
Coarse-Grained Parallel Matrix-Free Solution of
a Three-Dimensional Elliptic Prototype Problem

Kevin P. Allen? and Matthias K. Gobbert

Department of Mathematics and Statistics,
University of Maryland, Baltimore County,

1000 Hilltop Circle, Baltimore, MD 21250, U.S.A.
{kallen1,gobbert}@math.umbc.edu

Abstract. The finite difference discretization of the Poisson equation in
three dimensions results in a large, sparse, and highly structured system
of linear equations. This prototype problem is used to analyze the perfor-
mance of the parallel linear solver on coarse-grained clusters of worksta-
tions. The conjugate gradient method with a matrix-free implementation
of the matrix-vector product with the system matrix is shown to be op-
timal with respect to memory usage and runtime performance. Parallel
performance studies confirm that speedup can be obtained. When only
an ethernet interconnect is available, best performance is limited to up
to 4 processors, since the conjugate gradient method involves several
communications per iteration. Using a high performance Myrinet inter-
connect, excellent speedup is possible for at least up to 32 processors.
These results justify the use of this linear solver as the computational
kernel for the time-stepping in a system of reaction-diffusion equations.

1 Introduction

This paper considers the Poisson equation

−∆u = f in Ω,
u = 0 on ∂Ω

(1)

on a three-dimensional domain Ω ⊂ IR3 with a prescribed right-hand side func-
tion f(x, y, z). Here, ∂Ω denotes the boundary of the domain Ω. The boundary
condition u = 0 defines a homogeneous Dirichlet condition. Equation (1) is a
model for heat flow, chemical diffusion, fluid flow, and other systems [11].

Many methods exist for the numerical solution of the elliptic problem (1), in-
cluding finite difference and finite element methods as well as specialized solvers
like Fast Poisson Solvers [7]. We will consider a finite difference discretization
here using a conventional seven-point stencil in three dimensions. The resulting
linear system of equations for the discrete unknowns is solved by the conjugate
gradient method. The convergence of the method is assured, because the system
matrix is guaranteed to be symmetric positive definite [2, 5]. The system matrix
? This work is part of the first author’s undergraduate research.

2 Kevin P. Allen and Matthias K. Gobbert

is moreover sparse and highly-structured. We will materially use these proper-
ties to code an efficient matrix-free implementation of the matrix-vector product
that is the most expensive part of the conjugate gradient method.

The reason why the solution of problem (1) with an iterative method like
conjugate gradients is of interest can be explained as follows: This problem
provides a prototype problem for the type of linear system the needs to be
solved at each time step of a time-dependent parabolic problem like the heat
equation or more general systems of reaction-diffusion equations. For every type
of spatial discretization, finite difference or finite element, one has to solve a
linear system with a large, sparse, highly-structured system matrix. This matrix
has the same sparsity structure as the one arrived by discretizing the prototype
problem (1). Hence, studying the efficiency of the linear solver applied to the
linear system resulting from the prototype problem is of vital interest, because
it will form the computational kernel of the time-dependent solver in the future.

Specifically, the application of interest concerns the modeling of calcium
waves in human heart cells that control the heart beat [8–10]. The time-evolution
of the concentration of the calcium ions is modeled by a system of coupled non-
linear reaction-diffusion equations involving ns reactive chemical species. The
model developed in [8–10] describes this evolution of the concentrations of cal-
cium c(0) and of several indicator and buffer species c(1), . . . , c(ns−1) by

∂c(0)

∂t
−∇ ·

(
D(0)∇c(0)

)
=

ns−1∑
j=1

R(j)(c(0), c(j))

 + R(0)(c(0)) + σ(c(0)), (2)

∂c(i)

∂t
−∇ ·

(
D(i)∇c(i)

)
= R(i)(c(0), c(i)), i = 1, . . . , ns − 1, (3)

with the reaction terms R(i)(c(0), c(i)) = −kf
i c(0)c(i) + kb

i

(
c̄i − c(i)

)
for i =

1, . . . , ns − 1, and the short-hand notation R(0)(c(0)) = −J (pump)(c(0)) + J (leak).
The term σ(c(0)) models the release of the calcium from the calcium release
units throughout the cell. The domain Ω ⊂ IR3 is the interior of the cell and is
reasonably modeled as a parallelepiped.

In [5, 6], a specialized finite element method is developed that takes advantage
of the constant coefficients in the diffusion terms of the system (2)–(3) and
the regular shape of the domain. Using a semi-implicit time-discretization with
lagged reaction terms yields a de-coupled linear system of equations for each of
the ns partial differential equations in (2)–(3). The choice of a uniform mesh
and the constant coefficients allow for an efficient matrix-free implementation of
the matrix-vector product required in each step of the iterative method. This
design has allowed the solution of problems with millions of degrees of freedom,
because the system matrix is not stored at all. The de-coupling of the ns linear
systems has been used to design a parallel code using ns parallel processors [5,
6]. The parallelization of the linear solve for the prototype problem presented in
this paper will apply to the linear solve in each of the ns equations. In this way,
the coarse-grainedness of each linear solve can be leveraged to make efficient use
of large numbers of processors.

Coarse-Grained Parallel Solution of an Elliptic Prototype Problem 3

Results for three-dimensional simulations for the prototype problem (1) are
presented here, extending earlier studies for a two-dimensional problem [1]. Per-
formance studies show that speedup can be obtained on coarse-grained clusters
of commodity workstations. When only an ethernet interconnect is available,
best performance is limited to up to 4 processors, however. To obtain excellent
speedup for at least up to 32 processors, a high performance interconnect like
a Myrinet connection is necessary. These observations reflect the fact that the
conjugate gradient method necessarily involves 4 communications per iteration
and therefore requires a tight coupling of the cluster. These results validate the
use of the method as computational kernel for the application problem (2)–(3).

Section 2 summarizes the numerical method used and explains the imple-
mentation of the matrix-free linear solve. Section 3 briefly summarizes serial
validation studies and then presents timing results of parallel performance stud-
ies on two clusters of workstations. Section 4 summarizes our conclusions.

2 Numerical Method

2.1 The Prototype Problem

Choose the three-dimensional domain Ω = (0, 1) × (0, 1) × (0, 1) and the pre-
scribed function

f(x, y, z) = −2π2 cos(2πx) sin2(πy) sin2(πz)
−2π2 sin2(πx) cos(2πy) sin2(πz)
−2π2 sin2(πx) sin2(πy) cos(2πz).

This problem is chosen such that it admits the known solution

u(x, y, z) = sin2(πx) sin2(πy) sin2(πz) (4)

to conveniently check for correctness of the numerical solution.

2.2 Finite Difference Approximation

To solve the Poisson equation numerically, the domain of the problem must be
discretized by a finite mesh. Define the distance between two mesh points h =
1/(N +1), where N is a chosen positive integer. From this, the three-dimensional
mesh can be defined as Ωh = {(xi, yj , zk) : xi = ih, i = 0, . . . , N + 1, yj =
jh, j = 0, . . . , N + 1, zk = kh, k = 0, . . . , N + 1}. Let the the approximating
function be denoted as uh : Ωh → IR, then we will write for short uijk :=
uh(xi, yj , zk) at the mesh points (xi, yj , zk) ∈ Ωh. We use a second-order finite
difference approximation to approximate the derivatives at each interior point
(xi, yj , zk), i = 1, . . . , N , j = 1, . . . , N , k = 1, . . . , N . For the x-derivative, the
approximation reads

∂2u

∂x2
(xi, yj , zk) ≈ u(xi−1, yj , zk)− 2u(xi, yj , zk) + u(xi+1, yj , zk)

h2
. (5)

4 Kevin P. Allen and Matthias K. Gobbert

An analogous approximation of y-derivative ∂2u
∂y2 (xi, yj , zk) and the z-derivative

∂2u
∂z2 (xi, yj , zk) can be derived. Using the notation uijk ≈ u(xi, yj , zk), we can
apply (5) to the original equation (1) to obtain

−ui−1jk − uij−1k − uijk−1 + 6uij − ui+1jk − uij+1k − uijk+1 = h2fij , (6)
1 ≤ i, j, k ≤ N,

u0jk = ui0k = uij0 = uN+1jk = uiN+1k = uijN+1 = 0. (7)

The finite difference error is given by eh := u − uh between the solution
u(x, y, z) and the approximation uh(x, y, z) on the grid points (x, y, z) ∈ Ωh.
Define the `∞-norm of the error eijk := eh(xi, yj , zk) by ‖eh‖∞ = max(i,j,k) |eijk|.
Since u ∈ C4(Ω)∩C0(Ω̄) and the domain is simply connected, piecewise smooth,
and convex, standard theory guarantees that this error converges as ‖eh‖∞ ≤
C h2 for h sufficiently small, where C is a constant independent of h [4, 7].

Equations (6)–(7) give a system of n := N3 equations with n unknowns. The
boundary conditions are not included in this system since they are given and
need not be solved for. To construct a linear system AU = b for the n = N3

unknowns, we must order them in one-dimensional form; we use the natural
ordering given by the index transformation ` = i + (j − 1)N + (k − 1)N2 to
define the one-dimensional vector of unknowns U = (U`) ∈ IRn with U` = uijk.
The right-hand side vector b = (b`) ∈ IRn of the linear system for U is given in
the same way by b` = h2fijk, which includes the factor h2 for convenience.

The system matrix A ∈ IRn×n is a block-tridiagonal matrix of N ×N blocks
of submatrices of size N2×N2; each submatrix is in turn a N ×N block matrix
of matrices of size N ×N . Matrix A possesses exactly seven non-zero diagonal
columns; the diagonal values are 6, and the off-diagonal ones are −1. The matrix
A is extremely sparse and highly structured.

2.3 Matrix-Free Implementation

The most expensive operation in each iteration of the conjugate gradient or other
Krylov subspace methods is the matrix-vector product V = AU of the system
matrix A ∈ IRn with a vector U ∈ IRn.

Storing all n2 elements of A ∈ IRn×n explicitly is known as “dense storage
mode.” Since most of the n2 elements are 0, this is wasteful both in memory,
as a lot of zeros are stored, and in runtime, as many multiplications involving
zeros are needlessly computed. Simulations using this storage mode are available
in the software package Matlab and can be easily programmed in a source-code
language like C.

A common idea is to take advantage of the sparsity of the matrix, i.e., the
low percentage of non-zero elements. In this “sparse storage mode,” only non-
zero elements are stored along with integer index information to indicate the
position of the element in the matrix. This reduces the memory requirements
for our system matrix to approximately 7n and also improves performance, as
only multiplications with those elements are computed that are stored explicitly.
This implementation is readily available in Matlab.

Coarse-Grained Parallel Solution of an Elliptic Prototype Problem 5

To reduce the memory usage further, we take advantage of the constant coef-
ficients in pre-determined positions of the system matrix. A function is provided
that accepts a vector U ∈ IRn as input and returns the vector V = AU ∈ IRn

as output; each component V` is computed as summation of the appropriate
components of U multiplied with hard-coded coefficients. This matrix-vector
multiplication function is inserted at the appropriate place of our implementa-
tion of the conjugate gradient method in the programming language C. This
technique is known as a “matrix-free implementation,” because only the vectors
U and V are stored. It is the most efficient approach to memory usage.

3 Results

The conjugate gradient method is implemented in the programming language C
using the Message Passing Interface (MPI) standard for communications between
parallel processors. This iterative method for the solution of a linear system
of equations of dimension n involves 1 matrix-vector product, 2 dot products,
and 3 vector updates (saxpy operations) per iteration. Our implementation is
optimized with respect to memory usage by storing exactly 4 vectors of length
n, the smallest number possible, and by using a function that implements the
matrix-vector multiplication in matrix-free form. The method is programmed in
generic form, as the problem only enters by the right-hand side as input and by
the system matrix contained in the matrix-vector multiplication function.

Each vector U = (U`) of length n = N3 is split across the p processors by
cutting its three-dimensional representation uijk = U` in the z-dimension. This
results in N/p ‘planes’ of xy-data to be stored on each processor. The parallel
form of the conjugate gradient algorithm requires necessarily 4 communication
operations per iteration: (i) To compute the matrix-vector product, processors
need to interchange one xy-plane of data each with their neighboring proces-
sors below and above. These communications are implemented with a choice
between blocking MPI_Send/MPI_Recv and nonblocking MPI_Isend/MPI_Irecv
commands. Here, the blocking commands are arranged such that the even-
numbered processors send first and then receive, and vice versa for the odd-
numbered processors; this setup avoids blocking of the code [3]. (ii) Since the
dot products apply to vectors split across the processors and since the results
are needed on all processors, a MPI_Allreduce operation is required in each of
the 2 dot products. The serial part of the dot products, local to each processor,
is implemented with a choice to use naive C code or to call BLAS routines.

Memory is the most important limitation to the size of the system we can
solve. In the matrix-free method, the 4 vectors of length n make up the bulk of
the memory used. Based on this observation, a prediction of 4n is almost all of
the memory we need to compute the solution with a matrix-free method. For a
sparse system, pieces of the system matrix need to be stored. Since our matrix
is septadiagonal, we can assume that only 7 vectors of length n are stored for
the system matrix. The predicted memory use is then 7n added to the matrix-
free implementation prediction. Densely storing the system matrix requires a

6 Kevin P. Allen and Matthias K. Gobbert

vector of n2 elements added onto the matrix-free implementation prediction.
We also take into account that a value in double format in C code requires
8 bytes of memory. Table 1 shows the theoretical predictions for how much
memory would be used by the C code using the dense, sparse, and the matrix-free
implementation, respectively. The sparse prediction is included for comparison
with an implementation of this problem using Matlab. For convenience, the
column n = N3 displays the number of degrees of freedom for each value of N .

Table 1. Predicted memory usage for the three storage methods in Megabytes (MB).

N n dense sparse matrix-free

8 512 2.113 0.045 0.016
16 4096 134.350 0.360 0.131
32 32768 N/A 2.884 1.049
64 262144 N/A 23.069 8.389

128 2097152 N/A 184.550 67.109
256 16777216 N/A N/A 536.870

For our C code, the predicted values for the dense and matrix-free imple-
mentations in Table 1 compare well to observed values. An implementation in
Matlab’s pcg using sparse storage shows a large difference between predicted
and observed values. For N = 64 and 128, memory was observed as 74 and 386
MB, respectively, much larger then the predictions. Observing from the Matlab
code for the function pcg, several additional double precision vectors of length
n are allocated (some actually storing integer values, that Matlab cannot take
advantage of), giving some explanation for the disparity in the memory values.

Less than 1 MB of memory is used for a sparse or matrix-free computation
compared to 134 MB when we are storing the system matrix for N = 16. Dou-
bling the value to N = 32, we see that it takes over 8 GB using dense storage.
This is not possible to compute this on our machines because we only have 1 GB
of memory available for serial computations, so N = 16 is the largest system
we can accommodate. Thus, we will use the value N = 16 in the following
comparisons.

Table 2 compares the results of an implementation using sparse storage in
Matlab and a matrix-free implementation in C code. The level-1 BLAS routine
for the dot product (DDOT) was used in the C code. The column labeled ‖r‖2/‖b‖2

shows the relative residual of the final iterate. This value will be smaller than
the tolerance 10−6 in all convergent cases. The column #iter shows the number
of iterations taken for the method to converge. We can see the values are all
consistent. The values of the error ‖eh‖∞ are on the order of h2 ≈ 3.46 · 10−3

in agreement with the finite difference theory [4, 7]. We can conclude that the
matrix-free implementation is correct for all values of N .

With a matrix-free implementation, systems with larger values of N can be
solved quickly and efficiently. The following computations are performed on an
8-processor Beowulf cluster consisting of 4 dual-processor nodes with 1.0 GHz

Coarse-Grained Parallel Solution of an Elliptic Prototype Problem 7

Table 2. Numerical results for two different implementations of the conjugate gradient
method using a system matrix A with N = 16, a tolerance of 10−6 and a maximum
number of iterations of 10000.

‖eh‖∞ ‖r‖2/‖b‖2 #iter time [sec]

Matlab / sparse 1.1171577890e-02 9.28101896e-07 30 < 1
C / matrix-free 1.1171577890e-02 9.28101896e-07 30 < 1

Intel Pentium III processors (256 KB L2 cache) and 1.0 GB of memory per
node. The machines are connected by 100 Mbps switched ethernet. Files are
served from a SCSI hard drive on one of the nodes. Table 3 illustrates the con-
vergence of the method for rising values of N . The results shown were obtained

Table 3. Numerical results for N = 32, 64, 128 and 256 using the matrix-free C
implementation. The tolerance was set at 10−6 and the maximum number of iterations
was 10000. The results here were computed on 1 process, but are consistent for any
number of processes.

N ‖eh‖∞ ‖eh‖∞/h2 ‖r‖2/‖b‖2 #iter

32 3.0059503665e-03 3.273479949175 8.44621010e-07 61
64 7.7764871534e-04 3.285565822329 9.11316184e-07 120

128 1.9763013098e-04 3.288763009611 9.98223337e-07 243
256 4.9807474692e-05 3.289733895922 9.71334485e-07 493

using 1 processor. Further studies confirmed that the numerical results are con-
sistent for any number of processes. Finite difference method theory predicts
that ‖eh‖∞ ≤ Ch2 with a constant C for sufficiently small values of h. Therefore
as ‖eh‖∞ → 0, we should see ‖eh‖∞/h2 → C for each computation. Table 3
shows that the results are approaching these values. The final relative residuals
and the number of iterations once again just illustrate the convergence of the
method to the tolerance 10−6.

Tables 4 and 5 show timings on the 8-processor cluster using blocking and
non-blocking communication commands, respectively. The timings are for 1, 2,
4, and 8 processes for increasing values of N . The method is timed for N = 32,
64, 128, and 256. Timings for N = 32 were all valued at less than 1 second
and are excluded from the table. The results show that the computations get

Table 4. Timings in seconds using blocking sends and receives for 1, 2, 4, and 8
processes on the 8 processor cluster.

N 1 2 4 8

64 9 5 6 5
128 165 89 77 55
256 2694 1424 788 700

8 Kevin P. Allen and Matthias K. Gobbert

Table 5. Timings in seconds using nonblocking sends and receives for 1, 2, 4, and 8
processes on the 8 processor cluster.

N 1 2 4 8

64 9 7 6 4
128 165 88 74 55
256 2689 1422 793 700

faster as more processors are used, except in the case of N = 64 with blocking
communication. The differences in timings between blocking and nonblocking
communications are less than 5 second in both directions. This does not allow
us to conclude that one of the two methods is outperforming the other.

Figures 1 (a) and (b) show the observed speedup for each value of N for
blocking and nonblocking communication, respectively. The optimal speedup is
illustrated by the dashed lines in the plots. For the largest case N = 256, speedup

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

of processes

S
pe

ed
−

up

N = 64
N = 128
N = 256
Optimal

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

of processes

S
pe

ed
−

up

N = 64
N = 128
N = 256
Optimal

(a) (b)

Fig. 1. Plots of the observed speedup of the conjugate gradient method for N = 64,
128, and 256 using (a) blocking and (b) nonblocking communication on the 8-processor
cluster. The optimal case of linear speedup is shown for comparison.

is good for up to 4 processes. Performance deteriorates beyond 4 processes and
for smaller values of N . As illustrated by the timing results, there is very little
change in speedup between the two modes of communication. We can conclude
that 4 processes performs most efficiently for large N on this cluster with ethernet
interconnect.

For comparison, we investigate whether a faster interconnect gives better per-
formance of the method. To this end, we use a 64-processor cluster with a high-
performance Myrinet interconnect. The 32 dual-processor nodes have 2.0 GHz
Intel Xeon chips (512 KB L2 cache) and 1 GB of memory per node. The matrix-
free C code with nonblocking communication and without BLAS is used in the
studies on this machine. Timing results on this larger cluster are shown in Ta-
ble 6. These values are much faster then the previous result due to the faster

Coarse-Grained Parallel Solution of an Elliptic Prototype Problem 9

Table 6. Timings in seconds for 1, 2, 4, 8, 16, and 32 processes on the 64 processor
cluster with Myrinet interconnect.

N 1 2 4 8 16 32

64 4 3 1 < 1 < 1 < 1
128 59 49 25 13 7 4
256 998 787 426 215 111 58

CPU with larger cache. The timings for parallel cases with 4 or more processors
all decrease by nearly a factor of 2. However, the timings for 2 processors are
not much faster than the 1-processor run. This particular sub-optimal behavior
may be caused by some inherent startup cost associated with the use of the
interconnect. Figure 2 illustrates the speedup factors for this high performance
cluster. This plot demonstrates the close to linear increase in speedup for more

5 10 15 20 25 30

5

10

15

20

25

30

of processes

S
pe

ed
−

up

N = 64
N = 128
N = 256
Optimal

Fig. 2. Plots of the observed speedup of the conjugate gradient method for N = 64,
128, and 256 on the 64 processor cluster with a Myrinet interconnect. The optimal case
of linear speedup is shown for comparison.

than 2 processors, the only exception being the serial case. For N = 256, ex-
cellent speedup is displayed for up to the maximum number of processors used.
This leads to the conclusion that using 32 processors is efficient with a Myrinet
interconnect.

4 Conclusions

Serial comparisons to reliable code verify, that our implementation of the conju-
gate gradient method computes an accurate solution. The reduction in memory
due to the matrix-free implementation not only allows for larger systems, but
faster runtime.

The parallel performance studies show that speedup is obtained on both
clusters. When only an ethernet interconnect is available, best performance is

10 Kevin P. Allen and Matthias K. Gobbert

limited to up to 4 processors, however. To obtain excellent speedup for at least
up to 32 processors, a high performance interconnect like a Myrinet connection is
necessary. These observations reflect the fact that the conjugate gradient method
necessarily involves 4 communications per iteration and therefore requires a tight
coupling of the cluster.

Acknowledgments

The authors acknowledge the support from the University of Maryland, Bal-
timore County for providing the 8-processor cluster, on which the code was
developed and tested. Additionally, we thank Rensselaer Polytechnic Institute
for allowing us to use the 64-processor system there.

References

1. K. P. Allen and M. K. Gobbert. A matrix-free conjugate gradient method for
cluster computing. Submitted.

2. J. W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.
3. W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming

with the Message-Passing Interface. MIT Press, second edition, 1999.
4. C. A. Hall and T. A. Porsching. Numerical Analysis of Partial Differential Equa-

tions. Prentice-Hall, 1990.
5. A. L. Hanhart. Coarse-grained parallel solution of a three-dimensional model for

calcium concentration in human heart cells. M.S. thesis, University of Maryland,
Baltimore County, 2002.

6. A. L. Hanhart, M. K. Gobbert, and L. T. Izu. A memory-efficient finite element
method for a calcium concentration model in human heart cells. Submitted.

7. A. Iserles. A First Course in the Numerical Analysis of Differential Equations.
Cambridge Texts in Applied Mathematics. Cambridge University Press, 1996.

8. L. T. Izu, J. R. H. Mauban, C. W. Balke, and W. G. Wier. Large currents generate
cardiac Ca2+ sparks. Biophysical Journal, 80:88–102, 2001.

9. L. T. Izu, W. G. Wier, and C. W. Balke. Theoretical analysis of the Ca2+ spark
amplitude distribution. Biophysical Journal, 75:1144–1162, 1998.

10. L. T. Izu, W. G. Wier, and C. W. Balke. Evolution of cardiac calcium waves from
stochastic calcium sparks. Biophysical Journal, 80:103–120, 2001.

11. D. S. Watkins. Fundamentals of Matrix Computations. Wiley, second edition,
2002.

