
Efficient Parallel Computing for Solving
Linear Systems of Equations

Kevin P. Allen∗

September 23, 2003

Abstract Linear systems of equations are common throughout the disciplines of sci-
ence. The conjugate gradient method is a common iterative method used to solve systems
with symmetric positive definite system matrices. With a matrix-free implementation, the
method is optimal with respect to both memory usage and performance, and we are able
to solve problems that are much too large for single processor computers. Using a high-
performance Myrinet interconnect, excellent speedup is possible for at least up to 32 proces-
sors. This illustrates the power of parallel computing in solving large problems much faster
than on a single processor.

1 Introduction

This paper reports on computational experiments on the brand-new IBM cluster in the De-
partment of Mathematics and Statistics here at UMBC. It is an IBM 1350 cluster with 64 pro-
cessors arranged in 32 dual-processor nodes with 2.0 GHz Intel Xeon chips (512 KB L2 cache)
and 1.0 GB of memory per node. These nodes are connected with a high-performance
Myrinet interconnect. The 32 nodes appear to be small computers stored on a rack each
with 2 processors, connected together by a 32 port Myrinet switch. Additional information
on this computer is available at http://www.math.umbc.edu/~gobbert/kali.html.

A parallel computer allows for multiple central processing units (CPUs) to work on a com-
putation simultaneously. In essence, a parallel computer is having a group of people (in our
case, up to 64 people) split a problem up and each work on a part while still communicating
results to each other.

Parallel computing allows data to be distributed over a number of nodes in order for
each processor to work on a smaller portion of the overall data. The network of computers
share data and are able to communicate with each other sharing results. This sharing allows
us to decrease the time taken to solve problems, as well as allowing the solution of much

∗Department of Mathematics and Statistics, University of Maryland, Baltimore County, 1000 Hilltop
Circle, Baltimore, MD 21250 (kallen1@math.umbc.edu).

1

Efficient Parallel Computing for Solving Linear Systems of Equations 2

larger problems. This combined power of each processor should help us in making the
program faster than one that just runs on 1 processor. The two main components of parallel
computing are:

We want to solve problems faster. Speedup is defined as the ratio of the time taken
to complete the job using 1 process and the time taken to complete the job using p
processes [7]. For optimal speedup using p processes, we should obtain a factor of
speedup of p. For example if the code was run on 1 and 2 processes and we computed
the speedup, optimal speedup would occur when the speedup was equal to 2. This
would show that the 2 processes case ran in half the time that it took the 1 process
case to finish. If we ran on p processes, optimal speedup would be achieved when we
reached a speedup factor of p between the 1 process run and the p processes run. This
enables us to compute solutions to problems that once took hours on 1 processor to
taking minutes using parallel computing.

We want to solve larger problems. Memory is a limiting factor in the size of the prob-
lems that we are able to solve. Larger problems take up more memory. There comes
a point where we would like to solve problems that are much larger than 1 processor
can handle. Parallel computing allows us to split the data into portions that do not
consume most of the memory allotted for each processor. Therefore, we have extra
memory that could be used to make our problem larger.

This study tests a brand-new computer by code with known behavior to show that it
performs well. Research goals still exist though, since we want excellent performance on this
caliber of a machine.

2 Numerical Method

The focus of the computation is to solve a classical prototype problem, the Poisson equation
with a homogeneous Dirichlet boundary condition, using finite differences in two dimensions.
This yields a linear system with a symmetric positive definite system matrix. This property
of the system matrix allows the use of the conjugate gradient method as the linear solver.

The conjugate gradient method is implemented in the programming language C using
the Message Passing Interface (MPI) standard [6] for communications between parallel pro-
cessors. It coincides with various textbook definitions for the algorithm [8]. This iterative
method for the solution of a linear system of equations of dimension n involves 1 matrix-
vector product, 2 dot products, and 3 vector updates (saxpy operations) per iteration. Our
implementation is optimized with respect to memory usage by storing exactly 4 vectors of
length n, the smallest number possible, and by using a function that implements the matrix-
vector multiplication in matrix-free form, i.e., does not store any matrix. The vectors stored
are the approximation to the solution x, the search direction p, the residual r := b − Ax.
and the auxiliary vector q. The method is programmed in generic form, as the problem only
enters via the right-hand side as input and the system matrix contained in the matrix-vector
multiplication function.

Efficient Parallel Computing for Solving Linear Systems of Equations 3

Each vector U = (Uk) of length n = N2 is split across the p processors by cutting
its representation uij = Uk in the y-dimension. This results in N/p rows of x-data to be
stored on each processor. The parallel form of one conjugate gradient algorithm requires
4 communication operations per iteration. To compute the matrix-vector product, proces-
sors need to interchange one x-row of data with their neighboring processors below and
above. These communications are implemented with nonblocking MPI_Isend/MPI_Irecv
commands. Since the dot products apply to vectors split across the processors and since the
results are needed on all processors, a MPI_Allreduce operation is required in each of the
2 dot products. The serial part of the dot products, local to each processor, is implemented
in naive C code.

The most expensive operation in each iteration of the conjugate gradient or other Krylov
subspace methods is the matrix-vector product V = AU of the system matrix A ∈ Rn with
a vector U ∈ Rn.

Storing all n2 elements of A ∈ Rn×n explicitly is known as “dense storage mode.” Since
most of the n2 elements are 0, this is wasteful both in memory, as a lot of zeros are stored, and
in runtime, as many multiplications involving zeros are needlessly computed. Simulations
using this storage mode are available in the software package Matlab and can be easily
programmed in a source-code language like C.

A common idea is to take advantage of the sparsity of the matrix, i.e., the low percentage
of non-zero elements. In this “sparse storage mode,” only non-zero elements are stored along
with integer index information to indicate the position of the element in the matrix. This
reduces the memory requirements for our system matrix to approximately 5n in 2-D, not
counting any integer arrays, which are significant, e.g., in Matlab. This also improves perfor-
mance, as only multiplications with those elements are computed that are stored explicitly,
i.e., that are non-zero. This implementation is readily available in Matlab or in the parallel
toolbox library PETSc [4].

To reduce the memory usage further, we take advantage of the constant coefficients in
pre-determined positions of the system matrix. A function is provided that accepts a vector
U ∈ Rn as input and returns the vector V = AU ∈ Rn as output; each component Vk is
computed as summation of the appropriate components of U multiplied with hard-coded
coefficients. This matrix-vector multiplication function is inserted at the appropriate place
of our implementation of the conjugate gradient method in the programming language C.
This technique is known as a “matrix-free implementation,” because no elements of A are
stored at all. It is the most efficient approach to memory usage.

3 Results

Memory is an important limitation to the size of the system we can solve. Aside from
the system matrix, the vectors of length n used in the method make up the bulk of the
memory. We ignore any other shorter vectors or variables. The estimation is simply made
by counting the number of vectors used. As stated earlier, the minimum number of vectors
needed to compute the solution of a linear system using the conjugate gradient method is 4

Efficient Parallel Computing for Solving Linear Systems of Equations 4

of length n. A prediction of 4n is almost all of the memory we need to compute the solution
with the matrix-free method. Using the sparse storage mode, pieces of the system matrix
need to be stored. Since our matrix is pentadiagonal, we can assume that only 5 vectors of
length n are stored for the system matrix. The memory prediction is just 5n added to the
matrix-free implementation prediction. Densely storing the system matrix requires a vector
of n2 elements added onto the matrix-free implementation prediction. Table 1 shows the
theoretical predictions for how much memory would be used by the C code using the dense,
sparse, and the matrix-free implementation, respectively when double-precision arithmetic
is used. The sparse prediction is included for comparison with an implementation of this
problem using Matlab [5]. For convenience, the column n displays the number of degrees of
freedom n = N2 for each value of N .

For our C code, the predicted values for the dense and matrix-free implementations in
Table 1 compare well to observed values. Implementations in PETSc and Matlab using
sparse storage show a large difference between predicted and observed values: Overhead in
using PETSc could be the cause for the much larger observed values of memory usage of 42,
145, and 565 MB for N = 512, 1024, and 2048, respectively. Observing that Matlab’s pcg

function sets up several additional real and integer vectors of length n, both of which are
stored in double precision, explains its larger memory usage.

Less than 1 MB of memory is used for a sparse or matrix-free computation compared to
134 MB when we are storing the system matrix for N = 64. Doubling the value to N = 128,
we see that it takes over 2 GB using dense storage. This is not possible to compute this on
our machines because we only have 1 GB of memory available for 1 processor computations,
so N = 64 is the largest system we can accommodate. Clearly, a matrix-free implementation
is the best setup.

Now that we have demonstrated that we can solve larger problems, we can show that we
can solve them faster. For the studies up to 32 processors, only 1 CPU per node was used.
This way the node would not have to share resources for each CPU, in hopes that this would
benefit performance.

Table 2 and Figure 1 summarize the timings and speedups for this cluster, using up
to 64 processors. It is readily apparent from both Table 2 and Figure 1 that the timings
continue to improve significantly all the way up to 32 processors. Looking at our largest
case, N = 4096, it takes just over 4 minutes to run on 32 processes as opposed to a little
over 2 hours on 1 process. We can solve a system of linear equations with over 16.7 million
degrees of freedom in roughly 4 minutes. Any better-than-optimal speedup is due to an over
efficient 1 processor case.

Using 64 processors, a significant slow-down is observed. This is the first time that both
CPUs on a node are used. Figure 1 shows the far from optimal performance at 64 processes.
The cache for each processor is a good size for non-computational uses, but does not hold
much data. This leads to frequent loading of data from memory to the cache. The nodes
have a 32-bit bus which can not serve the data as fast as the processors can use it.

Systems of higher values of N can be solved in parallel on this cluster. The parameters
used in this study though limit their results. For N = 8192, the method has to take around
12,000 iterations to compute a convergent solution. Time also becomes an issue when solving

Efficient Parallel Computing for Solving Linear Systems of Equations 5

these much larger problems. For the largest possible system, N = 32768, we would have over
1 billion degrees of freedom. Estimating the possible runtime of this system shows that it
may take over 30 hours to compute a solution. With preliminary setup still being conducted,
it is not feasible to consume so much of the resources available by this cluster at this time.

To analyze the importance of the interconnect hardware for this algorithm, we will look at
results from another cluster that has only a fast ethernet interconnect. The same computa-
tions are performed on a cluster with 4 dual-processor nodes with 1.0 GHz Intel Pentium III
processors (256 KB L2 cache) and 1.0 GB of memory. This cluster is connected using a
100 Mbps ethernet interconnect. Though the processor speed is less than that of the cluster
used earlier, our results are scalable.

Table 3 and Figure 2 show the results for up to 8 processes. We see that the use of about
4 processors constitutes the most efficient use of the resources. This result shows that a
high-performance network is required for this algorithm.

4 Conclusions

Parallel computing is a useful tool for solving large problems faster. The reduction in memory
due to the matrix-free implementation not only allows for the solution of much larger systems,
but faster run times. The parallel performance studies show that speedup is obtained for
the two-dimensional problem. To obtain excellent speedup for at least up to 32 processors,
a high-performance interconnect like a Myrinet connection is necessary. These observations
reflect the fact that the conjugate gradient method involves 4 communications per iteration
and therefore requires a tight coupling of the cluster. The results of this performance study
show how important it is to have 64 processors available. Up to 32 processors, the speedup
is very good, but using 64 processors, we can see the end of perfect speedup. Thus we able
to test the code beyond its limit of effectiveness.

Preliminary studies with this code on an identical machine can be found in [2] and [3].
A more indepth explanation of the method and further results can be found in [1].

Acknowledgments

I would like to thank the Provost’s Office for their undergraduate research award for the
academic year 2003–04. The hardware used in the computational studies was partially sup-
ported by a SCREMS grant from the National Science Foundation with additional support
from UMBC. See http://www.math.umbc.edu/~gobbert/kali for additional information.

References

[1] K. P. Allen, A parallel matrix-free implementation of the conjugate gradient method
for the Poisson equation. Senior thesis, University of Maryland, Baltimore County, 2003.

Efficient Parallel Computing for Solving Linear Systems of Equations 6

[2] K. P. Allen and M. K. Gobbert, A matrix-free conjugate gradient method for cluster
computing. Submitted.

[3] , Coarse-grained parallel matrix-free solution of a three-dimensional elliptic prototype
problem, in Computational Science and Its Applications—ICCSA 2003, Part II, V. Ku-
mar, M. L. Gavrilova, C. J. K. Tan, and P. L’Ecuyer, eds., vol. 2668 of Lecture Notes in
Computer Science, Springer-Verlag, 2003, pp. 290–299.

[4] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, PETSc users manual,
Tech. Rep. ANL–95/11 — Revision 2.1.3, Argonne National Laboratory, 2002.

[5] MATLAB Release 12.1 (Version 6.1). The MathWorks, Inc., Natick, MA.

[6] Message Passing Interface Forum, MPI: A message-passing interface standard,
International Journal of Supercomputer Applications, 8 (3–4) (1994).

[7] P. S. Pacheco, Parallel Programming with MPI, Morgan Kaufmann, 1997.

[8] D. S. Watkins, Fundamentals of Matrix Computations, Wiley, second ed., 2002.

Efficient Parallel Computing for Solving Linear Systems of Equations 7

N n dense sparse matrix-free
16 256 < 1 < 1 < 1
32 1,024 8 < 1 < 1
64 4,096 134 < 1 < 1

128 16,384 2,184 1 < 1
256 65,536 34,362 5 2
512 262,144 549,760 19 8

1,024 1,048,576 8,796,100 75 34
2,048 4,194,304 140,740,000 302 134
4,096 16,777,216 2,251,800,000 1,208 537

Table 1: Predicted memory usage of the two-dimensional problem for the three storage
methods in Megabytes (MB).

N 1 2 4 8 16 32 64
512 16 8 4 2 < 1 < 1 < 1

1,024 107 54 33 17 8 4 3
2,048 868 436 226 116 69 36 38
4,096 7,249 3,744 1,794 959 476 245 289

Table 2: Timings in seconds for the two-dimensional problem for 1, 2, 4, 8, 16, 32, and 64
processes on the 64-processor cluster with a Myrinet interconnect.

N 1 2 4 8
256 8 4 2 2
512 59 32 18 14

1,024 466 259 133 104
2,048 3,879 1,960 1,024 784
4,096 31,301 15,783 8,170 6,282

Table 3: Timings in seconds for the two-dimensional problem using nonblocking sends and
receives for 1, 2, 4, and 8 processes on the 8-processor cluster.

Efficient Parallel Computing for Solving Linear Systems of Equations 8

10 20 30 40 50 60

10

20

30

40

50

60

of processes

S
pe

ed
−u

p

N = 512
N = 1024
N = 2048
N = 4096
Optimal

Figure 1: Plot of the observed speedup of the conjugate gradient method on the two-
dimensional problem for N = 512, 1024, 2048, and 4096 using no BLAS and nonblocking
communication on the 64-processor cluster with a Myrinet interconnect. The optimal case
of linear speedup is shown for comparison.

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

of processes

S
pe

ed
−

up

N = 512
N = 1024
N = 2048
N = 4096
Optimal

Figure 2: Plot of the observed speedup of the conjugate gradient method on the two-
dimensional problem for N = 512, 1024, 2048, and 4096 using nonblocking communication
on the 8-processor cluster. The optimal case of linear speedup is shown for comparison.

