
Information
Communication
Technologies for
Enhanced Education
and Learning:
Advanced Applications
and Developments

Lawrence Tomei
Robert Morris University, USA

Hershey • New York
INFORMATION SCIENCE REFERENCE

Henry Emurian
Typewritten Text

Henry Emurian
Typewritten Text

Henry Emurian
Typewritten Text

Henry Emurian
Typewritten Text

Henry Emurian
Typewritten Text
 This chapter is posted with permission of the publisher.
 Copyright 2009, IGI Global

Henry Emurian
Typewritten Text

Henry Emurian
Typewritten Text

Henry Emurian
Typewritten Text
 www.igi-global.com

http://www.igi-global.com/

Director of Editorial Content: Kristin Klinger
Director of Production: Jennifer Neidig
Managing Editor: Jamie Snavely
Assistant Managing Editor: Carole Coulson
Typesetter: Lindsay Bergman
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

and in the United Kingdom by
Information Science Reference (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanbookstore.com

Copyright © 2009 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by
any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does
not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book set is original material. The views expressed in this book are those of the authors, but not necessarily of
the publisher.

If a library purchased a print copy of this publication, please go to http://www.igi-global.com/agreement for information on activating
the library's complimentary electronic access to this publication.

Editorial Advisory Board

ASSOCIATE EDITORS

Toyna Barrier
Missouri State University, USA

Dencho Batanov
Asian Institute of Technology, Thailand

David Carbonara
Duquesne University, USA

Marty Crossland
Oral Roberts University, USA

Helen Edwards
University of Sunderland, UK

Mary Hricko
Kent State University, USA

Jeffrey Hsu
Fairleigh Dickinson University, USA

VP Kochikar
Infosys Technologies Ltd, India

Paul Lajbcygier
Monash University, Australia

Julie Mariga
Purdue University, USA

Tanya McGill
Murdoch University, Australia

Istvan Mezgar
CIM Research Laboratory, Hungary

Jaideep Motwani
Grand Valley State University, USA

James Pomykalski
Susquehanna University, USA

Barrie Thompson
University of Sunderland, UK

Teresa Torres-Coronas
Universitat Rovira I Virgili, Spain

Linda Wojnar
Western School of Health and Business Careers,
USA

INTERNATIONAL EDITORIAL
REVIEW BOARD

Rosa Agostinho
Technical Unviversity of Lisbon, Portugal

David Banks
University of South Australia, UK

Indranil Bose
The University of Hong Kong, Hong Kong

Sherry Y Chen
Brunel University, UK

Susan Conners
Purdue University Calumet, USA

Maria Manuela Cunha
Instituto Politecnico do Cavado e do Ave,
Portugal

Mel Damodaran
University of Houston-Victoria, USA

Javier Diaz-Carmona
Tech Institute of Celaya, México

Brad Eden
University of Nevada, USA

Henry H. Emurian
University of Maryland, USA

Elizabeth Furtado
Universidade de Fortaleza, Brazil

Susan Gebhard
Duquesne University, USA

William Grosky
Wayne State University, USA

Jairo Gutierrez
University of Auckland, New Zealand

Mara Linaberger
Duquesne University, USA

Lynda R Louis
Southern University and A&M College, Australia

George Eby Mathew
Software Engineering & Technology Labs, USA

MV Ramakrishna
Monash University, Australia

Nurul Sarkar
Auckland University of Technology, New Zealand

Anil Sharma
United Arab Emirates University, UAE

R. Subramaniam
Nanyang Technological University, Singapore

Tzung-I Tang
National Chengchi University, Taiwan

Faye Teer
James Madison University, USA

Ho-Leung Tsoi
Caritas Francis Hsu College, Hong Kong

Stu Westin
University of Rhode Island, USA

S. Yegneshwar
Infosys Leadership System, India

Michal Zemlicka
Charles University, Czech Republic

186

Chapter XIV
Teaching Java™:

Managing Instructional Tactics to
Optimize Student Learning

Henry H. Emurian
University of Maryland—Baltimore, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT

Information systems students in a graduate section and an undergraduate section of an introductory Java
graphical user interface course completed the following initial assignments to learn a simple program:
(1) automated programmed instruction tutoring, (2) hands-on learning with a lecture, and (3) collab-
orative peer tutoring. Tests of knowledge transfer and software self-efficacy were administered before
students began the first assignment and following completion of each one. The results showed progressive
improvement in rule test performance and software self-efficacy across the several instructional events.
Taken together, the results of these classroom observations extend the generality of previous work to
an updated set of instructional materials and assignments, and that outcome shows the reliability of
the learning processes with new groups of students. Students who are new to Java had the privilege of
exposure to an initial repertoire of teaching tactics that are synergistic and cumulative.

INTRODUCTION

The research reported here is part of an ongoing
stream of formative evaluations of instructional
tactics that are intended to help novice, college-
level students acquire skill and confidence in

computer programming by means of an integrative
approach to curriculum development (Emurian,
in press:a). Direct mastery of the core knowledge
in a discipline is recognized as a fundamental
requirement to apply and extend that knowledge
to solve novel problems, and that implies consid-

Henry Emurian
Typewritten Text

Henry Emurian
Typewritten Text
This chapter was originally published as a journal article as
follows: Emurian, H.H. Teaching Java: Managing instructional
tactics to optimize student learning. International Journal of
Information & Communication Technology Education, 2007, 3(4),
34-49.

 187

Teaching Java™

eration of an instructional design to overcome the
empirically verified shortcomings of teaching
tactics that provide minimal guidance during
a student’s learning experiences (Kirschner,
Sweller, & Clark, 2006). The integrative tactics
adopted in our classrooms are in furtherance of
helping all of our students to succeed.

Our previous work consistently confirmed the
value of programmed instruction in teaching in-
troductory information systems students a simple
Java applet as a first technical training exercise
in preparation for advanced learning (Emurian,
2004, 2005, 2006a,b). A Web-based, programmed
instruction tutoring system to accomplish that
objective was presented in Emurian, Hu, Wang
et al., (2000), and behavior principles supporting
the design and implementation of the system were
described by Emurian, Wang, and Durham (2003)
and Emurian and Durham (2003). Similar value of
programmed instruction is evident in its applica-
tions within other symbol intensive disciplines,
such as chemistry (Kurbanoglu, Taskesenligil, &
Sozbilir, 2006), and its training effectiveness in
fostering parent-teacher communications has been
demonstrated (Ingvarsson & Hanley, 2006). The
objectives of our work are to apply programmed
instruction and to assess its effectiveness as a
tactic to promote a common level of mastery by
all students for a designated learning objective in
Java programming. An optimal outcome of such a
direct mastery approach is taken to reflect a true
gain in learning (Anderson, Corbett, Koedinger
et al., 1995).

Among several recommendations for effective
learning principles to foster retention and transfer
of knowledge is repeated practice with different
instructional modalities (Halpern & Hakel, 2003)
and with socially supported interactions (Fox &
Hackerman, 2003). The modalities that have been
adopted in our most recent classroom applications
include: (1) programmed instruction, (2) lectures
with hands-on learning, and (3) collaborative
peer tutoring (Emurian, 2006b; in press:b). These
tactics are demonstrably effective in promoting

programming skill, software self-efficacy, and
generalizable knowledge, the latter reflecting
far transfer of learning (Barnett & Ceci, 2002).
The benefits on student learning of a somewhat
different, “blended” instructional approach to
teaching introductory Java have been reported
by Boyle, Bradley, Chalk et al. (2003), where
repetition of similar topics occurred throughout
the course syllabus. Our assessments of student
learning, however, sometimes showed room for
improvement in the goal of achieving maximal
performance by all students on a far transfer test
that was administered immediately following
collaborative peer tutoring (Emurian, 2006b; in
press:b).

To potentiate the effectiveness of the collabora-
tive peer tutoring, the present classroom studies
undertook a modification to the instructions and
materials that made available to students to prepare
them for collaborative peer tutoring and to use
during the collaboration session. The modified
procedure allowed the collaborating students
to view and discuss together the questions that
constituted the test of far transfer. Collaborating
students also had direct hypertext access to in-
structional frames that were otherwise presented
sequentially and contingently within the Java
programmed instruction tutoring system. Finally,
the Java program to be learned by students, as
the first technical exercise in a course, contained
more items of code to be mastered in comparison
to the previous work in this area of classroom
applications and research.

METHOD

Subjects

Subjects were as follows: (1) 13 graduate students,
four females and nine males, taking IS 613 (GUI
Systems Using Java) during a four-week summer
session (summer 2006), and (2) 14 upper-level
undergraduate students, six females and eight

188

Teaching Java™

males, taking the equivalent undergraduate course
(IS 413) during a 14-week fall session (fall 2006).
There were more students enrolled in each class
than are represented in the data analysis, which
was based only on data collected on all assessment
occasions by the students. If a student missed any
data collection class or assignment, that student
was not included in the analysis. The summer
2006 class met three times each week, and each
class lasted three hours. The fall 2006 class met
once each week for 2.5 hours. The course was
designed for information systems students, and the
prerequisite was one prior programming course for
both classes. The technical content was identical
for both classes, but there were more presentation
and writing assignments, based upon reviews
of journal articles, for the graduate students in
comparison to the undergraduate students.

Prior to using the tutor, demographic infor-
mation was collected, including age, number of
prior programming courses taken, rated Java
experience, and rated programming experience.
The rating scales were 10-point ordinal scales
where 1 = No experience. I am a novice to 10 =
Extensive experience. I am an expert. Appendix
A presents the scales that were administered dur-
ing the pre-tutor and post-tutor assessments.

For the summer 2006 class, the background
characteristics of the students were as follows: age
(median = 28 yrs, range = 23 to 33), number of prior
programming courses taken (median = 3, range
= 1 to 15), rated prior Java experience (median =
2, range = 1 to 5), and rated prior programming
experience (median = 5, range = 2 to 8).

For the fall 2006 class, the background char-
acteristics of the students were as follows: age
(median = 22 yrs, range = 21 to 32), number of
prior programming courses taken (median = 5.5,
range = 3 to 8), rated prior Java experience (median
= 2, range = 1 to 7), and rated prior programming
experience (median = 5, range = 2 to 8). A Welch
robust test (Maxwell & Delaney, 2004, p. 134)
showed a significant difference only for the age
variable (W = 11.231, p = .003).

The research protocol was exempt from in-
formed consent by the IRB, and the course syllabus
clearly indicated that questions both embedded
in the Java tutor and administered during several
assessment occasions in class were eligible to
appear on a graded quiz. The course description
and syllabus provided information about the Java
tutor and the collaborative peer tutoring, and they
presented the rationale for the repetition of initial
learning using the several different instructional
modalities under consideration.

Materials2

Java Program and Tutor

The instructional tactics in this study are based
upon teaching students a JApplet program that
would display a JLabel object within a browser
window on the World Wide Web. The program
was arbitrarily organized into 11 lines of code
(e.g., JLabel myLabel;) and 37 separate items
of code (e.g., getContentPane()). The 37 items
(1 item per cell), and the 11 lines of code are
presented in Table 1.

The rationale supporting the tutor’s design is
based upon the learn unit formulation of Greer
and McDonough (1999). In the tutoring system,
each successive component, or learn unit, within
eight tutor stages, required accurate responding
for the learner to transition from one component
to the next. The occasion and events supporting
such a transition constitute a natural fracture of
instruction, which is “a unit of a compound that
separates naturally from other components as a
result of lawful conditions” (Greer, 2002, p. 18).
Each cell and each line in Table 1 constituted a
learn unit, and there were other learn units in
the tutor.

The Web-based Java tutor consists of the fol-
lowing eight stages: (1) introduction and example
of the program running in a browser (learn units
= 1), (2) learning to copy an item of code (learn
units = 37), (3) learning to recognize an item of

 189

Teaching Java™

code in a list (learn units = 37), (4) learning the
semantics of an item of code (learn units = 37) and
learning the syntax by typing the item by recall
(learn units = 37), (5) learning to type a line of
code (learn units = 11), (6) learning to recognize
a line of code in a list (learn units = 11), (7) learn-
ing the semantics of a line of code (learn units
= 11) and learning the syntax by typing the line
by recall (learn units = 11), and (8) writing the
entire program by recall (learn units = 1). Thus,
the minimum number of learn units to complete
the tutor was 194. If a learner answered incor-
rectly at any point, the components of the learn
unit were repeated iteratively until the correct
answer was produced. Some learn units, such as
Stage 1, only required a button click to initiate a
transition. Those learn units did not iterate be-
cause the correct response was simply to follow
the instruction to click the button.

Multiple-choice tests for items and lines of code
were embedded in the tutor, and each question
had five answer choices. For an incorrect items
answer, there was a 5-sec delay or “time-out”
in the tutor’s interaction with the learner. For a
correct items answer, a confirmation window ap-

peared stating a general rule associated with the
correct answer or an elaboration of the explana-
tion of the meaning of the item. The lines Stage
7 had no delay interval or confirmation window.
Experience suggested that most students in our
courses could complete the tutor within two to
three hours. The tutor transitioned automatically
between stages, and students were able to take
breaks between and within stages. The instruc-
tions, however, encouraged students to complete
each stage before taking a break.

Questionnaires

Java software self-efficacy was assessed by
requesting a rating of confidence, for each of
the 23 unique items of code (e.g., import) in the
program, in being able to use the Java item to
write a program that displays a text string, as a
JLabel object, in a browser window. The scale
anchors were 1 = No confidence to 10 = Total
confidence. Twelve multiple-choice questions
were also administered that required applying a
general concept (i.e., rule) of Java object-oriented
programming to solve. Appendix B presents the

import javax.swing.JApplet ;

import javax.swing.JLabel ;

import java.awt.Color ;

public class MyProgram extends JApplet {

JLabel myLabel ;

public void init() {

myLabel = new JLabel
(“Java”) ;

getContentPane() . setBackground
(Color.yellow) ;

getContentPane() . add(myLabel) ;

}

}

Table 1. The Java program

Henry Emurian
Sticky Note
Correction: (Color.YELLOW)

190

Teaching Java™

12 rule questions. These 12 rule-based questions
did not appear within the Java tutor, and they
intended to assess far transfer or meaningful
learning (Mayer, 2002). Each question had five
choices, and for each question, a rating of confi-
dence was made that the selected choice was the
correct choice. The scale anchors were 1 = Not
at all confident to 10 = Totally confident. Rat-
ings of classification and functionality learning
for eight pairs of Java symbols were obtained, as
given in the online material, but they are beyond
the scope of this paper. The questionnaire version
that was first presented (pre-tutor questionnaire)
also solicited demographic information.

The post-tutor questionnaire omitted the
demographic information, and it additionally
assessed evaluations of the tutor for: (1) overall
effectiveness, (2) effectiveness in learning Java,
and (3) usability. The anchors were 1 =Totally
negative to 10 = Totally positive. Questionnaires
presented after the lecture and after the interteach-
ing omitted evaluations of the tutor.

Procedure

Java Tutor

At the first class meeting, students completed the
pre-tutor questionnaire. Students next completed
the Web-based Java tutor. The tutor taught a JAp-
plet program that displays a text string, as a JLabel
object, in a browser window on the Web. The Java
code and a brief description of the eight stages of
the tutor are presented as part of the open source
material. When a student finished the tutor, he or
she completed a post-tutor questionnaire, which
duplicated the software self-efficacy ratings and
multiple-choice rule questions and confidence
ratings. The student next accessed a set of ques-
tions and guidelines (Appendix C), posted on
Blackboard, that were to be used to structure
the collaborative peer tutoring session during a
subsequent class. This material also presented
a link to access the textual explanations of the

items and lines of code presented in the Java tutor.
The instructions with this material indicated that
the questions presented were eligible to appear
on a quiz.

Lecture

At the second class meeting, the instructor (HHE)
gave a lecture on the program taught in the Java
tutor. The students wrote the code in a Unix™
text editor during the lecture, which repeated the
information presented in the tutor. The students
were also taught the HTML file, used to access
the Java bytecode file, as a URL on the Web.
Support was provided so all students successfully
ran the JApplet program at the conclusion of this
lecture-based exercise.

This lecture required approximately one hour
to complete, and the remaining class time was
spent on the next unit of material, which related
to the life cycle of an Applet. Students were en-
couraged to help each other during the subsequent
classes in the semester, which combined lectures
and hands-on demonstrations, with the under-
standing that files were not to be copied without
prior permission of the instructor.

Interteaching

At the third class meeting, a collaborative peer
tutoring session occurred based upon the dyadic
“interteaching” model (Boyce & Hineline, 2002).
Students formed dyads on their own for the session,
which lasted one hour. If there were an odd number
of students, one three-person group was formed.
The assignment was for the students to discuss the
set of questions and guidelines made available at
the conclusion of the Java tutor work undertaken
at the first class meeting. Also presented was the
questionnaire, to include the rule questions, and
students were encouraged to discuss the questions
together prior to answering individually. The
interteaching questionnaire instructions stated
that the 12 rule questions were eligible to appear

 191

Teaching Java™

on a quiz, but the remaining items were there
only to assess instructional effectiveness of the
interteaching session. The interteaching question-
naire also requested ratings of the effectiveness of
the session for: (1) learning the material and (2)
readiness to be tested on the material, where 1 =
Not effective to 10 = Totally effective.

During the interteaching session, students
also had access to a hypertext version of the Java
program that returned the textual frames of in-
formation that were embedded within the tutor3.
These, then, were the major innovations in the
current study: (1) providing the opportunity for
students to discuss the rule questions together,
(2) and providing direct access to information
embedded within the Java tutor. During the inter-
teaching session, students posted questions on a
Blackboard discussion forum, and the instructor
provided feedback.

Later on that day as the interteaching ses-
sion, the instructor posted an announcement on
Blackboard giving the single question that was
answered incorrectly by two of the students in the
summer 2006 class. The announcement was as
follows: “Some students answered ‘c’ below for
this question (also presented in the announcement).
The ‘c’ choice is not correct because JScrollPane
is a class, not an object. An object name begins
with a lowercase letter. If you have a question
about this, please send me email.” All student
inquiries were answered privately in a way to
promote understanding of the principle involved.
The correct answer was not given.

For the fall 2006 class, nine of the 14 students
made at least one incorrect choice on the rule ques-
tions, and 11 of the 12 questions were answered
incorrectly across these students. Accordingly,
later on the same day as the interteaching session
for this class, these 11 questions were posted on
Blackboard along with the correct answer. Stu-
dents’ inquiries about these questions and answers
could be posted on an anonymous Discussion
forum on Blackboard.

The two approaches to providing feedback
were based upon our intention to facilitate optimal
learning in relationship to the students’ perfor-
mances observed within and between classes.
The tactic was adjusted in accordance with our
perceived needs of the students as they pursued
mastery of this challenging material. This tactic
is consistent with design-based research (Wang
& Hannafin, 2005) as a method to improve in-
structional effectiveness and student performance
over successive offerings of a course. In all cases,
the instructor bears responsibility for providing
what are considered optimal tools of learning for
the students.

Graded Quiz

At the fourth class meeting, a quiz was adminis-
tered that included questions embedded within the
Java tutor and the 12 rule questions as indicated
above. The graded quiz did not include any rating
assessments.

RESULTS

Figure 1 presents boxplots of correct answers on
the rule test over the five assessment occasions for
students in the summer 2006, and fall 2006 classes.
For each of the 12 questions answered during the
pre-tutor assessment, one student in the summer
2006 class did not select any answer, but instead
indicated being unprepared to answer. The figure
shows graphically that the median total correct
answers increased over the first four occasions
and reached the ceiling of 12 on the interteaching
occasion for the summer 2006 students and on the
quiz occasion for the fall 2006 students.

For the summer 2006 students, a Friedman
test (Conover, 1971, p. 264) was significant (Chi-
Square = 42.259, p = 0.000). The figure shows that
the greatest change for these students occurred
between the pre-tutor and post-tutor occasions,

192

Teaching Java™

and both medians were 12 for the interteaching
and quiz occasions. A Welch test, based on the
differences, Di, in correct answers between suc-
cessive pairs4 of occasions over the five occasions,
was significant (W = 10.889, p = 0.000). Planned
pairwise comparisons were significant5 for D1 and
D2 (W = 10.145, p = 0.005), not significant for D2
and D3 (W = 1.513, p = 0.231), and significant for
D3 and D4 (W = 12.295, p = 0.003).

For the fall 2006 students, a Friedman test was
significant (Chi-Square = 44.000, p = 0.000). A
Welch test based on the differences, Di, in correct
answers between successive pairs of occasions
over the five occasions, was significant (W =
8.950, p = 0.000). Planned pairwise comparisons
were significant for D1 and D2 (W = 24.870, p =
0.000), not significant for D2 and D3 (W = 1.125,
p = 0.301), and not significant for D3 and D4 (W
= 0.207, p = 0.654).

The improvement process was somewhat dif-
ferent between the two classes, but the outcome

for both classes reached the intended ceiling for
the quiz, at least with respect to the median. With
respect to individual student performance on the
quiz, in the summer 2006 class two students made
one error on the rule test. In the fall 2006 class,
two students made one error, one student made
two errors, and one student made three errors.

Figure 2 presents boxplots, over four succes-
sive occasions, of the ratings made by the students
regarding confidence that the selected answer on
the rule test was correct for answers that were
right (R) and for answers that were wrong (W).
Ratings were not obtained during the graded
quiz. The number below each boxplot reflects the
number of students who answered right and/or
wrong over the four assessment occasions, and
that is the reason that the frequency for a boxplot
is sometimes less than 13 or 14 (e.g., number of
students giving incorrect answers for the inter-
teaching occasion). The Welch robust test was
used for both classes because of unequal sample

Figure 1. Boxplots of total correct answers on the rule test for students in the summer, 2006, and fall, 2006
classes across the five assessment occasions. Circles are outliers and triangles are extreme values.

 193

Teaching Java™

sizes, although the summer 2006 class did show all
14 students consistently making correct answers
across the four assessment occasions.

For the summer 2006 students, the Welch test
was significant for right answers (W = 16.632, p
= 0.000) and for wrong answers (W = 40.864, p =
0.000). The latter test was based on the first three
occasions because the variance for the interteach-
ing occasion was zero. For right answers, planned
pairwise comparisons were significant for pre-
tutor and post-tutor (W = 27.398, p = 0.000), not
significant for post-tutor and lecture (W = 0.108,
p = 0.745), and not significant for lecture and
interteaching (W = 4.959, p = 0.044) occasions.
For wrong answers, planned pairwise comparisons
were significant for pre-tutor and post-tutor (W =
55.646, p = 0.000) and not significant for post-tutor
and lecture (W = 1.220, p = 0.282) occasions. An
overall comparison of confidence ratings between

right and wrong answers was significant (W =
9.481, p = 0.003).

For the fall 2006 students, the Welch test
was significant for right answers (W = 16.231,
p = 0.000) and for wrong answers (W = 13.477,
p = 0.000). For right answers, planned pairwise,
comparisons were significant for pre-tutor and
post-tutor (W = 27.955, p = 0.000), significant for
post-tutor and lecture (W = 9.512, p = 0.005), and
not significant for lecture and interteaching (W =
1.265, p = 0.274) occasions. For wrong answers,
planned pairwise, comparisons were significant
for pre-tutor and post-tutor (W = 29.141, p =
0.000) not significant for post-tutor and lecture
(W = 2.009, p = 0.169), and not significant for
lecture and interteaching (W = 1.943, p = 0.190)
occasions. An overall comparison of confidence
ratings between right and wrong answers was
significant (W = 4.690, p = 0.033).

Figure 2. Boxplots of confidence ratings in the correctness of the rule test answers for students in the
summer, 2006, and fall, 2006 classes across the four assessment occasions: 1 = Pre-Tutor, 2 = Post-
Tutor, 3 = Lecture, and 4 = Interteaching. The scale anchors were 1 = No confidence to 10 = Total
confidence. The figure shows ratings for answers that were right (R) and for answers that were wrong
(W). The N reflects the total number of students who answered correctly and/or incorrectly across the
assessment occasions. Circles are outliers and triangles are extreme values.

194

Teaching Java™

Figure 3. Boxplots of ratings of the interteaching session for students in the summer, 2006, and fall,
2006 classes. Ratings were obtained for effectiveness of the session in understanding the material and
for confidence in being tested on the material. The scale anchors were 1 = Lowest effectiveness or
confidence to 10 = Highest effectiveness or confidence. The circle is an outlier and the triangle is an
extreme value.

Figure 4. Boxplots of ratings of software self-efficacy for students in the Summer 2006 and Fall 2006
classes across the four assessment occasions. The ratings are based on the 23 unique items of code in
the program. The scale anchors were 1 = No confidence to 10 = Total confidence. The triangles are
extreme values.

 195

Teaching Java™

For both classes, confidence generally in-
creased over the assessment occasions, reaching
the ceiling for correct answers after the lecture.
However, confidence increased for both correct
and incorrect answers, although an overall com-
parison favored the correct answer choices.

Figure 3 presents boxplots of ratings on the
interteaching evaluation, which was administered
at the conclusion of the interteaching session, for
students in both classes. Only 11 of the 14 students
in the fall 2006 class provided an evaluation,
although all 14 students participated in the inter-
teaching session. The figure shows graphically
the students’ reported value in the interteaching
session even when it occurred after using the Java
tutor and after running the program on the Web.
For the summer 2006 students, the median rating
of learning impact reached the scale’s ceiling of
10, with eight being the lowest rating observed.
The rating of test readiness was only slightly

less, with a median of nine. A Friedman’s test
was significant (Chi-Square = 5.444, p = 0.020).
For the fall 2006 students, both scales showed
median ratings of eight, and a Friedman’s test
was not significant for this class (Chi-Square =
0.667, p = .414). Although the median ratings for
the fall 2006 students were comparatively lower
than the summer 2006 students, taken together,
these data show that almost all students reported
value in the collaborative peer tutoring even when
the session followed several other instructional
experiences. No rating below a value of four was
observed by any student.

Figure 4 presents boxplots of software self-
efficacy ratings across the first four assessment
occasions for students in the summer 2006 and
fall 2006 classes. These ratings were not obtained
during the graded quiz. Each boxplot is based
upon the median rating over the 23 unique items
of code in the program for the 13 students in the

Figure 5. Boxplots of ratings of the tutor for students in the summer, 2006, and fall, 2006 classes for
three scales. The scale anchors were 1 = Totally negative to 10 = Totally positive. The circle is an outlier,
and the triangle is an extreme value.

196

Teaching Java™

summer 2006 class and for the 14 students in the
fall 2006 class. For ratings across all occasions
for both classes, Cronbach’s alpha reliability of
the ratings within each assessment exceeded 0.90,
and all values were significant (p < .05).

For the summer 2006 class, a Friedman test
was significant (Chi-Square = 32.614, p = 000).
A Welch test, based on the differences in rat-
ings between successive pairs of occasions, was
significant (W = 30.222, p = 0.000). Planned
pairwise, comparisons of the differences, Di, were
significant for D1 and D2 (W = 60.215, p = 0.000)
and not significant for D2 and D3 (W = 1.330, p =
0.260). Software self-efficacy increased over the
assessment occasions, and it reached the ceiling
following the lecture.

For the fall 2006 class, a Friedman test was
significant (Chi-Square = 32.741, p = 000). A Welch
test, based on the differences in ratings between
successive pairs of occasions, was significant (W =
18.450, p = 0.000). Planned pairwise comparisons
of the differences, Di, were significant for D1 and
D2 (W = 29.911, p = 0.000) and not significant
for D2 and D3 (W = 3.452, p = 0.075). Similar to
the summer 2006 students, software self-efficacy
increased over the assessment occasions, and it
reached the ceiling following the Lecture.

Figure 5 presents boxplots of ratings of evalu-
ation of the tutor taken during the post-tutor as-
sessment for students in both classes. Ratings
on the following three scales were requested: (1)
overall impression of the tutor, (2) effectiveness
of the tutor in learning Java, and (3) usability of
the tutor interfaces. The scale anchors on each
10-point scale were 1 = Totally negative to 10 =
Totally positive. For students in the summer 2006
class, median ratings for all three scales reached
the scale ceiling of ten, with only a single outlier
observed for Java Learning. For students in the
fall 2006 class, the medians were comparatively
lower, but all medians were higher than seven.
Since ordinal data are problematic for between-
group comparisons, these differences will not be
interpreted statistically. However, the evaluation

ratings from both classes together suggest that
students reported value in their use of the tutor,
despite an occasional extreme value toward the
lower end of a scale.

DISCUSSION

The results of this study show the value of applying
several different instructional modalities in fur-
therance of having information systems students
achieve skill and understanding with respect to
a simple Java applet, presented as a first techni-
cal exercise in a semester-long course. The data
support the utility of this approach as reflected
in students’ rule test performance and software
self-efficacy, which progressively improved over
the successive assessment occasions. Rehearsal is
an intuitively obvious and well-researched factor
in knowledge and skill acquisition (e.g., Salas &
Cannon-Bowers, 2001), and the present study
shows how structured rehearsal may be managed
using the several modalities under consideration.
Principles underlying such managed skill acqui-
sition with different instructional modalities are
presented elsewhere (Fox & Hackerman, 2003;
Halpern & Hakel, 2003). Finally, although the
predictive influence of self-efficacy on future
performance has been questioned (Heggestad &
Kanfer, 2005), self-efficacy assessments continue
to be viewed as an important indicator of the ef-
fectiveness of training programs that are intended
to produce both skill and motivation to learn (e.g.,
Johnson, 2005).

Despite the apparent benefits of applying dif-
ferent instructional modalities to support student
learning, however, the research base in instruc-
tional design typically compares one modality or
instructional method with others with respect to
student performance assessed at only one point
in time. Even the U.S. Department of Education’s
What Works Clearinghouse6 favors such an ap-
proach. Related to the present study, for example,
Harrington (1999) reported that graduate social-

 197

Teaching Java™

work students with relatively high grade-point
averages did not differ in final grades when a
statistics course was taught either by a traditional
lecture format or by “programmed instruction” in
a distance learning setting. Saville, Zinn, Neef et
al. (2006) reported that quiz scores for graduate
and undergraduate students were higher after an
interteaching session in comparison to scores
observed after a lecture.

With respect to teaching computer program-
ming to college-level students, Williams, Wiebe,
Yang et al. (2002) reported that the percent of
undergraduate students passing an introductory
Java course was higher for a pair-programming
laboratory section in comparison to students
whose laboratory section involved solo program-
ming. The benefits of collaborative learning, in
comparison to solitary learning, when applied
to computer programming were also shown in
college students’ program generation abilities
using LISP-LOGO (Jehng, 1997). Although ex-
perimental designs that compare average student
performances between and among conditions may
have value in identifying an optimal technique to
use when there is only a single and time-limited
occasion to teach or to learn, such studies have little
to offer in the engineering of instructional tactics
when the objective is to have each individual
student reach a criterion of mastery (cf Perone,
1999). Meyer (2004) questioned the value of old-
fashioned experimental “horse-race” designs in
another context, but the argument seems relevant
within the current context as well.

This study constitutes a systematic replica-
tion (Sidman, 1960). A set of teaching tactics
was revised with the expectation that student
learning would be improved. The methodology
reflects design-based research, which is a type
of formative evaluation (Collins, Joseph, &
Bielaczyc, 2004) that is emerging as an alterna-
tive methodology in support of developing and
assessing improvements in instructional design
within the context of the classroom (Bell, Hoadley,
& Linn, 2004; Design-Based Research Collective,

2003). In that regard, the order of presenting the
several instructional tactics was determined by
anecdotal observations of student performance
over the several classroom evaluations that were
previously undertaken in this stream of work. It
was decided that a hands-on lecture would benefit
from students’ prior rehearsal with the Java code
and that collaborative peer tutoring would benefit
from the cumulative learning obtained from the
programmed instruction and the lecture.

Since the components in the current ordering
are well received by students and since a desired
learning outcome was achieved, we have the view
that it is worthwhile now to direct our attention
to developing advanced instructional material,
rather than to “prove” the optimal ordering under
conditions of a traditional “effect-size” experi-
ment. Support for that view is implicit within de-
signed-based research and has been discussed by
educational scholars and training designers (e.g.,
Mayer, 2004; Sackett & Mullen, 1993). Impor-
tantly, students reported value in the Java tutor
and in the collaborative peer tutoring, and taken
together with the lecture, these approaches to
managing rehearsal in the classroom environment
converge on what are increasingly recognized as
vital ingredients to facilitate science education,
in general (DeHaan, 2005).

The content and functionality of the Web-
based programmed instruction tutoring system
have been upgraded and continuously revised
since the initial report (Emurian et al., 2000), and
the system has been demonstrably effective and
well received by our students. However, it is to
be understood that other approaches to automated
tutoring systems offer advantages in meeting the
needs of the individual learner. For example, Butz,
Hua, and Mcguire (2006) reported the application
of Baysian networks to determine instructional
events at the level of the individual learner in a
Web-based intelligent tutoring system for com-
puter programming. That and similar artificial
intelligence (e.g., Zhang, 2004) and multi-media
applications (e.g., Zhang, Zhou, Briggs et al., 2006)

198

Teaching Java™

have obvious promise in improving the capabilities
of the current programmed instruction orientation
to automated instructional design.

Having students discuss rule questions to-
gether may have enhanced understanding and
retention in the present context as indicated in
subsequent rule test performance. However, an
obvious challenge for collaborative peer tutoring,
in general, and for interteaching, in particular, is
to insure that participating students are, indeed,
teaching one another and to make certain that
they are sufficiently informed to know when
their solutions to questions are correct. Boyce and
Hineline (2002) and Saville et al. (2006) suggest
several approaches to oversee and to evaluate
interteaching to assure a beneficial session, such
as the awarding of “quality points” by a monitor
of the session. Similar to our previous observa-
tions, however, students showed “overconfidence”
in incorrect rule answers, and that issue requires
exploration in the design of future work. Tactics
to be explored to improve the effectiveness of
interteaching include the adoption of vignettes
and rubrics to facilitate higher-order thinking and
academic achievement (Kish, 2006).

The list of approaches to teaching and learn-
ing computer programming continues to grow.
In this article, reported techniques include (1) a
“blended” instructional approach (Boyle et al.,
2003); (2) an emphasis on mathematics and algo-
rithms (Hu, 2006); (3) supportive programming
environments such as BlueJ (Kolling, Quig, &
Rosenberg, 2003), DrJava (Hsia, Simpson, Smith
et al., 2005), and PigWorld (Lister, 2004); (4) Prob-
lem-Based Learning (Tsang & Chan, 2004); (5) the
Environment for Learning to Program (Truong,
Bancroft, & Roe, 2005); (6) collaborative peer
tutoring (Williams et al., 2002) and collaborative
learning (Jehng, 1997); (7) a Traffic Light System
Simulator (Yuen, 2006); a Computer Clubhouse
learning environment (McDougall & Boyle,
2004), and (9) a Web-based personalized system
of instruction (Koen, 2005). With the possible
exception of Boyle et al. (2003), research studies

in this domain typically emphasize a student’s
singular exposure to a task within the context of
a single instructional modality.

As an alternative to the aforementioned ap-
proaches, the instructional tactics adopted in the
classroom at the start of a semester’s work are
based initially upon programmed instruction,
which is a form of structured and optionally
automated instruction, as discussed by Emurian
and Durham (2003) and Emurian et al., (2003)
with respect to teaching computer programming.
They also include a lecture with hands-on learn-
ing. They also include interteaching, which is a
form of collaborative peer tutoring (Boyce &
Hineline, 2002). As implemented in the present
context to foster repeated practice with different
instructional modalities and with socially sup-
ported interactions, these tactics originated from
behavior analysis. The Cambridge Center for
Behavioral Studies7 provides fundamental defini-
tions and a wealth of information regarding the
philosophical underpinnings and applications of
this approach to science, in general, and to educa-
tion, in particular. Finally, these tactics are to be
understood as providing only an initial series of
learning experiences to students in preparation
for subsequent learning with other instructional
and program development tools and techniques,
to include the use of an integrated development
environment (IDE) such as Eclipse.

Although educators might have the success of
their students as a primary goal of teaching, it is
less certain that what happens in the classroom
is based on empirical evidence of effectiveness:
a rational pedagogy (Emurian, 2001). In addition,
it is sometimes the case that expecting students
prematurely to solve general computer program-
ming problems and to understand complex control
structures and algorithms neglects the skills that
students must possess to undertake such higher-
order learning. Too often, perhaps, educators may
view an introductory course in science, engineer-
ing, and mathematics (STEM) as an occasion to
eliminate marginally prepared students rather

 199

Teaching Java™

than as an opportunity to teach them the skills
necessary to succeed. Although we also have the
goal of helping students to learn the syntax and
semantics of advanced programming such as re-
cursion, we argue that our approach is deliberately
and constructively designed to meet the needs of
novice students, those ineffective novices who
lack experience and self-efficacy in this domain
(Robins, Rountree, & Rountree, 2003).

In furtherance of providing those skills to
our students, techniques derived from behavior
analysis have been demonstrably effective in pro-
moting skill, confidence, and meaningful learning
by novitiate students regarding an object-oriented
programming language. Behavior analysis is one
promising approach in identifying the ontogenetic
instructional learn units (Greer & McDonough,
1999) whose mastery provides the textual tools es-
sential for advanced understanding, thinking, and
problem solving in the domain of computer pro-
gramming. Teachers facing the difficult challenge
of providing effective instruction to the diversity
of students who enroll in introductory computer
programming courses need to be mindful of all
approaches to helping their students succeed. The
present study represents a reconfirmation of one
set of instructional tactics that are effective for
information systems students and well received
by them. All students deserve to have access to
such evidenced-based tactics.

REFERENCES

Anderson, J.R., Corbett, A.T., Koedinger, K.R.,
& Pelletier, R. (1995). Cognitive tutors: Lessons
learned. Journal of the Learning Sciences, 4(2),
167-207.

Barnett, S.M., & Ceci, S.J. (2002). When and
where do we apply what we learn? A taxonomy
for far transfer. Psychological Bulletin, 128,
612-637.

Bell, P., Hoadley, C.M., & Linn, M.C. (2004).
Design-based research in education. In M.C. Linn,
E.A. Davis, & P. Bell (Eds.). Internet environ-
ments for science education (pp. 73-88). Laurence
Erlbaum Associates.

Boyce, T.E., & Hineline, P.N. (2002). Interteach-
ing: A strategy for enhancing the user-friendliness
of behavioral arrangements in the college class-
room. The Behavior Analyst, 25, 215-226.

Boyle, T., Bradley, C., Chalk, P., Jones, R., &
Pickard, P. (2003). Using blended learning to
improve student success rates in learning to
program. Journal of Educational Media, 28(2-
3), 165-178.

Butz, C.J., Hua, S., & Mcguire, R.B. (2006). A
web-based bayesian intelligent tutoring system
for computer programming. Web Intelligence &
Agent Systems, 4(1), 61-67.

Collins, A., Joseph, D., & Bielaczyc, K. (2004).
Design research: Theoretical and methodological
issues. Journal of the Learning Sciences, 13(1),
15-42.

Conover, W.J. (1971). Practical nonparametric
statistics. New York, NY: John Wiley & Sons,
Inc.

DeHaan, R.L. (2005). The impending revolution
in undergraduate science education. Journal of
Science Education and Technology, 14(2), 253-
269.

Design-Based Research Collective (2003). Edu-
cational Researcher, 32(1), 5-8.

Emurian, H.H. (2001). The consequences of
e-learning (Editorial), Information Resources
Management Journal, April-June, 3-5.

Emurian, H.H. (2004). A programmed instruction
tutoring system for Java: Consideration of learning
performance and software self-efficacy. Comput-
ers in Human Behavior, 20(3), 423-459.

200

Teaching Java™

Emurian, H.H. (2005). Web-based programmed
instruction: Evidence of rule-governed learning.
Computers in Human Behavior, 21(6), 893-915.

Emurian, H.H. (2006a). A Web-based tutor for
Java™: Evidence of meaningful learning. Jour-
nal of Distance Education Technologies, 4(2),
10-30.

Emurian, H.H. (2006b). Assessing the effective-
ness of programmed instruction and collaborative
peer tutoring in teaching Java™. International
Journal of Information and Communication
Technology Education, 2(2), 1-16.

Emurian, H.H. (in press:a). Applications of be-
havior analysis to ICT education: Teaching java
with programmed instruction and interteaching.
Encyclopedia of Information Technology Cur-
riculum Integration. Hershey, PA: IRM Press.

Emurian, H.H. (in press:b). Managing pro-
grammed instruction and collaborative peer tu-
toring in the classroom: Applications in teaching
Java™. Computers in Human Behavior.

Emurian, H.H., & Durham, A.G. (2003). Com-
puter-based tutoring systems: A behavioral ap-
proach. In J.A. Jacko & A. Sears (Eds.), Handbook
of human-computer interaction (pp. 677-697).
Mahwah, NJ: Lawrence Erlbaum & Associates.

Emurian, H.H., Wang, J., & Durham, A.G. (2003).
Analysis of learner performance on a tutoring
system for Java. In T. McGill (Ed.), Current Is-
sues in IT Education (pp. 46-76). Hershey, PA:
IRM Press.

Emurian, H.H., Hu, X., Wang, J., & Durham, A.G.
(2000). Learning Java: A programmed instruction
approach using applets. Computers in Human
Behavior, 16, 395-422.

Fox, M.A., & Hackerman, N. (2003). Evaluating
and improving undergraduate teaching in sci-
ence, technology, engineering, and mathematics.

Washington, DC: The National Academies of
Science Press.

Greer, R.D. (2002). Designing teaching strategies:
An applied behavior analysis systems approach.
New York: Academic Press.

Greer, R.D., & McDonough, S.H. (1999). Is the
learn unit a fundamental measure of pedagogy?
The Behavior Analyst, 22, 5-16.

Halpern, D.F., & Hakel, M.F. (2003). Applying the
science of learning to the university and beyond:
Teaching for long-term retention and transfer.
Change, 35(4), 37-41.

Harrington, D. (1999). Teaching statistics: A com-
parison of traditional classroom and programmed
instruction/distance learning approaches. Journal
of Social Work Education, 35(3), 343-352.

Heggestad, E.D., & Kanfer, R. (2005). The
predictive validity of self-efficacy in training
performance: Little more than past performance.
Journal of Experimental Psychology: Applied,
11(2), 84-97.

Hsia, J.I., Simpson, E., Smith, D., & Cartwright,
R. (2005, February 23-27). Taming Java for the
classroom. SIGCSE’05, St. Louis, MI, 327-331.

Hu, C. (2006). It’s mathematical after all: The
nature of learning computer programming.
Education and Information Technologies, 11(1),
83-92.

Ingvarsson, E.T., & Hanley, G.P. (2006). An evalu-
ation of computer-based programmed instruction
for promoting teachers’ greeting of parents by
name. Journal of Applied Behavior Analysis,
39(2), 203-214.

Jehng, J-C. J. (1997). The psycho-social processes
and cognitive effects of peer-based collaborative
interactions with computers. Journal of Educa-
tional Computing Research, 17(1), 19-46.

 201

Teaching Java™

Johnson, R.D. (2005). An empirical investigation
of sources of application-specific computer-self-
efficacy and mediators of the efficacy-perfor-
mance relationship. International Journal of
Human-Computer Studies, 62(6), 737-758.

Kirschner, P.A., Sweller, J., & Clark, R.E. (2006).
Why minimal guidance during instruction does
not work: An analysis of the failure of constructiv-
ist, discovery, problem-based, experiential, and
inquiry-based teaching. Educational Psycholo-
gist, 41(2), 75-86.

Kish, M.H.Z. (2006). Overview of using vignettes
to develop higher order thinking and academic
achievement in adult learners in an online learning
environment. International Journal of Informa-
tion and Communication Technology Education,
2(3), 60-74.

Koen, B.V. (2005). Creating a sense of “presence”
in a web-based PSI course: The search for Mark
Hopkins’ log in a digital log. IEEE Transactions
on Education, 48(4), 599-604.

Kolling, M., Quig, B., Patterson, A., & Rosen-
berg, J. (2003). The BlueJ system and its peda-
gogy. Journal of Computer Science Education,
14(Dec), 1-12.

Kurbanoglu, N.I., Taskesenligil, Y., & Sozbilir,
M. (2006). Programmed instruction revisited: A
study on teaching stereochemistry. Chemistry
Education Research and Practice, 7(1), 13-21.

Lister, R. (2004). Teaching java first: Experiments
with a pigs-early pedagogy. Proceedings of the
6th Conference on Australian Computing Educa-
tion Vol. 30 (pp. 177-183), Dunedin: Australian
Computer Society, Inc.

Mayer, R.E. (2002). The promise of educational
psychology. Volume II. Teaching for meaning-
ful learning. Upper Saddle River, NJ: Pearson
Education, Inc.

Mayer, R.E. (2004). Should there be a three-strikes
rule against pure discovery learning? American
Psychologist, 59(1), 14-19.

Maxwell, S.E., & Delaney, H.D. (2004). Design-
ing experiments and analyzing data: A model
comparison perspective (2nd Ed). Mahwah, NJ:
Lawrence Erlbaum Associates.

McDougall, A., & Boyle, M. (2004). Student strate-
gies for learning computer programming: Implica-
tions for pedagogy in informatics. Education and
Information Technologies, 9(2), 109-116.

Perone, M. (1999). Statistical inference in behav-
ior analysis: Experimental control is better. The
Behavior Analyst, 22(2), 109-116.

Robins, A., Rountree, J., Rountree, N. (2003).
Learning and teaching programming: A review
and discussion. Computer Science Education,
13(2), 137-172.

 Sackett, R.R., & Mullen, E.J. (1993). Beyond
formal experimental design: Towards an expanded
view of the training evaluation process. Personnel
Psychology, 46, 613-627.

Salas, E., & Cannon-Bowers, J.A. (2001). The
science of training: A decade of progress. Annual
Review of Psychology, 52, 471-499.

Saville, B.K., Zinn, T.E., Neef, N.A., Norman,
R.V., & Ferreri, S.J. (2006). A comparison of
interteaching and lecture in the college class-
room. Journal of Applied Behavior Analysis,
39, 49-61.

Sidman, M. (1960). Tactics of scientific research.
New York: Basic Books.

Truong, N., Bancroft, P., & Roe, P. (2005, June
27–29). Learning to program through the web.
Proceedings of the 10th annual SIGSCE confer-
ence on innovation and technology in computer
science education, ITiCSE’05. Monte de Caparica,
Portugal:ACM Press.

202

Teaching Java™

Tsang, A.C.W., & Chan, N. (2004). An online
problem-based model for the learning of java.
Journal of Electronic Commerce in Organiza-
tions, 2(2), 55-64.

Wang, F., & Hannafin, M.J. (2005). Design-based
research and technology-enhanced learning en-
vironments. Educational Technology Research
and Development, 55(4), 5-24.

Williams, L.A., Wiebe, E., Yang, K., Ferzli, M.,
& Miller, C. (2002). In support of pair program-
ming in the introductory computer science course.
Computer Science Education, 12(3), 197-212.

Yuen, A.H.K. (2006). Learning to program
through interactive simulation. Educational
Media International, 43(3), 251-268.

Zhang, D. (2004). Virtual mentor and the LBA
system―towards building an interactive, person-
alized, and intelligent e-learning environment.
Journal of Computer Information Systems, XLIV,
(3), 35-43.

Zhang, D, Zhou, L., Briggs, B., & Nunamaker, J.
F. (2006). Instructional video in e-learning: As-
sessing the impact of interactive video on learn-
ing effectiveness. Information & Management.
43(1), pp. 15-27.

ENDNOTES

1 A portion of the summer, 2006, data was
accepted for presentation at the 2007
convention of the Information Resources
Management Association.

2 All materials used in this study are freely
available. They include the online Java tutor,
the open source code for the tutor, the course
materials, and all assessment instruments:
http://nasa1.ifsm.umbc.edu/learnJava/tutor-
Links/TutorLinks.html

3 http://userpages.umbc.edu/~emurian/learn-
Java/swing/tutor/v2/explanations/Explana-
tions.html

4 In the present study, the difference values
for respective assessment variables were
computed as follows: D1 = (Post-Tutor
– Pre-Tutor); D2 = (Lecture – Post-Tutor);
D3 = (Interteaching – Lecture); and D4 =
(Quiz – Interteaching). The Welch test ap-
plied to these differences is similar to the
multivariate approach for within-subjects
designs recommended by Maxwell and
Delaney (2004, p. 624). Planned pairwise
comparisons were to detect possible differ-
ences in effect magnitude over the successive
conditions.

5 To control for the experimentwise error
rate, the significant p value for each planned
comparison must be less than 0.05/number-
of-planned-comparisons.

6 http://www.whatworks.ed.gov/
7 http://www.behavior.org/index.cfm

