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Abstract—Proton beam radiotherapy is a method of cancer
treatment that uses proton beams to irradiate cancerous tissue,
while simultaneously sparing healthy tissue. One promising
method of real-time imaging during treatment is the use of
a Compton camera, which can image prompt gamma rays
that are emitted along the beam’s path through the patient.
However, because of limitations in the Compton camera’s ability
to detect prompt gammas, the reconstructed images are often
noisy and unusable for verifying proton treatment delivery.
Machine learning ensemble methods like random forests are
able to automatically learn patterns that exist in numerical data,
making them a promising method to analyze Compton camera
data for the purpose of reducing noise in the reconstructed
images. We conduct a hyperparameter search to find an opti-
mal random forest model. We then present the results of the
best performing random forest model, which demonstrate that
this ensemble method is less effective than competing machine
learning techniques for this application.

Index Terms—Proton beam therapy, Prompt gamma imaging,
Compton camera, Machine learning, Random forest.

I. INTRODUCTION

Proton beams’ primary advantage in cancer treatment as
compared to other forms of radiation therapy, such as x-rays, is
their finite range. The radiation delivered by the beam reaches
its maximum, known as the Bragg peak, at the very end of the
beam’s range [1], [2]. Little to no radiation is delivered beyond
this point. By exploiting the properties of the Bragg peak it
is possible to only irradiate cancerous tissues, avoiding any
damage to the surrounding healthy tissues [3]. However, due
to uncertainties in the range of the beam, relative to important
organs in the body, it is difficult to make optimal use of the
Bragg peak during treatment.

The Compton camera is one method for real time imaging,
which works by detecting prompt gamma rays emitted along
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the path of the beam [4]. By analyzing how prompt gamma
rays scatter through the Compton camera, it is possible to
reconstruct their origin. It has been suggested that the range
of the proton beam in the patient could be verified by using
a Compton camera to image the prompt gamma rays emitted
during proton treatment delivery. There are a couple hurdles in
achieving this goal. The Compton camera does not explicitly
record the sequential order of the prompt gammas that interact
with the camera’s internals. The physical limitations of the
camera cause the interactions of any detected true triple, which
consists of three interactions, to be output in a random order.
It also often creates false couplings where multiple prompt
gamma rays appear as originating from a single prompt gamma
ray [5]. These problems make the reconstructed images of the
beam’s shape and depth based on Compton camera data noisy
and unusable for practical purposes [6], [7].

We intend on using various machine learning technologies
to try and correct the bad data produced by the Compton
camera. If any one of the various possible algorithms or
techniques can adequately clean the data then the usage of
Compton cameras in proton beam therapy could become a
reality. This would enhance a doctor’s ability to make same-
day treatment adjustments which inevitably leads to better
treatment. In this work specifically we use random forests as
they are well known and commonly used ensemble method.

The remaining sections of this work are organized as
follows: Section II-A introduces the Compton camera and
how it is used in proton beam therapy for cancer treatment
and its current limitations. Section II-B gives a brief overview
of random forests. Section II-C details how the data has to
be handled, changed, and labelled for deep learning viability.
Section III catalogues the hardware and software used for
all research activities. Section IV details the performance
of random forests used for prompt gamma classification.
Section V presents our conclusions from this work.



II. BACKGROUND

A. Compton Cameras in Proton Beam Therapy

Proton beam therapy was first proposed as a cancer treat-
ment in [8]. The beam’s particles lose kinetic energy as
they traverse the patient, the amount of radiation delivered
by the beam is low at its entry point, gradually rising until
the beam nears the end of its range, at which point the
delivered dose rapidly reaches its maximum [2]. This point
of maximum dose is called the Bragg peak and the discovery
and additional details associated with it can be seen in [1],
[2]. One of the most important things about the Bragg peak
is that little to no radiation is delivered beyond the Bragg
peak. These characteristics of proton beam therapy give it
a distinct advantage over x-rays. Exploiting its finite range,
medical practitioners can confine the radiation of the beam
to areas solely affected by cancerous tumors allowing vital
organs beyond the tumor to be spared [3].

In order to exploit the full advantages of proton therapy,
many researchers are investigating methods to image the beam
in real time as it passes through the patient’s body [3], [6], [9].
One proposed method for real time imaging is by detecting
prompt gamma rays that are emitted along the path of the
beam using a Compton camera. As the proton beam enters
the body, protons in the beam interact with atoms in the body,
emitting prompt gamma rays which eventually collide with
special modules inside the Compton camera. These modules
have a non-zero time-resolution during which all interactions
are recorded as occurring simultaneously. This means that the
output ordering of the interactions is random and arbitrary. The
collection of all internal interaction data that a camera module
collects during a single readout cycle is referred to as an event
[10]. Should two prompt gamma rays enter the same module
of the Compton camera during the same readout cycle, the
camera would record the resulting interactions as a part of the
same event. This presents a notable problem because image
reconstruction methods assume that all interactions in an event
correspond to the same prompt gamma ray and are correctly
ordered. For each interaction (also called a Compton scatter)
an (x, y, z) location and the energy e deposited are recorded.
At the higher dosage rates typically used in treatment, proton
beams emit a larger number of prompt gamma rays per unit
time, increasing the likelihood of bad events [11].

B. Ensemble Methods

Random forests are a commonly used ensemble method
that average the results from decision trees for classification,
regression, and other forms of machine learning. The studies in
this paper use random forest models trained for classification
accuracy. Within the random forest, each individual decision
tree in itself is another form of machine learning classification,
where based on characteristics of a sample, the sample is
classified. Typically, random forests outperform single deci-
sion trees as they can average the results of many decision
trees. The averaging of the individual decision trees directly
tackles any overfitting that occurs when training individual

decision trees. A more in-depth explanation of the ensemble
method is described in [12]. All hyperparameter studies use
hyperparameter search methods defined in the sklearn
library. Additionally the random forests themselves are the
random forest classifier from sklearn. The results of the
hyperparameter studies are shown in Section IV.

C. Data Preprocessing

Let each interaction be represented by 1, 2, or 3 for any
given event. When a triple is correctly ordered we call that
a 123 event. When a triple is misordered it is represented
as 132, 213, 231, 312, or 321. Table I shows all possible
orderings and the arrangement of the data for each class in
their respective interactions. To explain the labelling system
more, consider the 312 event from Table I . In the 312 event the
data which should be interaction 1, [e1, x1, y1, z1], shows up as
interaction 2. Similarly, [e2, x2, y2, z2] shows up as interaction
3 but should be interaction 2. Lastly, [e3, x3, y3, z3] shows up
as interaction 1 but should be interaction 3. To improve the
performance of our random forests, we find it useful to append
the Euclidean distances between interactions to the data output
by the Compton camera. Each class has the same number of
events with 140K events per class. Recall that only the 123
events are usable for reconstruction .

In order to normalize our data we treat our energy and
spatial data differently. We fold all the energies into a
single column for preprocessing and then normalize en-
ergy with the PowerTransformer (Yeo-Johnson) from
sklearn.Preprocessing. For our spatial data we fold
all of the data into x, y, and z; then we normalize the columns
with MaxAbsScaler from sklearn.Preprocessing.
After normalization we defold the data back into our interac-
tion formats as seen in Table I .

III. HARDWARE USED

The studies in this work use a distributed-memory cluster
of 42 compute nodes with each with two 18-core Intel Xeon
Gold 6140 Skylake CPUs (2.3 GHz clock speed, 24.75 MB
L3 cache, 6 memory channels). Each node has 384 GB of
memory (12 × 32 GB DDR4 at 2666 MT/s). The nodes
are connected by a network of four 36-port EDR (Enhanced
Data Rate) InfiniBand switches (100 Gb/s bandwidth, 90 ns
latency). These nodes are contained in the cluster taki of the
UMBC High Performance Computing Facility (HPCF), whose
webpage at hpcf.umbc.edu can provide more details.

All studies and preprocessing used one or more of the
following python packages with the respective version:

• Python 3.7.6,
• Numpy 1.18.1,
• Scipy 1.4.1,
• Pandas 1.1.0.dev0+690.g690e382 (configured for icc

19.0.1.144 20181018),

hpcf.umbc.edu


TABLE I
LIST OF THE INPUT CLASSES AND THEIR ACTUAL INTERACTION DATA IN THE FOLLOWING COLUMNS. THE INPUT CLASS ENCODES HOW THE ENERGY
AND SPATIAL DATA ARE ORDERED IN THE DATA FILE FOR TRAINING. FOR EXAMPLE FOR A 312 EVENT [e1, x1, y1, z1] SHOWS UP AS INTERACTION 3

WHEN IT SHOULD SHOW UP AS INTERACTION 1. SIMILARLY, [e2, x2, y2, z2] SHOWS UP AS INTERACTION 1 BUT SHOULD BE INTERACTION 2. LASTLY,
[e3, x3, y3, z3] SHOWS UP AS INTERACTION 2 BUT SHOULD BE INTERACTION 3.

Class Interaction 1 Interaction 2 Interaction 3
123 e1 x1 y1 z1 e2 x2 y2 z2 e3 x3 y3 z3
132 e1 x1 y1 z1 e3 x3 y3 z3 e2 x2 y2 z2
213 e2 x2 y2 z2 e1 x1 y1 z1 e3 x3 y3 z3
231 e2 x2 y2 z2 e3 x3 y3 z3 e1 x1 y1 z1
312 e3 x3 y3 z3 e1 x1 y1 z1 e2 x2 y2 z2
321 e3 x3 y3 z3 e2 x2 y2 z2 e1 x1 y1 z1

TABLE II
ALL POSSIBLE HYPERPARAMETER VALUES USED IN SEARCHING FOR THE

OPTIMAL RANDOM FOREST.

Hyperparameter Values
min_samples_split 2, 5, 10
min_samples_leaf 1, 2, 4

max_depth 10, 20, 30, 40, 50
max_features auto, sqrt, log2
bootstrap true and false

TABLE III
HYPERPARAMETER VALUES USED IN THE BEST RANDOM FOREST.

Hyperparameter Value
min_samples_split 5
min_samples_leaf 2

max_depth 50
max_features auto
bootstrap false

IV. RESULTS

We train over a collection of hyperparameters using
sklearn’s RandomForestClassifier for classification
and sklearn’s RandomizedCVSearch for hyperparameter
tuning given the collection of hyperparameters mentioned in
Table II. We train our random forests on a MCDE 150MeV
0kMU beam dataset. Only the random forest with the best
accuracy will be considered and evaluated.

Figure 1 is a confusion matrix which is generated by
a random forest, whose parameters are listed in Table III,
classifying the Monte-Carlo plus Detector Effects (MCDE)
150MeV 20kMU beam data. The first column of the table
is the input class and the every proceeding column is the
percentage of input which was assigned to class at the top
of column. Each cell is colored by accuracy relative to the
largest percentage present in entire confusion matrix.

We see that the dominant classification for each row is the
input class itself. For the 123 class we see that the second and
third highest classifications result in around 30% of the data
and the remaining 10% is spread among the remaining classes.
The observation that the 2nd and 3rd highest classifications
soak around 30% of the data is consistent for each input
class. There is no answer which can consistently explain what
the input class, say 123, has in connection to a dominant
misclassification like, say, 213. These behaviors are the same
for Figures 2 and 3.

Lastly we notice that the random forest has a minimum
correct classification accuracy of 52.9% and a maximum
correct classification accuracy of 64.8% across all three testing
sets. We know that of the 6 classes only one of them is
usable for reconstruction. If we take a data file and do not
use the random forest classifications we would expect that
approximately 16% (1/6) would be usable for reconstruction.
If we used the random forest classification to reorder the triples
then we might expect that, on average, 58% of the data file
would be usable for reconstruction.

123 132 213 231 312 321
123 60.1 13.5 14.6 4.5 2.9 4.4
132 14.1 53.3 3.6 5.1 20.2 3.7
213 13.9 4.3 57.5 17.1 4.9 2.3
231 4.3 8.1 10.6 60.0 3.7 13.4
312 4.8 8.9 7.8 3.0 63.7 11.9
321 8.8 3.6 4.7 13.3 12.7 57.0

Fig. 1. Confusion matrix for a random forest trained on true triples data from
a 150MeV 0kMU beam and tested on the MCDE 150MeV 20kMU beam.

123 132 213 231 312 321
123 60.6 14.6 15.1 3.7 2.6 3.5
132 12.8 52.9 3.5 4.7 22.7 3.5
213 14.6 3.8 54.6 19.1 5.3 2.6
231 2.8 7.3 10.7 61.3 3.6 14.4
312 4.5 7.8 7.4 2.9 63.5 14.0
321 8.7 3.8 4.8 12.4 13.4 57.0

Fig. 2. Confusion matrix for a random forest trained on true triples data
from a 150MeV 0kMU beam and tested on the MCDE 150MeV 100kMU
beam.

123 132 213 231 312 321
123 62.7 14.9 11.8 3.6 1.9 5.0
132 11.5 58.7 2.2 4.6 19.0 4.1
213 15.2 4.3 55.4 18.8 3.9 2.4
231 4.8 8.7 9.2 56.1 4.8 16.4
312 4.8 8.2 6.5 2.2 64.8 13.5
321 8.2 4.6 6.3 10.6 13.5 56.9

Fig. 3. Confusion matrix for a random forest trained on true triples data
from a 150MeV 0kMU beam and tested on the MCDE 150MeV 180kMU
beam.



We also have four additional MCDE testing tests at each of
the previously used dose rates. All of the conclusions made
about Figures 1, 2, and 3 all hold for the unlisted results
mentioned. There are differences in the exact percentages
but the general relationships discussed are identical. The
results from the random forest are far below the minimum
classification accuracy 80% for each class.

V. CONCLUSIONS

Compton cameras are promising tool which could enable
real-time same-day adjustments to a patient’s proton radiother-
apy cancer treatment. This is because the Compton camera
can capture the prompt gamma rays that are emitted by
the patient’s tissues when the proton beam enters the body.
When the prompt gamma rays collide with the Compton
camera internals the camera can record the spatial position and
energy deposited. These values can then be used to reconstruct
pictures of the original beam inside the patient. The are
two major drawbacks which prevent the usage of Compton
cameras in this manner are that the Compton cameras cannot
correctly determine the order of the internal collisions and it
cannot determine if two prompt gamma rays entered at the
same time. Prompt gamma image reconstruction algorithms
expect the interaction to be ordered for proper and accurate
reconstruction. Any incorrect ordering will cause noise and
render the resulting image unusable. There are 6 possible
orderings for a prompt gamma ray which scatters inside the
Compton camera three times but only one of the orderings is
usable for reconstruction.

In this work we attempted to use random forests from
sklearn to determine the correct ordering of our simulated
Compton camera data. Rather than just using a single con-
figuration we did a hyperparameter study to try and find the
optimal hyperparameters for random forests on our data. We
tested the best performing random forest on three simulated
test data sets which closely resemble a real-world proton beam
captured by a Compton camera. The best random forest per-
formed rather poorly with a minimum classification accuracy
of ≈53% and a maximum classification accuracy of ≈65%
between our test sets. If we were to use the best random forest
classification to correct a data file of balanced true triples then
the amount of reconstruction viable data goes from 16% to
58%. We need a minimum classification accuracy of 80% for
each class to be competitive with other methods. In addition to
this, we prefer a classification accuracy greater than 95% for
real-world usage. Based on these findings we do not have high
hopes that other ensemble methods will perform well enough.
We have already have great success using neural networks in
[13]. Nevertheless, we intend to test other ensemble methods
like K-means clustering and support vector machines to see if
they could do better at understanding our data.
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