26 00:26 00:27

100 09:12 05:23 03:38 02:45 02:23 02:23 02:29 02:24 02:22 02:19
200 18:14 10:49 07:14 05:32 04:42 05:12 04:47 04:42 04:29 04:26
300 27:33 16:15 10:54 08:13 07:07 07:37 07:16 06:58 06:47 06:35
400 36:47 21:46 14:25 11:03 09:35 10:19 09:30 09:17 08:54 08:50
500 46:10 27:07 18:04 13:44 11:50 12:41 11:57 11:27 11:11 10:55
600 55:33 32:44 21:42 16:31 14:17 15:24 14:11 13:57 13:15 13:20
700 64:39 38:06 25:29 19:12 16:30 17:43 16:33 16:03 15:33 15:13
800 73:40 43:48 28:58 21:58 18:41 20:20 18:57 18:24 17:52 17:24
900 83:21 49:03 32:56 24:44 21:16 22:55 21:16 20:35 19:57 19:26

1000 92:02 54:55 36:29 27:40 23:40 25:22 23:58 22:48 22:42 21:39
We provide only the 2 GPU table since it allows us to provide data 
for the batch size 65,536 runs, and since other GPU counts result 
in similar accuracies. By considering just a single row of this ta-
ble we see that the testing accuracies follow a similar trend to 
what is exhibited by the training accuracies in Fig. 7, that is, ac-
curacy decreases as batch size increases. Therefore, when using a 
larger batch size a network must be trained for a greater number 
of epochs to reach a similar accuracy as that reached by a net-
work trained using a smaller batch size. By examining individual 
columns we see that testing accuracy plateaus between 92% and 
93%. This would indicate that the network configuration which can 
reach a testing accuracy of around 93% in the least amount of time 
would be the optimal configuration.

The corresponding timings of each run of the network are pre-
sented in Table 9. Here we see that total training time increases 
linearly with epochs, but increases non-linearly with batch size. 
The speedup of training time decreases with each doubling of 
batch size until the speedup is negligible. We see that in the case 
of our test network that this point of negligible speedup is reached 
by a batch size of 4,096. This is in contrast to the effect that batch 
size has on accuracy, since it can be seen in Table 8 that accu-
racy continues to decrease across an entire row. As a result of 
these effects, neither maximizing nor minimizing any of these hy-
perparameters leads to optimal performance. This behavior can be 
observed when examining Table 9. The 256 batch size 100 epoch 
run and the 1024 batch size 200 epoch run both have an accuracy 
of approximately 93% and a run time of approximately 5 minutes. 
However the 128 batch size 100 epoch run has comparable ac-
curacy but is double the run time at approximately 10 minutes. 
9

Additionally the 4096 batch size 400 epoch run has a 10 minute 
run time for the same comparable accuracy.

7. Conclusions and future work

There is not a lot of discussion on whether or not one should 
augment the data prior to experimentation. Careful considera-
tion should be taken with regards to the time taken to train a 
network as can be seen in Section 6.1. The time difference be-
tween using preaugmented data versus the use of primitive live 
augmentation methods is substantial. If the disk space is avail-
able one should always opt for preaugmented data over primitive 
live method. This becomes especially important if one is looking 
to take advantage of accelerators like a GPU. The GPU training 
is so efficient the GPU spends most of its time waiting for the 
data to be augmented rather than training. In Subsection 6.1.1
the preaugmented data times were on the scale of minutes com-
pared to the primitive live augmentation methods seen in Sub-
section 6.1.2 whose times were in hours. In cases where you are 
doing CPU based training the processor is working hard to both 
train and augment the data in tandem and often does not have 
the spare resources to balance both tasks. Preaugmented data was 
clearly the better choice for both GPU and CPU training. Addi-
tionally, GPU training was so much faster than CPU training that 
even the GPUs in older CPU/GPU nodes (from 2013) were faster 
than the state-of-the-art CPUs from 2018 used in the studies here 
[6].

While the GPU training was clearly better than the CPU train-
ing, there are still more variables to tackle. The question, “do more 
GPUs equate to better performance time?,” may seem obvious but 



J.N. Basalyga, C.A. Barajas, M.K. Gobbert et al. Big Data Research 25 (2021) 100212
Fig. 6. Training accuracy curves for different batch sizes, varying GPU counts, with 
data multiplier 1 and learning rate 0.001 for the 2018 GPUs with preaugmented 
data and forced parallelism.

the results in Subsection 6.1.3 beg to differ. Initially one might 
suspect that putting more computing power behind training will 
result in faster run times but this is not the case. At the smallest 
batch size, the more GPUs used, the slower the training time. The 
mini-batch system Keras uses does not cater toward pushing and 
pulling small amounts of data to the GPUs as the wall time is al-
ways worse as the number of GPUs increase for this batch size. 
Additionally the number of GPUs does nothing to improve wall 
time despite differences in data size. A single GPU still out per-
forms all other counts of GPUs across the board. With just one 
GPU and a batch size of 32,768, the GPU is entirely saturated 
for the majority of run-time with only occasional drops in GPU 
10
usage when the training rolls over to the next epoch. Similarly 
submitting a 4 GPU job with a batch size of 131,072, meaning 
each GPU gets as much data as the multiplier 1 case, results in 
maximum saturation for very short bursts of a couple seconds. 
The original predictive model is computationally cheap to train 
and as such it is not unlikely that this leads to one GPU having 
the best performance times. Each additional GPU exhibits a near 
constant increase in time as it is only a small amount of over-
head to micromanage additional GPUs. This is to say that training 
a more simple cheap network where one wants to train with as 
many hyperparameter combinations as possible should be done 
with only one high end GPU per process. With a node that has 
four GPUs you can train four networks per node rather than just 
one per node which dramatically increases throughput. For a suffi-
ciently complex network it is still possible that multiple GPUs are 
more efficient as the extra computing power can be put to good 
use rather than left idling. It is important to make a clear distinc-
tion between the training process and the use of a network during 
the classification only phase of production. Cheap networks with 
small batch sizes clearly benefit more from maximizing throughput 
with regards to the number of processed hyperparameter configu-
rations. If one was to use this cheap network in production for 
classification only, then we want to maximize the throughput as-
sociated with processing as much data as possible. In this regard 
multiple GPUs could be more beneficial if the batch size is large 
enough.

The tests in Section 6.2 show that the number of GPUs have no 
meaningful impact accuracy for small batch sizes. Yet when we in-
crease batch size to be so large that the GPUs are fully saturated 
with full memory we see a large drop in accuracy on an epoch 
by epoch basis. This alludes to larger batch sizes being impracti-
cal for training unless one uses many more epochs to correct this 
large drop. As mentioned in Subsection 6.1.3 one must use larger 
batch sizes to see full computational saturation and huge boosts 
to speedup. If one were trying to see speedup while maintaining 
accuracy it would make sense to increase the number epochs to 
account for the accuracy lost due to batch size enlargement. How-
ever in many cases the speedup is completely lost by doing so. 
This further reinforces the argument that the minimal number of 
GPUs necessary should be used in training a single network. This 
maximizes training throughput in regards to the number of net-
works trained at a time and the optimal speedup for the majority 
of training cases.

Our framework does support the usage of user determined val-
idation sets by leveraging Keras’ built-in model.fit() but we 
do not use them for several reasons. Our results in this work are 
focused solely on demonstrating the evolving complexity and in-
tricacies of our framework. We aim to show that our framework 
has the capacity to make in depth hyperparameter tuning more 
streamlined in an HPC environment. The number of notable HPC 
hyperparameter searching frameworks is small so we highlight our 
ability to do both CPU and GPU studies with the same framework 
while also using the number of GPUs as a hyperparameter for op-
timal training times.

As additional future work we hope to add more advanced hy-
perparameter search methods beyond the brute force grid search. 
We plan on adding these search methods for both the fully syn-
chronous searching and master worker searching.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.



J.N. Basalyga, C.A. Barajas, M.K. Gobbert et al. Big Data Research 25 (2021) 100212

Fig. 7. Training accuracy curves for different GPU counts, varying batch sizes, with data multiplier 1 and learning rate 0.001 for the 2018 GPUs with preaugmented data and 
forced parallelism.

Fig. 8. Training accuracy curves varied by both GPUs and batch size simultaneously, with data multiplier 1 and learning rate 0.001 for the 2018 GPUs with preaugmented 
data and forced parallelism.
Acknowledgements

This work is supported by the grant “CyberTraining: DSE: 
Cross-Training of Researchers in Computing, Applied Mathemat-
ics and Atmospheric Sciences using Advanced Cyberinfrastructure 
Resources” from the U.S. National Science Foundation (grant no. 
OAC–1730250). Co-author Carlos Barajas additionally acknowledges 
support as HPCF RA. The hardware used in the computational 
studies is part of the UMBC High Performance Computing Facil-
ity (HPCF). The facility is supported by the U.S. National Science 
Foundation through the MRI program (grant nos. CNS–0821258, 
CNS–1228778, and OAC–1726023) and the SCREMS program (grant 
no. DMS–0821311), with additional substantial support from the 
University of Maryland, Baltimore County (UMBC). See hpcf .umbc .
edu for more information on HPCF and the projects using its re-
sources.

References

[1] V. Nourani, S. Uzelaltinbulat, F. Sadikoglu, N. Behfar, Artificial intelligence based 
ensemble modeling for multi-station prediction of precipitation, Atmosphere 
10 (2) (2019) 80–126.

[2] W. Ghada, N. Estrella, A. Menzel, Machine learning approach to classify 
rain type based on Thies disdrometers and cloud observations, Atmosphere 
10 (251) (2019) 1–18.

[3] A. McGovern, K.L. Elmore, D.J. Gagne II, S.E. Haupt, C.D. Karstens, R. Lagerquist, 
T. Smith, J.K. Williams, Using artificial intelligence to improve real-time 
decision-making for high-impact weather, Bull. Am. Meteorol. Soc. 98 (10) 
(2017) 2073–2090.

[4] V. Lakshmanan, C. Karstens, J. Krause, K. Elmore, A. Ryzhkov, S. Berkseth, Which 
polarimetric variables are important for weather/no-weather discrimination?, J. 
Atmos. Ocean. Technol. 32 (6) (2015) 1209–1223.
11
[5] L.R. Barnes, E.C. Gruntfest, M.H. Hayden, D.M. Schultz, C. Benight, False alarms 
and close calls: a conceptual model of warning accuracy, Weather Forecast. 
22 (5) (2007) 1140–1147.

[6] C.A. Barajas, An approach to tuning hyperparameters in parallel: a performance 
study using climate data, M.S. Thesis, Department of Mathematics and Statis-
tics, University of Maryland, Baltimore County, 2019.

[7] C. Becker, W.D. Mayfield, S.Y. Murphy, B. Wang, C. Barajas, M.K. Gobbert, An 
approach to tuning hyperparameters in parallel: a performance study using 
climate data, Tech. Rep. HPCF–2019–13, UMBC High Performance, Computing 
Facility, University of Maryland, Baltimore County, 2019, http://hpcf .umbc .edu.

[8] C. Barajas, M.K. Gobbert, J. Wang, Source code for hpcgrid, https://github .com /
AmericanEnglish /PGML.

[9] C.A. Barajas, M.K. Gobbert, J. Wang, Performance benchmarking of data aug-
mentation and deep learning for tornado prediction, in: 2019 IEEE Interna-
tional Conference on Big Data (Big Data), IEEE, 2019, pp. 3607–3615.

[10] F. Chollet, Deep Learning with Python, Manning, 2018.
[11] D. Osinga, Deep Learning Cookbook, O’Reilly Media, 2018.
[12] F.H.K. dos Santos Tanaka, C. Aranha, Data augmentation using GANs, arXiv:

1904 .09135 [abs].
[13] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J.E. Gonzalez, I. Stoica, Tune: a re-

search platform for distributed model selection and training, preprint, arXiv:
1807.05118.

[14] James Bergstra, Dan Yamins, David D. Cox, Hyperopt: a python library for op-
timizing the hyperparameters of machine learning algorithms, in: Stéfan van 
der Walt, Jarrod Millman, Katy Huff (Eds.), Proceedings of the 12th Python in 
Science Conference, 2013, pp. 13–19.

[15] J. Lorraine, P. Vicol, D. Duvenaud, Optimizing millions of hyperparameters 
by implicit differentiation, in: Proceedings of Machine Learning Research, 
PMLR, Online, vol. 108, 2020, pp. 1540–1552, http://proceedings .mlr.press /
v108 /lorraine20a .html.

[16] J.S. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for hyper-parameter 
optimization, in: J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira, K.Q. Wein-
berger (Eds.), Advances in Neural Information Processing Systems 24, Cur-
ran Associates, Inc., 2011, pp. 2546–2554, http://papers .nips .cc /paper /4443 -
algorithms -for-hyper-parameter-optimization .pdf.

http://hpcf.umbc.edu
http://hpcf.umbc.edu
http://refhub.elsevier.com/S2214-5796(21)00029-0/bibE5CD4880559D5E2993CA3F41779BF06Cs1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bibE5CD4880559D5E2993CA3F41779BF06Cs1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bibE5CD4880559D5E2993CA3F41779BF06Cs1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib122F248A77A42D33EADD53425DE7A843s1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib122F248A77A42D33EADD53425DE7A843s1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib122F248A77A42D33EADD53425DE7A843s1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bibB96A655344BDD952E855A10D13251EA7s1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bibB96A655344BDD952E855A10D13251EA7s1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bibB96A655344BDD952E855A10D13251EA7s1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bibB96A655344BDD952E855A10D13251EA7s1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib8B72404FEC87E07701CF01C6C0CC0BE9s1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib8B72404FEC87E07701CF01C6C0CC0BE9s1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib8B72404FEC87E07701CF01C6C0CC0BE9s1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib706BED22A6E3FC1A9C6EF15A0BB4902Bs1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib706BED22A6E3FC1A9C6EF15A0BB4902Bs1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib706BED22A6E3FC1A9C6EF15A0BB4902Bs1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib14FD48784557910D6F7E3CF50F8F2CF3s1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib14FD48784557910D6F7E3CF50F8F2CF3s1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib14FD48784557910D6F7E3CF50F8F2CF3s1
http://hpcf.umbc.edu
https://github.com/AmericanEnglish/PGML
https://github.com/AmericanEnglish/PGML
http://refhub.elsevier.com/S2214-5796(21)00029-0/bibB46844A2C3B0051CD184DD8426C0412Bs1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bibB46844A2C3B0051CD184DD8426C0412Bs1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bibB46844A2C3B0051CD184DD8426C0412Bs1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bibBF6C6FCF6AA6395639A682E2BFE6B97Ds1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib1CF94BA174EF1FBC06C712D52B17D078s1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib1CD2D1F5231CF83CDC8914AA3D4DCE22s1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib1CD2D1F5231CF83CDC8914AA3D4DCE22s1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib7926B8A4BDED4A3CA15CB4C49DE7529Cs1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib7926B8A4BDED4A3CA15CB4C49DE7529Cs1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib7926B8A4BDED4A3CA15CB4C49DE7529Cs1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bibF65534D2838CA95EE54AC215CF191B1Bs1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bibF65534D2838CA95EE54AC215CF191B1Bs1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bibF65534D2838CA95EE54AC215CF191B1Bs1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bibF65534D2838CA95EE54AC215CF191B1Bs1
http://proceedings.mlr.press/v108/lorraine20a.html
http://proceedings.mlr.press/v108/lorraine20a.html
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf


J.N. Basalyga, C.A. Barajas, M.K. Gobbert et al. Big Data Research 25 (2021) 100212
[17] C. Barajas, P. Guo, L. Mukherjee, S. Hoban, J. Wang, D. Jin, A. Gangopadhyay, 
M.K. Gobbert, Benchmarking parallel implementations of k-means cloud type 
clustering from satellite data, in: C. Zheng, J. Zhan (Eds.), Benchmarking, Mea-
suring, and Optimizing, Bench 2018, in: Lecture Notes in Computer Science, 
vol. 11459, Springer-Verlag, 2019, pp. 248–260.

[18] C. Barajas, M.K. Gobbert, G.C. Kroiz, B.E. Peercy, Challenges and opportunities 
for the simulation of calcium waves on modern multi-core and many-core 
parallel computing platforms, Int. J. Numer. Meth. Biomed. Engng., https://
doi .org /10 .1002 /cnm .3244.

[19] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, K. Keutzer, Imagenet training in min-
utes, in: Proceedings of the 47th International Conference on Parallel Pro-
cessing, ACM, New York, NY, USA, 2018, pp. 1–10, http://doi .acm .org /10 .1145 /
3225058 .3225069.

[20] R. Lagerquist, D.J. Gagne II, Basic machine learning for predicting thunder-
storm rotation: Python tutorial, https://github .com /djgagne /ams -ml -python -
course /blob /master /module _2 /ML _Short _Course _Module _2 _Basic .ipynb, 2019.
12

http://refhub.elsevier.com/S2214-5796(21)00029-0/bib4F3ECFCE0F49F0E4AA505AF73907523Ds1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib4F3ECFCE0F49F0E4AA505AF73907523Ds1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib4F3ECFCE0F49F0E4AA505AF73907523Ds1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib4F3ECFCE0F49F0E4AA505AF73907523Ds1
http://refhub.elsevier.com/S2214-5796(21)00029-0/bib4F3ECFCE0F49F0E4AA505AF73907523Ds1
https://doi.org/10.1002/cnm.3244
https://doi.org/10.1002/cnm.3244
http://doi.acm.org/10.1145/3225058.3225069
http://doi.acm.org/10.1145/3225058.3225069
https://github.com/djgagne/ams-ml-python-course/blob/master/module_2/ML_Short_Course_Module_2_Basic.ipynb
https://github.com/djgagne/ams-ml-python-course/blob/master/module_2/ML_Short_Course_Module_2_Basic.ipynb

	Performance Benchmarking of Parallel Hyperparameter Tuning for Deep Learning Based Tornado Predictions
	1 Introduction
	2 Related work
	3 Deep learning with convolutional neural networks
	4 Data
	5 Parallelism of hyperparameter tuning
	5.1 Hyperparameters
	5.2 MPI framework for parallelized training

	6 Results
	6.1 The effect of data augmentation on wall time
	6.1.1 Preaugmented data
	6.1.2 Live augmentation
	6.1.3 The effect of GPU count on wall time

	6.2 The effect of batch size and GPU count on accuracy

	7 Conclusions and future work
	Declaration of competing interest
	Acknowledgements
	References


