

Table of Contents

Subtyping and Wildcards... 1
Subtyping and the Substitution Principle... 1
Wildcards with extends... 3
Wildcards with super.. 4
The Get and Put Principle... 5
Arrays.. 9
Wildcards Versus Type Parameters.. 12
Wildcard Capture.. 14
Restrictions on Wildcards... 15

Chapter 2. Subtyping and Wildcards

Chapter 2. Subtyping and Wildcards
Java Generics and Collections By Philip Wadler, Maurice Naftalin ISBN: 0596527756
Publisher: O'Reilly

Prepared for Mitchell Edelman, Safari ID: mitchell.j.edelman@ssa.gov

Print Publication Date: 2006/10/01 User number: 408741 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 2. Subtyping and Wildcards
Now that we've covered the basics, we can start to cover more-advanced features of
generics, such as subtyping and wildcards. In this section, we'll review how subtyping
works and we'll see how wildcards let you use subtyping in connection with generics. We'll
illustrate our points with examples from the Collections Framework.

2.1. Subtyping and the Substitution Principle

Subtyping is a key feature of object-oriented languages such as Java. In Java, one type is
a subtype of another if they are related by an extends or implements clause. Here are
some examples:

Integer is a subtype of Number
Double is a subtype of Number
ArrayList<E> is a subtype of List<E>
List<E> is a subtype of Collection<E>
Collection<E> is a subtype of Iterable<E>

Subtyping is transitive, meaning that if one type is a subtype of a second, and the second
is a subtype of a third, then the first is a subtype of the third. So, from the last two lines in
the preceding list, it follows that List<E> is a subtype of Iterable<E>. If one type is a
subtype of another, we also say that the second is a supertype of the first. Every reference
type is a subtype of Object, and Object is a supertype of every reference type. We also
say, trivially, that every type is a subtype of itself.

The Substitution Principle tells us that wherever a value of one type is expected, one may
provide a value of any subtype of that type:

Substitution Principle: a variable of a given type may be assigned a value of any
subtype of that type, and a method with a parameter of a given type may be
invoked with an argument of any subtype of that type.

Consider the interface Collection<E>. One of its methods is add, which takes a
parameter of type E:

interface Collections<E> {
 public boolean add(E elt);
 ...
}

Chapter 2. Subtyping and Wildcards Page 1 Return to Table of Contents

Chapter 2. Subtyping and Wildcards
Java Generics and Collections By Philip Wadler, Maurice Naftalin ISBN: 0596527756
Publisher: O'Reilly

Prepared for Mitchell Edelman, Safari ID: mitchell.j.edelman@ssa.gov

Print Publication Date: 2006/10/01 User number: 408741 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #408741

According to the Substitution Principle, if we have a collection of numbers, we may add
an integer or a double to it, because Integer and Double are subtypes of Number.

List<Number> nums = new ArrayList<Number>();
nums.add(2);
nums.add(3.14);
assert nums.toString().equals("[2, 3.14]");

Here, subtyping is used in two ways for each method call. The first call is permitted because
nums has type List<Number>, which is a subtype of Collection<Number>, and 2 has
type Integer (thanks to boxing), which is a subtype of Number. The second call is
similarly permitted. In both calls, the E in List<E> is taken to be Number.

It may seem reasonable to expect that since Integer is a subtype of Number, it follows
that List<Integer> is a subtype of List<Number>. But this is not the case, because
the Substitution Principle would rapidly get us into trouble. It is not always safe to assign
a value of type List<Integer> to a variable of type List<Number>. Consider the
following code fragment:

List<Integer> ints = Arrays.asList(1,2);
List<Number> nums = ints; // compile-time error
nums.add(3.14);
assert ints.toString().equals("[1, 2, 3.14]"); // uh oh!

This code assigns variable ints to point at a list of integers, and then assigns nums to
point at the same list of integers; hence the call in the third line adds a double to this list,
as shown in the fourth line. This must not be allowed! The problem is prevented by
observing that here the Substitution Principle does not apply: the assignment on the
second line is not allowed because List<Integer> is not a subtype of List<Number>,
and the compiler reports that the second line is in error.

What about the reverse? Can we take List<Number> to be a subtype of
List<Integer>? No, that doesn't work either, as shown by the following code:

List<Number> nums = Arrays.<Number>asList(2.78, 3.14);
List<Integer> ints = nums; // compile-time error
assert ints.toString().equals("[2.78, 3.14]"); // uh oh!

The problem is prevented by observing that here the Substitution Principle does not apply:
the assignment on the second line is not allowed because List<Integer> is not a subtype
of List<Number>, and the compiler reports that the second line is in error.

So List<Integer> is not a subtype of List<Number>, nor is List<Number> a subtype
of List<Integer>; all we have is the trivial case, where List<Integer> is a subtype

Chapter 2. Subtyping and Wildcards Page 2 Return to Table of Contents

Chapter 2. Subtyping and Wildcards
Java Generics and Collections By Philip Wadler, Maurice Naftalin ISBN: 0596527756
Publisher: O'Reilly

Prepared for Mitchell Edelman, Safari ID: mitchell.j.edelman@ssa.gov

Print Publication Date: 2006/10/01 User number: 408741 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

of itself, and we also have that List<Integer> is a subtype of
Collection<Integer>.

Arrays behave quite differently; with them, Integer[] is a subtype of Number[]. We
will compare the treatment of lists and arrays later (see Section 2.5).

Sometimes we would like lists to behave more like arrays, in that we want to accept not
only a list with elements of a given type, but also a list with elements of any subtype of a
given type. For this purpose, we use wildcards.

2.2. Wildcards with extends

Another method in the Collection interface is addAll, which adds all of the members
of one collection to another collection:

interface Collection<E> {
 ...
 public boolean addAll(Collection<? extends E> c);
 ...
}

Clearly, given a collection of elements of type E, it is OK to add all members of another
collection with elements of type E. The quizzical phrase "? extends E" means that it is
also OK to add all members of a collection with elements of any type that is a subtype of
E. The question mark is called a wildcard, since it stands for some type that is a subtype
of E.

Here is an example. We create an empty list of numbers, and add to it first a list of integers
and then a list of doubles:

List<Number> nums = new ArrayList<Number>();
List<Integer> ints = Arrays.asList(1, 2);
List<Double> dbls = Arrays.asList(2.78, 3.14);
nums.addAll(ints);
nums.addAll(dbls);
assert nums.toString().equals("[1, 2, 2.78, 3.14]");

The first call is permitted because nums has type List<Number>, which is a subtype of
Collection<Number>, and ints has type List<Integer>, which is a subtype of
Collection<? extends Number>. The second call is similarly permitted. In both calls,
E is taken to be Number. If the method signature for addAll had been written without
the wildcard, then the calls to add lists of integers and doubles to a list of numbers would
not have been permitted; you would only have been able to add a list that was explicitly
declared to be a list of numbers.

Chapter 2. Subtyping and Wildcards Page 3 Return to Table of Contents

Chapter 2. Subtyping and Wildcards
Java Generics and Collections By Philip Wadler, Maurice Naftalin ISBN: 0596527756
Publisher: O'Reilly

Prepared for Mitchell Edelman, Safari ID: mitchell.j.edelman@ssa.gov

Print Publication Date: 2006/10/01 User number: 408741 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We can also use wildcards when declaring variables. Here is a variant of the example at
the end of the preceding section, changed by adding a wildcard to the second line:

List<Integer> ints = Arrays.asList(1,2);
List<? extends Number> nums = ints;
nums.add(3.14); // compile-time error
assert ints.toString().equals("[1, 2, 3.14]"); // uh oh!

Before, the second line caused a compile-time error (because List<Integer> is not a
subtype of List<Number>), but the third line was fine (because a double is a number, so
you can add a double to a List<Number>). Now, the second line is fine (because
List<Integer> is a subtype of List<? extends Number>), but the third line causes
a compile-time error (because you cannot add a double to a List<? extends
Number>, since it might be a list of some other subtype of number). As before, the fourth
line shows why one of the preceding lines is illegal!

In general, if a structure contains elements with a type of the form ? extends E, we can
get elements out of the structure, but we cannot put elements into the structure. To put
elements into the structure we need another kind of wildcard, as explained in the next
section.

2.3. Wildcards with super

Here is a method that copies into a destination list all of the elements from a source list,
from the convenience class Collections:

public static <T> void copy(List<? super T> dst, List<? extends T> src) {
 for (int i = 0; i < src.size(); i++) {
 dst.set(i, src.get(i));
 }
}

The quizzical phrase ? super T means that the destination list may have elements of any
type that is a supertype of T, just as the source list may have elements of any type that is
a subtype of T.

Here is a sample call.

List<Object> objs = Arrays.<Object>asList(2, 3.14, "four");
List<Integer> ints = Arrays.asList(5, 6);
Collections.copy(objs, ints);
assert objs.toString().equals("[5, 6, four]");

Chapter 2. Subtyping and Wildcards Page 4 Return to Table of Contents

Chapter 2. Subtyping and Wildcards
Java Generics and Collections By Philip Wadler, Maurice Naftalin ISBN: 0596527756
Publisher: O'Reilly

Prepared for Mitchell Edelman, Safari ID: mitchell.j.edelman@ssa.gov

Print Publication Date: 2006/10/01 User number: 408741 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

As with any generic method, the type parameter may be inferred or may be given explicitly.
In this case, there are four possible choices, all of which type-check and all of which have
the same effect:

Collections.copy(objs, ints);
Collections.<Object>copy(objs, ints);
Collections.<Number>copy(objs, ints);
Collections.<Integer>copy(objs, ints);

The first call leaves the type parameter implicit; it is taken to be Integer, since that is the
most specific choice that works. In the third line, the type parameter T is taken to be
Number. The call is permitted because objs has type List<Object>, which is a subtype
of List<? super Number> (since Object is a supertype of Number, as required by the
super) and ints has type List<Integer>, which is a subtype of List<? extends
Number> (since Integer is a subtype of Number, as required by the extends wildcard).

We could also declare the method with several possible signatures.

public static <T> void copy(List<T> dst, List<T> src)
public static <T> void copy(List<T> dst, List<? extends T> src)
public static <T> void copy(List<? super T> dst, List<T> src)
public static <T> void copy(List<? super T> dst, List<? extends T> src)

The first of these is too restrictive, as it only permits calls when the destination and source
have exactly the same type. The remaining three are equivalent for calls that use implicit
type parameters, but differ for explicit type parameters. For the example calls above, the
second signature works only when the type parameter is Object, the third signature
works only when the type parameter is Integer, and the last signature works (as we have
seen) for all three type parameters—i.e., Object, Number, and Integer. Always use
wildcards where you can in a signature, since this permits the widest range of calls.

2.4. The Get and Put Principle

It may be good practice to insert wildcards whenever possible, but how do you decide
which wildcard to use? Where should you use extends, where should you use super,
and where is it inappropriate to use a wildcard at all?

Fortunately, a simple principle determines which is appropriate.

The Get and Put Principle: use an extends wildcard when you only get values
out of a structure, use a super wildcard when you only put values into a structure,
and don't use a wildcard when you both get and put.

Chapter 2. Subtyping and Wildcards Page 5 Return to Table of Contents

Chapter 2. Subtyping and Wildcards
Java Generics and Collections By Philip Wadler, Maurice Naftalin ISBN: 0596527756
Publisher: O'Reilly

Prepared for Mitchell Edelman, Safari ID: mitchell.j.edelman@ssa.gov

Print Publication Date: 2006/10/01 User number: 408741 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We already saw this principle at work in the signature of the copy method:

public static <T> void copy(List<? super T> dest, List<? extends T> src)

The method gets values out of the source src, so it is declared with an extends wildcard,
and it puts values into the destination dst, so it is declared with a super wildcard.

Whenever you use an iterator, you get values out of a structure, so use an extends
wildcard. Here is a method that takes a collection of numbers, converts each to a double,
and sums them up:

public static double sum(Collection<? extends Number> nums) {
 double s = 0.0;
 for (Number num : nums) s += num.doubleValue();
 return s;
}

Since this uses extends, all of the following calls are legal:

List<Integer> ints = Arrays.asList(1,2,3);
assert sum(ints) == 6.0;

List<Double> doubles = Arrays.asList(2.78,3.14);
assert sum(doubles) == 5.92;

List<Number> nums = Arrays.<Number>asList(1,2,2.78,3.14);
assert sum(nums) == 8.92;

The first two calls would not be legal if extends was not used.

Whenever you use the add method, you put values into a structure, so use a super
wildcard. Here is a method that takes a collection of numbers and an integer n, and puts
the first n integers, starting from zero, into the collection:

public static void count(Collection<? super Integer> ints, int n) {
 for (int i = 0; i < n; i++) ints.add(i);
}

Since this uses super, all of the following calls are legal:

List<Integer> ints = new ArrayList<Integer>();
count(ints, 5);
assert ints.toString().equals("[0, 1, 2, 3, 4]");

List<Number> nums = new ArrayList<Number>();
count(nums, 5); nums.add(5.0);
assert nums.toString().equals("[0, 1, 2, 3, 4, 5.0]");

List<Object> objs = new ArrayList<Object>();
count(objs, 5); objs.add("five");
assert objs.toString().equals("[0, 1, 2, 3, 4, five]");

Chapter 2. Subtyping and Wildcards Page 6 Return to Table of Contents

Chapter 2. Subtyping and Wildcards
Java Generics and Collections By Philip Wadler, Maurice Naftalin ISBN: 0596527756
Publisher: O'Reilly

Prepared for Mitchell Edelman, Safari ID: mitchell.j.edelman@ssa.gov

Print Publication Date: 2006/10/01 User number: 408741 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The last two calls would not be legal if super was not used.

Whenever you both put values into and get values out of the same structure, you should
not use a wildcard.

public static double sumCount(Collection<Number> nums, int n) {
 count(nums, n);
 return sum(nums);
}

The collection is passed to both sum and count, so its element type must both extend
Number (as sum requires) and be super to Integer (as count requires). The only two
classes that satisfy both of these constraints are Number and Integer, and we have picked
the first of these. Here is a sample call:

List<Number> nums = new ArrayList<Number>();
double sum = sumCount(nums,5);
assert sum == 10;

Since there is no wildcard, the argument must be a collection of Number.

If you don't like having to choose between Number and Integer, it might occur to you
that if Java let you write a wildcard with both extends and super, you would not need
to choose. For instance, we could write the following:

double sumCount(Collection<? extends Number super Integer> coll, int n)
// not legal Java!

Then we could call sumCount on either a collection of numbers or a collection of integers.
But Java doesn't permit this. The only reason for outlawing it is simplicity, and conceivably
Java might support such notation in the future. But, for now, if you need to both get and
put then don't use wildcards.

The Get and Put Principle also works the other way around. If an extends wildcard is
present, pretty much all you will be able to do is get but not put values of that type; and if
a super wildcard is present, pretty much all you will be able to do is put but not get values
of that type.

For example, consider the following code fragment, which uses a list declared with an
extends wildcard:

List<Integer> ints = Arrays.asList(1,2,3);
List<? extends Number> nums = ints;
double dbl = sum(nums); // ok
nums.add(3.14); // compile-time error

Chapter 2. Subtyping and Wildcards Page 7 Return to Table of Contents

Chapter 2. Subtyping and Wildcards
Java Generics and Collections By Philip Wadler, Maurice Naftalin ISBN: 0596527756
Publisher: O'Reilly

Prepared for Mitchell Edelman, Safari ID: mitchell.j.edelman@ssa.gov

Print Publication Date: 2006/10/01 User number: 408741 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The call to sum is fine, because it gets values from the list, but the call to add is not, because
it puts a value into the list. This is just as well, since otherwise we could add a double to a
list of integers!

Conversely, consider the following code fragment, which uses a list declared with a
super wildcard:

List<Object> objs = Arrays.<Object>asList(1,"two");
List<? super Integer> ints = objs;
ints.add(3); // ok
double dbl = sum(ints); // compile-time error

Now the call to add is fine, because it puts a value into the list, but the call to sum is not,
because it gets a value from the list. This is just as well, because the sum of a list containing
a string makes no sense!

The exception proves the rule, and each of these rules has one exception. You cannot put
anything into a type declared with an extends wildcard—except for the value null, which
belongs to every reference type:

List<Integer> ints = Arrays.asList(1,2,3);
List<? extends Number> nums = ints;
nums.add(null); // ok
assert nums.toString().equals("[1,2,3,null]");

Similarly, you cannot get anything out from a type declared with an extends wildcard—
except for a value of type Object, which is a supertype of every reference type:

List<Object> objs = Arrays.<Object>asList(1,"two");
List<? super Integer> ints = objs;
String str = "";
for (Object obj : ints) str += obj.toString();
assert str.equals("1two");

You may find it helpful to think of ? extends T as containing every type in an interval
bounded by the type of null below and by T above (where the type of null is a subtype
of every reference type). Similarly, you may think of ? super T as containing every type
in an interval bounded by T below and by Object above.

It is tempting to think that an extends wildcard ensures immutability, but it does not. As
we saw earlier, given a list of type List<? extends Number>, you may still add null
values to the list. You may also remove list elements (using remove, removeAll, or
retainAll) or permute the list (using swap, sort, or shuffle in the convenience class
Collections; see Section 17.1.1). If you want to ensure that a list cannot be changed, use
the method unmodifiableList in the class Collections; similar methods exist for
other collection classes (see Section 17.3.2). If you want to ensure that list elements cannot

Chapter 2. Subtyping and Wildcards Page 8 Return to Table of Contents

Chapter 2. Subtyping and Wildcards
Java Generics and Collections By Philip Wadler, Maurice Naftalin ISBN: 0596527756
Publisher: O'Reilly

Prepared for Mitchell Edelman, Safari ID: mitchell.j.edelman@ssa.gov

Print Publication Date: 2006/10/01 User number: 408741 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596527756/javagenerics-CHP-17-SECT-1#javagenerics-CHP-17-SECT-1.1
http://safari.oreilly.com/0596527756/javagenerics-CHP-17-SECT-3#javagenerics-CHP-17-SECT-3.2

be changed, consider following the rules for making a class immutable given by Joshua
Bloch in his book Effective Java (Addison-Wesley) in "Item 13: Favor immutability"; for
example, in Part II, the classes CodingTask and PhoneTask in Section 12.1 are
immutable, as is the class PriorityTask in Section 13.2.

Because String is final and can have no subtypes, you might expect that
List<String> is the same type as List<? extends String>. But in fact the former
is a subtype of the latter, but not the same type, as can be seen by an application of our
principles. The Substitution Principle tells us it is a subtype, because it is fine to pass a
value of the former type where the latter is expected. The Get and Put Principle tells us
that it is not the same type, because we can add a string to a value of the former type but
not the latter.

2.5. Arrays

It is instructive to compare the treatment of lists and arrays in Java, keeping in mind the
Substitution Principle and the Get and Put Principle.

In Java, array subtyping is covariant, meaning that type S[] is considered to be a subtype
of T[] whenever S is a subtype of T. Consider the following code fragment, which allocates
an array of integers, assigns it to an array of numbers, and then attempts to assign a double
into the array:

Integer[] ints = new Integer[] {1,2,3};
Number[] nums = ints;
nums[2] = 3.14; // array store

 exception

assert Arrays.toString(ints).equals("[1, 2, 3.14]"); // uh oh!

Something is wrong with this program, since it puts a double into an array of integers!
Where is the problem? Since Integer[] is considered a subtype of Number[], according
to the Substitution Principle the assignment on the second line must be legal. Instead, the
problem is caught on the third line, and it is caught at run time. When an array is allocated
(as on the first line), it is tagged with its reified type (a run-time representation of its
component type, in this case, Integer), and every time an array is assigned into (as on
the third line), an array store exception is raised if the reified type is not compatible with
the assigned value (in this case, a double cannot be stored into an array of Integer).

In contrast, the subtyping relation for generics is invariant, meaning that type
List<S> is not considered to be a subtype of List<T>, except in the trivial case where

Chapter 2. Subtyping and Wildcards Page 9 Return to Table of Contents

Chapter 2. Subtyping and Wildcards
Java Generics and Collections By Philip Wadler, Maurice Naftalin ISBN: 0596527756
Publisher: O'Reilly

Prepared for Mitchell Edelman, Safari ID: mitchell.j.edelman@ssa.gov

Print Publication Date: 2006/10/01 User number: 408741 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596527756/javagenerics-PART-II#javagenerics-PART-II
http://safari.oreilly.com/0596527756/javagenerics-CHP-12-SECT-1#javagenerics-CHP-12-SECT-1
http://safari.oreilly.com/0596527756/javagenerics-CHP-13-SECT-2#javagenerics-CHP-13-SECT-2

S and T are identical. Here is a code fragment analogous to the preceding one, with lists
replacing arrays:

List<Integer> ints = Arrays.asList(1,2,3);
List<Number> nums = ints; // compile-time error
nums.put(2, 3.14);
assert ints.toString().equals("[1, 2, 3.14]"); // uh oh!

Since List<Integer> is not considered to be a subtype of List<Number>, the problem
is detected on the second line, not the third, and it is detected at compile time, not run
time.

Wildcards reintroduce covariant subtyping for generics, in that type List<S> is
considered to be a subtype of List<? extends T> when S is a subtype of T. Here is a
third variant of the fragment:

List<Integer> ints = Arrays.asList(1,2,3);
List<? extends Number> nums = ints;
nums.put(2, 3.14); // compile-time error
assert ints.toString().equals("[1, 2, 3.14]"); // uh oh!

As with arrays, the third line is in error, but, in contrast to arrays, the problem is detected
at compile time, not run time. The assignment violates the Get and Put Principle, because
you cannot put a value into a type declared with an extends wildcard.

Wildcards also introduce contravariant subtyping for generics, in that type List<S> is
considered to be a subtype of List<? super T> when S is a supertype of T (as opposed
to a subtype). Arrays do not support contravariant subtyping. For instance, recall that the
method count accepted a parameter of type Collection<? super Integer> and
filled it with integers. There is no equivalent way to do this with an array, since Java does
not permit you to write (? super Integer)[].

Detecting problems at compile time rather than at run time brings two advantages, one
minor and one major. The minor advantage is that it is more efficient. The system does
not need to carry around a description of the element type at run time, and the system
does not need to check against this description every time an assignment into an array is
performed. The major advantage is that a common family of errors is detected by the
compiler. This improves every aspect of the program's life cycle: coding, debugging,
testing, and maintenance are all made easier, quicker, and less expensive.

Apart from the fact that errors are caught earlier, there are many other reasons to prefer
collection classes to arrays. Collections are far more flexible than arrays. The only
operations supported on arrays are to get or set a component, and the representation is
fixed. Collections support many additional operations, including testing for containment,
adding and removing elements, comparing or combining two collections, and extracting

Chapter 2. Subtyping and Wildcards Page 10 Return to Table of Contents

Chapter 2. Subtyping and Wildcards
Java Generics and Collections By Philip Wadler, Maurice Naftalin ISBN: 0596527756
Publisher: O'Reilly

Prepared for Mitchell Edelman, Safari ID: mitchell.j.edelman@ssa.gov

Print Publication Date: 2006/10/01 User number: 408741 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

a sublist of a list. Collections may be either lists (where order is significant and elements
may be repeated) or sets (where order is not significant and elements may not be repeated),
and a number of representations are available, including arrays, linked lists, trees, and
hash tables. Finally, a comparison of the convenience classes Collections and
Arrays shows that collections offer many operations not provided by arrays, including
operations to rotate or shuffle a list, to find the maximum of a collection, and to make a
collection unmodifiable or synchronized.

Nonetheless, there are a few cases where arrays are preferred over collections. Arrays of
primitive type are much more efficient since they don't involve boxing; and assignments
into such an array need not check for an array store exception, because primitive types
don't have subtypes. And despite the check for array store exceptions, even arrays of
reference type may be more efficient than collection classes with the current generation of
compilers, so you may want to use arrays in crucial inner loops. As always, you should
measure performance to justify such a design, especially since future compilers may
optimize collection classes specially. Finally, in some cases arrays may be preferable for
reasons of compatibility.

To summarize, it is better to detect errors at compile time rather than run time, but Java
arrays are forced to detect certain errors at run time by the decision to make array
subtyping covariant. Was this a good decision? Before the advent of generics, it was
absolutely necessary. For instance, look at the following methods, which are used to sort
any array or to fill an array with a given value:

public static void sort(Object[] a);
public static void fill(Object[] a, Object val);

Thanks to covariance, these methods can be used to sort or fill arrays of any reference type.
Without covariance and without generics, there would be no way to declare methods that
apply for all types. However, now that we have generics, covariant arrays are no longer
necessary. Now we can give the methods the following signatures, directly stating that they
work for all types:

public static <T> void sort(T[] a);
public static <T> void fill(T[] a, T val);

In some sense, covariant arrays are an artifact of the lack of generics in earlier versions of
Java. Once you have generics, covariant arrays are probably the wrong design choice, and
the only reason for retaining them is backward compatibility.

Sections 6.4–6.8 discuss inconvenient interactions between generics and arrays. For many
purposes, it may be sensible to consider arrays a deprecated type. We return to this point
in Section 6.9.

Chapter 2. Subtyping and Wildcards Page 11 Return to Table of Contents

Chapter 2. Subtyping and Wildcards
Java Generics and Collections By Philip Wadler, Maurice Naftalin ISBN: 0596527756
Publisher: O'Reilly

Prepared for Mitchell Edelman, Safari ID: mitchell.j.edelman@ssa.gov

Print Publication Date: 2006/10/01 User number: 408741 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596527756/javagenerics-CHP-6-SECT-4#javagenerics-CHP-6-SECT-4
http://safari.oreilly.com/0596527756/javagenerics-CHP-6-SECT-8#javagenerics-CHP-6-SECT-8
http://safari.oreilly.com/0596527756/javagenerics-CHP-6-SECT-9#javagenerics-CHP-6-SECT-9

2.6. Wildcards Versus Type Parameters

The contains method checks whether a collection contains a given object, and its
generalization, containsAll, checks whether a collection contains every element of
another collection. This section presents two alternate approaches to giving generic
signatures for these methods. The first approach uses wildcards and is the one used in the
Java Collections Framework. The second approach uses type parameters and is often a
more appropriate alternative.

Wildcards Here are the types that the methods have in Java with generics:

interface Collection<E> {
 ...
 public boolean contains(Object o);
 public boolean containsAll(Collection<?> c);
 ...
}

The first method does not use generics at all! The second method is our first sight of an
important abbreviation. The type Collection<?> stands for:

Collection<? extends Object>

Extending Object is one of the most common uses of wildcards, so it makes sense to
provide a short form for writing it.

These methods let us test for membership and containment:

Object obj = "one";
List<Object> objs = Arrays.<Object>asList("one", 2, 3.14, 4);
List<Integer> ints = Arrays.asList(2, 4);
assert objs.contains(obj);
assert objs.containsAll(ints);
assert !ints.contains(obj);
assert !ints.containsAll(objs);

The given list of objects contains both the string "one" and the given list of integers, but
the given list of integers does not contain the string "one", nor does it contain the given
list of objects.

The tests ints.contains(obj) and ints.containsAll(objs) might seem silly. Of
course, a list of integers won't contain an arbitrary object, such as the string "one". But
it is permitted because sometimes such tests might succeed:

Chapter 2. Subtyping and Wildcards Page 12 Return to Table of Contents

Chapter 2. Subtyping and Wildcards
Java Generics and Collections By Philip Wadler, Maurice Naftalin ISBN: 0596527756
Publisher: O'Reilly

Prepared for Mitchell Edelman, Safari ID: mitchell.j.edelman@ssa.gov

Print Publication Date: 2006/10/01 User number: 408741 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Object obj = 1;
List<Object> objs = Arrays.<Object>asList(1, 3);
List<Integer> ints = Arrays.asList(1, 2, 3, 4);
assert ints.contains(obj);
assert ints.containsAll(objs);

In this case, the object may be contained in the list of integers because it happens to be an
integer, and the list of objects may be contained within the list of integers because every
object in the list happens to be an integer.

Type Parameters You might reasonably choose an alternative design for collections—a
design in which you can only test containment for subtypes of the element type:

interface MyCollection<E> { // alternative design
 ...
 public boolean contains(E o);
 public boolean containsAll(Collection<? extends E> c);
 ...
}

Say we have a class MyList that implements MyCollection. Now the tests are legal only
one way around:

Object obj = "one";
MyList<Object> objs = MyList.<Object>asList("one", 2, 3.14, 4);
MyList<Integer> ints = MyList.asList(2, 4);
assert objs.contains(obj);
assert objs.containsAll(ints)
assert !ints.contains(obj); // compile-time error
assert !ints.containsAll(objs); // compile-time error

The last two tests are illegal, because the type declarations require that we can only test
whether a list contains an element of a subtype of that list. So we can check whether a list
of objects contains a list of integers, but not the other way around.

Which of the two styles is better is a matter of taste. The first permits more tests, and the
second catches more errors at compile time (while also ruling out some sensible tests).
The designers of the Java libraries chose the first, more liberal, alternative, because
someone using the Collections Framework before generics might well have written a test
such as ints.containsAll(objs), and that person would want that test to remain
valid after generics were added to Java. However, when designing a new generic library,
such as MyCollection, when backward compatibility is less important, the design that
catches more errors at compile time might make more sense.

Arguably, the library designers made the wrong choice. Only rarely will a test such as
ints.containsAll(objs) be required, and such a test can still be permitted by
declaring ints to have type List<Object> rather than type List<Integer>. It might

Chapter 2. Subtyping and Wildcards Page 13 Return to Table of Contents

Chapter 2. Subtyping and Wildcards
Java Generics and Collections By Philip Wadler, Maurice Naftalin ISBN: 0596527756
Publisher: O'Reilly

Prepared for Mitchell Edelman, Safari ID: mitchell.j.edelman@ssa.gov

Print Publication Date: 2006/10/01 User number: 408741 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

have been better to catch more errors in the common case rather than to permit more-
precise typing in an uncommon case.

The same design choice applies to other methods that contain Object or Collection<?
> in their signature, such as remove, removeAll, and retainAll.

2.7. Wildcard Capture

When a generic method is invoked, the type parameter may be chosen to match the
unknown type represented by a wildcard. This is called wildcard capture.

Consider the method reverse in the convenience class java.util.Collections,
which accepts a list of any type and reverses it. It can be given either of the following two
signatures, which are equivalent:

public static void reverse(List<?> list);
public static void <T> reverse(List<T> list);

The wildcard signature is slightly shorter and clearer, and is the one used in the library.

If you use the second signature, it is easy to implement the method:

public static void <T> reverse(List<T> list) {
 List<T> tmp = new ArrayList<T>(list);
 for (int i = 0; i < list.size(); i++) {
 list.set(i, tmp.get(list.size()-i-1));
 }
}

This copies the argument into a temporary list, and then writes from the copy back into
the original in reverse order.

If you try to use the first signature with a similar method body, it won't work:

public static void reverse(List<?> list) {
 List<Object> tmp = new ArrayList<Object>(list);
 for (int i = 0; i < list.size(); i++) {
 list.set(i, tmp.get(list.size()-i-1)); // compile-time error
 }
}

Now it is not legal to write from the copy back into the original, because we are trying to
write from a list of objects into a list of unknown type. Replacing List<Object> with
List<?> won't fix the problem, because now we have two lists with (possibly different)
unknown element types.

Chapter 2. Subtyping and Wildcards Page 14 Return to Table of Contents

Chapter 2. Subtyping and Wildcards
Java Generics and Collections By Philip Wadler, Maurice Naftalin ISBN: 0596527756
Publisher: O'Reilly

Prepared for Mitchell Edelman, Safari ID: mitchell.j.edelman@ssa.gov

Print Publication Date: 2006/10/01 User number: 408741 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Instead, you can implement the method with the first signature by implementing a private
method with the second signature, and calling the second from the first:

public static void reverse(List<?> list) { rev(list); }
private static <T> void rev(List<T> list) {
 List<T> tmp = new ArrayList<T>(list);
 for (int i = 0; i < list.size(); i++) {
 list.set(i, tmp.get(list.size()-i-1));
 }
}

Here we say that the type variable T has captured the wildcard. This is a generally useful
technique when dealing with wildcards, and it is worth knowing.

Another reason to know about wildcard capture is that it can show up in error messages,
even if you don't use the above technique. In general, each occurrence of a wildcard is taken
to stand for some unknown type. If the compiler prints an error message containing this
type, it is referred to as capture of ?. For instance, with Sun's current compiler, the
incorrect version of reverse generates the following error message:

Capture.java:6: set(int,capture of ?) in java.util.List<capture of ?>
cannot be applied to (int,java.lang.Object)
 list.set(i, tmp.get(list.size()-i-1));
 ^

Hence, if you see the quizzical phrase capture of ? in an error message, it will come
from a wildcard type. Even if there are two distinct wildcards, the compiler will print the
type associated with each as capture of ?. Bounded wildcards generate names that are
even more long-winded, such as capture of ? extends Number.

2.8. Restrictions on Wildcards

Wildcards may not appear at the top level in class instance creation expressions (new), in
explicit type parameters in generic method calls, or in supertypes (extends and
implements).

Instance Creation In a class instance creation expression, if the type is a parameterized
type, then none of the type parameters may be wildcards. For example, the following are
illegal:

List<?> list = new ArrayList<?>(); // compile-time error
Map<String, ? extends Number> map
 = new HashMap<String, ? extends Number>(); // compile-time error

Chapter 2. Subtyping and Wildcards Page 15 Return to Table of Contents

Chapter 2. Subtyping and Wildcards
Java Generics and Collections By Philip Wadler, Maurice Naftalin ISBN: 0596527756
Publisher: O'Reilly

Prepared for Mitchell Edelman, Safari ID: mitchell.j.edelman@ssa.gov

Print Publication Date: 2006/10/01 User number: 408741 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This is usually not a hardship. The Get and Put Principle tells us that if a structure contains
a wildcard, we should only get values out of it (if it is an extends wildcard) or only put
values into it (if it is a super wildcard). For a structure to be useful, we must do both.
Therefore, we usually create a structure at a precise type, even if we use wildcard types to
put values into or get values from the structure, as in the following example:

List<Number> nums = new ArrayList<Number>();
List<? super Number> sink = nums;
List<? extends Number> source = nums;
for (int i=0; i<10; i++) sink.add(i);
double sum=0; for (Number num : source) sum+=num.doubleValue();

Here wildcards appear in the second and third lines, but not in the first line that creates
the list.

Only top-level parameters in instance creation are prohibited from containing wildcards.
Nested wildcards are permitted. Hence, the following is legal:

List<List<?>> lists = new ArrayList<List<?>>();
lists.add(Arrays.asList(1,2,3));
lists.add(Arrays.asList("four","five"));
assert lists.toString().equals("[[1, 2, 3], [four, five]]");

Even though the list of lists is created at a wildcard type, each individual list within it has
a specific type: the first is a list of integers and the second is a list of strings. The wildcard
type prohibits us from extracting elements from the inner lists at any type other than
Object, but since that is the type used by toString, this code is well typed.

One way to remember the restriction is that the relationship between wildcards and
ordinary types is similar to the relationship between interfaces and classes—wildcards and
interfaces are more general, ordinary types and classes are more specific, and instance
creation requires the more specific information. Consider the following three statements:

List<?> list = new ArrayList<Object>(); // ok
List<?> list = new List<Object>() // compile-time error
List<?> list = new ArrayList<?>() // compile-time error

The first is legal; the second is illegal because an instance creation expression requires a
class, not an interface; and the third is illegal because an instance creation expression
requires an ordinary type, not a wildcard.

You might wonder why this restriction is necessary. The Java designers had in mind that
every wildcard type is shorthand for some ordinary type, so they believed that ultimately
every object should be created with an ordinary type. It is not clear whether this restriction
is necessary, but it is unlikely to be a problem. (We tried hard to contrive a situation in
which it was a problem, and we failed!)

Chapter 2. Subtyping and Wildcards Page 16 Return to Table of Contents

Chapter 2. Subtyping and Wildcards
Java Generics and Collections By Philip Wadler, Maurice Naftalin ISBN: 0596527756
Publisher: O'Reilly

Prepared for Mitchell Edelman, Safari ID: mitchell.j.edelman@ssa.gov

Print Publication Date: 2006/10/01 User number: 408741 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Generic Method Calls If a generic method call includes explicit type parameters, those
type parameters must not be wildcards. For example, say we have the following generic
method:

class Lists {
 public static <T> List<T> factory() { return new ArrayList<T>(); }
}

You may choose for the type parameters to be inferred, or you may pass an explicit type
parameter. Both of the following are legal:

List<?> list = Lists.factory();
List<?> list = Lists.<Object>factory();

If an explicit type parameter is passed, it must not be a wildcard:

List<?> list = Lists.<?>factory(); // compile-time error

As before, nested wildcards are permitted:

List<List<?>> = Lists.<List<?>>factory(); // ok

The motivation for this restriction is similar to the previous one. Again, it is not clear
whether it is necessary, but it is unlikely to be a problem.

Supertypes When a class instance is created, it invokes the initializer for its supertype.
Hence, any restriction that applies to instance creation must also apply to supertypes. In
a class declaration, if the supertype or any superinterface has type parameters, these types
must not be wildcards.

For example, this declaration is illegal:

class AnyList extends ArrayList<?> {...} // compile-time error

And so is this:

class AnotherList implements List<?> {...} // compile-time error

But, as before, nested wildcards are permitted:

class NestedList implements ArrayList<List<?>> {...} // ok

The motivation for this restriction is similar to the previous two. As before, it is not clear
whether it is necessary, but it is unlikely to be a problem.

Chapter 2. Subtyping and Wildcards Page 17 Return to Table of Contents

Chapter 2. Subtyping and Wildcards
Java Generics and Collections By Philip Wadler, Maurice Naftalin ISBN: 0596527756
Publisher: O'Reilly

Prepared for Mitchell Edelman, Safari ID: mitchell.j.edelman@ssa.gov

Print Publication Date: 2006/10/01 User number: 408741 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Subtyping and Wildcards
	Subtyping and the Substitution Principle
	Wildcards with extends
	Wildcards with super
	The Get and Put Principle
	Arrays
	Wildcards Versus Type Parameters
	Wildcard Capture
	Restrictions on Wildcards

