
A Technique for the Quantitative Assessment of
the Solution Quality on Particular Finite

Elements in COMSOL Multiphysics

Matthias K. Gobbert

Department of Mathematics and Statistics
University of Maryland, Baltimore County

gobbert@math.umbc.edu

http://www.math.umbc.edu/˜gobbert

October 05, 2007

Matthias K. Gobbert, UMBC 1/22

http://www.math.umbc.edu/~gobbert


Problem Statement

Problem: Assess the quality of a FEM solution quantitatively.

Approach: Use guidance from the a priori error estimate

‖u − uh‖L2(Ω)
≤ C hq, as h → 0

with a constant C independent of h and the convergence
order q > 0. Here, h is the maximum side length of the
elements in the triangulation.

Concrete goal: Confirm that a given sequence of solutions on
progressively refined meshes behaves as predicted by the error
estimate.

Matthias K. Gobbert, UMBC 2/22



Example of a Convergence Study

If we have Er := ‖u − uh‖L2(Ω)
≈ C hq on refinement level r ,

then Er := ‖u − uh‖L2(Ω)
≈ C hq and

Er−1 = ‖u − u2h‖L2(Ω)
≈ C 2q hq,

then Rr := Er−1/Er ≈ 2q and Qr := log2(Rr ) = q,
that is, Qr is a computable estimate for q.

Example table of results:

r DOF Er Rr Qr

0 25 3.74e-003
1 85 1.01e-003 3.71 1.89
2 313 2.59e-004 3.90 1.96
3 1201 6.51e-005 3.98 1.99
4 4705 1.60e-005 4.07 2.02
5 18625 3.64e-006 4.40 2.14

These results indicate that q = 2 for the PDE and FEM used.
Matthias K. Gobbert, UMBC 3/22



Application to Linear Lagrange Elements

For instance, for linear Lagrange FEM, the a priori error estimate
holds with q = 2.
The expected convergence rate for linear Lagrange elements is
valid, provided that

the true solution u is smooth enough,

the domain Ω is bounded, convex, and simply connected,

and the domain boundary ∂Ω piecewise smooth, i.e., the
domain Ω can be discretized sufficiently well.

On the one hand, if a sequence of solutions does not satisfy q = 2,
then the PDE data and its domain may not be smooth enough.

On the other hand, the test allows to assess how badly some of the
theoretical assumptions are violated and whether their violation is
a serious problem.

Matthias K. Gobbert, UMBC 4/22



Outline

This talk will show how to do obtain a table as above using
COMSOL Multiphysics and COMSOL Script for linear Lagrange
elements, without a known true solution.

Solve the desired PDE in the GUI of COMSOL Multiphysics.

Set up a function m-file getfem.m that solves the desired
PDE for a chosen refinement level as input argument.

Write a driver script in COMSOL Script that calls getfem for
r = 0, 1, . . . , rmax

Compute the error ‖u − uh‖L2(Ω)
using as reference solution for

u the FEM solution on the finest mesh.

Extensions, Limitations, and Alternatives

Matthias K. Gobbert, UMBC 5/22



Example Problem

Use the default problem in the PDE Modes (stationary coefficient
form) of COMSOL Multiphysics:

−4 u = f in Ω,

u = 0 on ∂Ω,

with f ≡ 1 on the unit square Ω = (0, 1)2 ⊂ R2.

Matthias K. Gobbert, UMBC 6/22



Create m-file getfem.m

Solve desired problem in the GUI of COMSOL Multiphysics,
using linear Lagrange elements. For best benefit:

start COMSOL Multiphysics from scratch (to decrease the
clutter in the m-file),
use coarsest mesh possible in Mesh → Free Mesh Parameters
(so we can refine as often as possible),
refine the mesh once (to get the meshrefine command into
the m-file).

Save As an m-file, which we will call from COMSOL Script.

Matthias K. Gobbert, UMBC 7/22



Edit the m-file getfem.m

Edit m-file as follows:

Insert the function header

function fem = getfem (nref)

Enclose the meshrefine command in a for-loop:

% Refine mesh
for nr = 1 : nref

fem.mesh=meshrefine(fem, ...
’mcase’,0, ...
’rmethod’,’regular’);

end;

Delete the unneeded commands at the end of the m-file
(i.e., the plot commands).

Matthias K. Gobbert, UMBC 9/22



The Driver Script

% set the max. number of refinements:

nrefmax = 6;

% reference solution on finest mesh:

fem_ref = getfem (nrefmax);

% obtain mass matrix for finest mesh:

fema = fem_ref;

fema.equ.c = 0;

fema.equ.a = 1;

fema.xmesh = meshextend (fema);

[Mass,L,M,N] = assemble (fema);

p_ref = fema.mesh.p;

clear fema; % clear to save memory

% interp. ref. sol. to ref. mesh:

u_ref=postinterp(fem_ref,’u’,p_ref);

for nref = 0 : nrefmax-1

fem = getfem (nref);

D(nref+1) = length(fem.sol.u);

% interpolate sol. to ref. mesh:

u_int=postinterp(fem,’u’,p_ref);

% compute error as a column vector:

e = u_ref(:) - u_int(:);

% compute L2-norm of nodal error:

E(nref+1) = sqrt(e’*Mass*e);

end;

R = E(1:nrefmax-1) ./ E(2:nrefmax);

Q = log2(R);

Matthias K. Gobbert, UMBC 11/22



Heart of the Driver Script

For-loop over the refinement level in right column of listing:

compute fem for the refinement level nref

save the number of DOF in vector D

interpolate the FEM solution to the reference mesh

compute the error between the interpolated solution and the
reference solution

compute and save the norm of its error

After the for-loop, compute the ratios R and the estimate Q to the
convergence order. The table shows then D, E, R, and Q.

Need to explain:

What is the reference solution and reference mesh?

How is the norm of the error computed?

Matthias K. Gobbert, UMBC 12/22



Reference Solution and Reference Mesh

Use the FEM solution on the finest mesh as the reference solution
that plays the role of the true solution in the error computation:

fem_ref = getfem (nrefmax);

Set up the extended mesh for the PDE −∇ · (c∇u) + au = f with
c = 0 and a = 1 on the reference mesh to compute the mass
matrix M = Mass by:

fema = fem_ref;
fema.equ.c = 0;
fema.equ.a = 1;
fema.xmesh = meshextend (fema);
[Mass,L,M,N] = assemble (fema);

Obtain the mesh points of the reference mesh:

p_ref = fema.mesh.p;

Matthias K. Gobbert, UMBC 14/22



FEM Representation of the Solutions

The FEM solution on a mesh is given by the expansion

uh(x) =
N∑

k=1

uk ϕk(x)

involving the FEM basis functions ϕk(x), k = 1, . . . ,N,
where N is the number of DOFs of the mesh.
For linear Lagrange elements, the basis functions satisfy
ϕk(x`) = 1 for k = ` and = 0 otherwise. That is, uh(xk) = uk and
the expansion coefficients uk are the values of the FEM solution at
the mesh points xk of the triangulation.
Hence, the vectors u_ref and u_int obtained by interpolating to
mesh points p_ref of the reference mesh hold all expansion
coefficients of u and (interpolated) uh, respectively.

Matthias K. Gobbert, UMBC 16/22



Norm Computation of the Error

The error eh = u − uh also has an expansion

eh(x) =
N∑

k=1

ek ϕk(x) =
N∑

`=1

e` ϕ`(x)

in terms of the FEM basis functions ϕk(x), and the coefficients ek

are the components of the vector e = u_ref(:) - u_int(:).
Therefore, apply the definition of the L2-norm to find:

‖eh‖2
L2(Ω)

=

∫
Ω

eh eh dx =

∫
Ω

(
N∑

k=1

ekϕk(x)

) (
N∑

`=1

e`ϕ`(x)

)
dx

=
N∑

k=1

N∑
`=1

ek

(∫
Ω

ϕk(x)ϕ`(x) dx

)
e` =

N∑
k=1

N∑
`=1

ekMk`e` = eTMe

with the mass matrix Mk` =
∫
Ω ϕk(x) ϕ`(x) dx, thus the norm is

computed as sqrt(e’*Mass*e).
Matthias K. Gobbert, UMBC 18/22



The Driver Script Repeated

% set the max. number of refinements:

nrefmax = 6;

% reference solution on finest mesh:

fem_ref = getfem (nrefmax);

% obtain mass matrix for finest mesh:

fema = fem_ref;

fema.equ.c = 0;

fema.equ.a = 1;

fema.xmesh = meshextend (fema);

[Mass,L,M,N] = assemble (fema);

p_ref = fema.mesh.p;

clear fema; % clear to save memory

% interp. ref. sol. to ref. mesh:

u_ref=postinterp(fem_ref,’u’,p_ref);

for nref = 0 : nrefmax-1

fem = getfem (nref);

D(nref+1) = length(fem.sol.u);

% interpolate sol. to ref. mesh:

u_int=postinterp(fem,’u’,p_ref);

% compute error as a column vector:

e = u_ref(:) - u_int(:);

% compute L2-norm of nodal error:

E(nref+1) = sqrt(e’*Mass*e);

end;

R = E(1:nrefmax-1) ./ E(2:nrefmax);

Q = log2(R);

Matthias K. Gobbert, UMBC 20/22



Extensions

Extensions using the same driver script due to its abstract
formulation:

other domains, PDEs, etc. instead of this example problem,

other spatial dimensions (e.g., 3-D),

quadrilateral elements (with linear FEM basis functions),

transient PDEs (at selected times each).

Extensions requiring modification of the driver script:

other application modes (name of the solution is not u),

quadratic Lagrange elements (refine reference mesh once).

systems of PDEs (apply to each component)

Matthias K. Gobbert, UMBC 21/22



Alternatives and Limitations

Alternatives to and limitations of the suggested procedure:

a posteriori error estimates (designed to measure error from
computable quantities), though it is valuable to be able to
check the a priori error when it is available,

the computation of the mass matrix in other modes not the
same,

the approach cannot handle higher-degree or non-Lagrange
elements =⇒ I am interested in suggestions how to make this
general for more or all FEM in COMSOL!

also any other suggestions for how to use COMSOL’s
functionality better is welcome.

The extension to higher-order elements is relevant, because the
results of a convergence study indicate whether an excessive
polynomial degree of the basis functions is used.

Matthias K. Gobbert, UMBC 22/22


