
Middleware: Past and Present a Comparison

Hennadiy Pinus

ABSTRACT
The construction of distributed systems is a difficult task
for programmers, which can be simplified with the use of
middleware. Middleware can be seen as a layer between ap-
plications and operating systems. There are four main types
of middleware: transactional, message-oriented, procedural
and object-oriented middleware. The first three types of
middleware can be seen as a past and the last one as a
present middleware. The variety of middleware types leads
to a choice problem for the software developers. In order to
solve it, we research the classification of the middleware, pro
and contra of each middleware type. This review is based on
analyzing of middleware through the following requirements,
proposed by [9]: network communication, coordination, re-
liability, scalability and heterogeneity. During this paper
we try to find out, how good the middleware types support
these requirements.

Keywords
RPC, MOM, marshalling, TP, middleware

1. INTRODUCTION
Nowadays a great number of transactions is realized via in-
ternet and networks. The ”networks were introduced to
connect PCs, workstations and mainframes, and there was
a strong technical drive from the software and computer
industry towards distributed computing.” (see [8], p.1) Dis-
tributed system(DS) is ”a computer system, where compo-
nents of the system are held on physically separated, au-
tonomous computers.” (see [14], p.1) These computers are
connected by a communication network, which enables the
integration of components. The time available for an in-
tegration of the components is often too short, that’s why
DS seems to be a better choice than building a new sys-
tem. The integrated components may include existing or
old components (legacy components). However, it is con-
siderably more difficult to construct a DS, than to build a
centralized or completely new system. In a DS components

have to communicate with each other on the multiple points
via a network, thus increasing the likelihood of errors. The
solution of the component integration into a DS can be found
by using middleware [9, 14].
This paper is structured in the following way. At first we
discuss the definition of the middleware (Section 2). Then
we define the requirements that middleware has to support
(Section 3). The classification of middleware is presented as
next. For each type of the middleware we analyze, how it ful-
fils the requirements (Section 4). At the end of the work we
make comparative conclusions concerning middleware types
(Section 5).

2. WHAT IS MIDDLEWARE?
The term middleware first appeared in the late 1980s. It was
used to describe network connection management software.
In the middle 1990s, when network technology had achieved
sufficient penetration and visibility, it found its widespread
[4]. There are many definitions of middleware found in liter-
ature. In common, middleware can be defined as a software
layer located above the OS and networking software and
below applications. (see Figure 1) Middleware enables the

Figure 1: Middleware in Distributed System, taken
from [7], p. 89

interaction and communication between different applica-
tions through Application Programming Interfaces (APIs)
across the distributed components [7, 8, 13]. API ”is the
interface by which an application program accesses operat-
ing system and other services”. (see [1]) Middleware can be
seen as a common development and runtime environment

1



that enables the connection of components written in dif-
ferent languages and running on different operating systems
[14]. The goal of middleware is to simplify the construc-
tion of the DS, where the application engineers can ”ab-
stract from the implementation of low-level details, such as
concurrency control, transaction management and network
communication.” (see [9], p.120) Due to middleware devel-
opers can concentrate on application requirements.

3. MIDDLEWARE REQUIREMENTS
The following requirements were proposed by [9]: network
communication, coordination, reliability, scalability and het-
erogeneity.
Network Communication: Distributed systems need a
network communication, because the components are lo-
cated on different hosts. The network communication is
based on network protocols. The communication requires
the transformation of the complex data structures into a
suitable format, which can be transmitted using transport
protocols. These transformations are called marshalling (com-
ponent requesting service passes parameters to a message
request) and unmarshalling. To enable automatical (un-)
marshalling it is required, that all data involved in a request
have to be described. It can be done with an Interface Def-
inition Language (IDL) [4, 9].
Coordination: Coordination is required to control mul-
tiple communication points, which exist in distributed sys-
tems. There are several mechanisms, which can influence co-
ordination of the components in distributed system. These
include synchronization and activation (deactivation) poli-
cies. Synchronization is useful during the communication of
the concurrent components on the same host. There are sev-
eral ways to achieve synchronization. The one way, where
a component is blocked till the other component completes
execution of a requested service, is called synchronous. If
the component that asks some service from another com-
ponent remains unblocked and can continue to perform its
operations, then this way is called deferred synchronous (if
service request was initiated by client) or asynchronous (if
initiated by server). Other coordination mechanisms are
activation and deactivation policies. Activation (deactiva-
tion) allows to start (end) a component independently from
the applications, which it executes. One of the reasons to
use these policies is that ”components may be idle for long
periods, thus wasting resources if they were kept in virtual
memory all the time.” (see [9], p.121) The middleware needs
to support mechanisms called threading policies in order to
control, how the server reacts on the concurrent requests [9].
Reliability: There are several types of reliability proposed
in the literature: best effort, at-most-once, at least-once and
exactly-once. ”Best effort service requests do not give any
assurance about the execution of the request. At-most-once
requests are guaranteed to execute only once. It may hap-
pen that they are not executed, but then the requester is
notified about the failure. At-least-once service requests are
guaranteed to be executed, possibly more than once. The
highest degree of reliability is provided by exactly-once re-
quests, which are guaranteed to be executed once and only
once.” (see [9], p.121) The usage of the definite network
protocol can also influence reliability, because different pro-
tocols have different reliability levels. Distributed system
implementations need to include error detection and correc-
tion mechanisms to liquidate the unreliabilities caused by

errors. If some components in the system are not available,
then the reliability of the system suffers. The increase of the
reliability in such situation is possible, if using a replica com-
ponent. Therefore, replication of the components increases
reliability. The programmers, however, need to know that
increase of performance decreases reliability. It is a trade-off
problem [9].
Scalability: Scalability defines, how well a hardware or a
software system can adapt to increased demands [2]. The
limited scalability in centralized systems can be overcome by
DSs. The main task is to provide the changes in DS with-
out changing its architecture or design. In order to achieve
this task, it is desired that middleware respects different
dimensions of transparency specified by the ISO Open Dis-
tributed Processing (ODP) reference model. For example,
access transparency means that a component can access the
services of the remote component, as if it were local. Loca-
tion transparency means that the components are not aware
of the physical location of the interacted components. Mi-
gration transparency allows components to change their lo-
cation, which is not seen for a client requesting these com-
ponents. Replication transparency means that requesting
components don’t care about the place of the needed ser-
vice. It can either be main component or its replica. Load
balancing, where requests are forwarded to a replica in order
to release a loaded server, can use replication mechanisms.
Hence, ”components whose services are in high demand may
have to exist in multiple copies.” (see [9], p.122) A scalable
system middleware needs to support access, location, migra-
tion and replication transparency [9].
Heterogeneity: Heterogeneity is the quality of being di-
verse and not comparable in kind [1]. The components of
distributed systems can be of different types (legacy or new
components) and written in different languages. For exam-
ple, legacy components ”tend to be written in imperative
languages, such as COBOL, PL/I or C, newer components
are often implemented using object-oriented programming
languages.” (see [9], p.122) There are different dimensions
of heterogeneity in DSs: ”hardware and operating system
platforms, programming languages and indeed the middle-
ware itself.” (see [9], p.122) These differences need to be
resolved by the middleware.
In the next section we’ll see, how good the different middle-
ware types support the defined requirements.

4. MIDDLEWARE CLASSIFICATION
In the literature one can found four main types of mid-
dleware. These are: transactional, procedural, message-
oriented and object-oriented middleware [5, 6, 9, 14]. The
first three types of middleware can be seen as a past and the
last one as a present middleware.

4.1 Transactional Middleware (TM)
Transactional middleware(TM) or transaction processing (TP)
monitors were designed in order to support distributed syn-
chronous transactions. The main function of a TP monitor
is a coordination of requests between clients and servers that
can process this requests. Request is a ”message that asks
the system to execute a transaction.” (see [16], p.94) TM
uses clustering (”a grouping of a number of similar things”
[1]) of the service requests into transactions. ”A transac-
tion must support ACID properties - Atomic, Consistent,
Isolated, and Durable. Atomic means ”all or nothing” qual-

2



ity of transactions. The transaction either completes or it
does not. Consistency should hold the system in a consis-
tent state, independent of the status of a transaction. Iso-
lation is ability of one transaction to work independently
from other transactions that possibly run on the same TP
monitor. Durability means the ability of a transaction to
survive system failures, if a transaction is once committed
and complete .” (see [11], p.2)
Typical products: IBM’s CICS, BEA’s Tuxedo, Transarc’s
Encina [9].
Network Communication: Client and server components
can reside on different hosts and therefore requests are trans-
ported via the network in a way that is transparent to client
and server components [9].
Coordination: TP monitors can coordinate the distributed
transactions through the two-phase commit protocol (2PC).
This protocol is based on the ”prepare to commit phase”
and the ”commit phase” [3]. Both, synchronous and asyn-
chronous communication are supported by TM. The client
components can request services using these communication
types. TM has a support for various activation policies and
services that can be activated and deactivated on demand,
if they haven’t been used for some time. The server com-
ponents can always reside in memory, hence enabling a per-
sistent activation. Many TP monitors support failover and
possess restart capabilities, thus increasing application up
time [4, 9].
Reliability: TM requires the 2PC to implement distributed
transactions. The transaction can be committed, only if all
processes involved in a transaction are ready to commit,
otherwise the transaction is aborted [3, 9, 16]. TP mon-
itors use transactions logs, which can undo changes [17].
The Failure/recovery service, which is supported by most
TP monitors, increases fault-tolerance and reliability conse-
quently. Message queues are also supported by TM, thus
enabling reliability, when disk storage is used for queues.
TM also supports database management systems (DBMS),
which guarantee fault-tolerance [9, 17].
Scalability: TP monitors are rather scalable, because they
support load balancing and replication of server compo-
nents. Load balancing is important, because TP monitors
have to cope with a lot of transactions in a limited time [9,
17]. ”In order to sustain consistent response times, TP mon-
itors are capable of starting additional process instances.
This is an important feature for any enterprise environment
that needs to have ensured scalability.” (see [4], p. 11)
Heterogeneity: The heterogeneity support is realized on
different levels. TM supports soft- and hardware hetero-
geneity, because the components can be located on different
hardware and operating system platforms. TM, as men-
tioned above, has a DBMS support. DBMS components
can participate in transactions due to the Distributed Trans-
action Processing (DTP) Protocol, adopted by the Open
Group. But TM doesn’t support data heterogeneity very
well, because it can’t express complex data structures and
therefore can’t marshall these structures [9].
Advantages: 1. Components are kept in consistent states
(due to ACID properties of transaction) 2. TM is very reli-
able. 3. TP monitors perform better than message-oriented
and procedural middleware. 4. TP monitors can dispatch,
schedule and prioritize multiple application requests con-
currently, thus reducing CPU overhead, response times and
CPU cost for large applications [4, 9, 13].

Disadvantages: 1. TM has often unnecessary or undesir-
able guarantees according to ACID. ”If a client is performing
long-lived activities, then transactions could prevent other
clients from being able to continue.” (see [14], p.3) 2. Mar-
shalling and unmarshalling have to be done manually in
many products 3. The lack of common standard for defining
the services that server components offer reduces the porta-
bility of a DS between different TP monitors . 4. TM runs
on less amount of platforms (only UNIX and NT server)
than other middleware types [4, 9, 14].
Where to use: TP monitors should be used, when ”trans-
actions need to be coordinated and synchronized over mul-
tiple databases.” (see [5], p.5)

4.2 Message-oriented Middleware (MOM)
Message Oriented Middleware (MOM) is a middleware, that
enables a communication through messages. According to
[5] there are two different types of MOM: message queuing
and message passing. Message queuing is defined as indirect
communication model, where communication happens via a
queue. Message from one program is sent to a specific queue,
identified by name. After the message is stored in queue, it
will be sent to a receiver. In message passing - a direct com-
munication model - the information is sent to the interested
parties. One flavor of message passing is publish-subscribe
(pub/sub) middleware model. In pub/sub clients have the
ability to subscribe to the interested subjects. After sub-
scribing, the client will receive any message corresponding
to a subscribed topic [5, 8, 10].
Typical products: IBM’s MQSeries, Sun’s Java Message
Queue [9].
Network Communication: Network communication in
MOM is based on messages. ”Messages are strings of bytes
that have meaning to the applications that exchange them.
Besides application related data, messages might include
control data relevant to the message queuing system only.
This information is used to store, route, deliver, retrieve and
track the payload data.” (see [4], p.6) After receiving a mes-
sage from a component, server replies with a message, which
contains the results of the service execution. In comparison
to RPCs, most messaging products have a good support for
many additional communication protocols [4, 9].
Coordination: MOM supports both synchronous (via mes-
sage passing) and asynchronous (via message queuing) com-
munication. Asynchronous communication is achieved in
the natural way. The message is sent to a server, with-
out blocking a client. The client does not need to wait for a
reply and can proceed with other actions. However, the syn-
chronous communication needs to be implemented manually
in the client. MOM supports the activation on demand. It
is realized with triggers, ”where an application program is
started whenever a request message or a reply message has
arrived on a local queue, and the application program is not
already active.” (see [4], p.8) It decreases the use of resources
[4, 9, 14].
Reliability: MOM can be seen as fault tolerant, because it
can use persistent queues, which are stored on the hard disc.
This type of queue ”is most appropriate where applications
cannot be connected directly (for example, in mobile com-
puting).” (see [5], p.6-7) Message queues are of two types:
persistent and non-persistent and are managed by the queue
manager. If server fails, it is guaranteed in the former case,
that information will be restored after server restarts. Per-

3



sistent queues are to choose when the reliability is more im-
portant than performance, like in banking fund transfer. To
increase reliability message queuing supports different Qual-
ity of Service (QoS) [4, 5, 9]. These QoS are defined in [4]
as: ”1. Reliable message delivery - during exchange of mes-
sages no network packets are lost. 2. Guaranteed message
delivery - messages are delivered to the destination node ei-
ther immediately (with no latency - network is available), or
eventually (with latency - when the network is unavailable).
In the latter case, middleware guarantees that messages are
delivered as long as the network becomes available within
a specified time period. 3. Assured, non-duplicate message
delivery - if the messages are delivered, they are delivered
only once.” (see [4], p.8)
Scalability: ”The publish-subscribe communications model
provides location transparency, allowing a program to send
the message with a subject as the destination property while
the middleware routes the message to all programs that have
subscribed to that subject.” (see [5], p.7) Although location
transparency is supported, MOMs have a limited support
for access transparency. It happens, because queues are
used for remote and not for local communication. If ac-
cess transparency doesn’t exist, it leads to a lack of migra-
tion and replication transparency, thus complicating scal-
ability. ”Moreover, queues need to be set up by adminis-
trators and the use of queues is hard-coded in both client
and server components, which leads to rather inflexible and
poorly adaptable architectures.” (see [9], p.123)
Heterogeneity: The support of data heterogeneity is rather
limited, because marshalling is not automatically generated,
and needs to be implemented by programmers [9].
Advantages: 1. MOM supports group communication,
which is atomic. Either all clients receive a delivery or none.
That’s why a process doesn’t have to worry about what to
do, if some clients don’t receive a message. 2. The use of
persistent queues increases reliability in MOM products. 3.
Support for transactional message queues is included in most
MOM products, meaning that advanced delivery guarantees
are supported. 4. MOM supports more network protocols
than RPCs do [10, 16]. 5. MOM can send the message
exactly-once due to QoS, thus increasing it’s reliability.
Disadvantages: 1. MOM has limited scalability and het-
erogeneity support [9]. 2. There is a bad portability sup-
port, because MOM products don’t support any standards.
Applications that are made for one MOM product are not
compatible to another MOM product [4].
Where to use: MOM can be used in the applications,
where the network or all-components availability is not war-
ranted [4].

4.3 Procedural Middleware (PM)
Remote Procedure Calls (RPCs) were developed by Sun Mi-
crosystems in the early 1980s. RPCs are represented on
different operating systems, including most Unix and MS
Windows systems. ”Windows NT, for example, supports
lightweight RPCs across processes and, with DCOM, full
RPCs.” (see [15], p.172)
Typical products: Open Software Foundation’s Distributed
Computing Environment DCE, Microsoft RPC Facility [9].
Network Communication: RPCs define server compo-
nents as RPC programs. An RPC program contains param-
eterized procedures. Remote clients can invoke these proce-
dures across the network using the network protocols. These

protocols are low-level, such as Transmission Control Proto-
col/Internet Protocol (TCP/IP) or User Datagram Protocol
(UDP). The communication happens in the following way.
If a client wants to receive some services, then it makes a re-
quest to a server. This request consists of a message, which
includes the marshalled parameters. On the other side, the
server receives this message, unmarshalls the parameters,
executes the requested service and sends the result back to
the client [9, 13]. ”In order to connect the client and server
components of a distributed application using RPCs as the
middleware link, it is required that every function that a
client application can call should be represented by a stub,
i.e. a placeholder, for the real function on the server.” (see
[4], p.5) We can note, that RPC is the category of mid-
dleware, where marshalling and unmarshalling are imple-
mented automatically by the IDL compiler in stubs, hence
making the life easier for developers [9, 13, 14].
Coordination: ”Typical RPC-based communication is syn-
chronous, i.e., an RPC client is blocked until the remote pro-
cedure has been executed or an error occurs.” (see [10], p.19)
RPCs don’t support asynchronous communication. Proce-
dural middleware provides different forms of activation poli-
cies. These include activation of RPC on demand and ”RPC
is always available”.
Reliability: Procedural middleware possesses an at-most
once reliability. If RPC fails, then an exception is returned.
RPCs’ communication, based on TCP/IP protocol, can be
seen as reliable, because TCP/IP provides reliability [9, 12,
14]. ”An application that uses TCP knows that data it
sends is received at the other end, and that it is received
correctly.” (see [12], p.16)
Scalability: The scalability of RPCs remains rather lim-
ited, because RPCs lack replication mechanisms. As men-
tioned above the communication is based on stubs, which
provide location transparency of the requested service to the
client. It means, that client can invoke a remote procedure
as if it were local [10]. As we know from the requirements
section location transparency is a prerequisite to scalability
[9].
Heterogeneity: The heterogeneity in RPCs is realized via
IDL. It can define interfaces that represent relations between
servers and clients. IDL is programming language indepen-
dent, which means that client doesn’t need to know the lan-
guage that server supports, if IDL compiler can translate
the client’s request to a server [4].
Advantages: 1. RPC has a good heterogeneity support,
because ”RPC has bindings for multiple operating systems
and programming languages.” (see [14], p.3) 2. Marshalling
and unmarshalling are automatically generated, thus sim-
plifying the development of DSs [14].
Disadvantages: 1. RPCs don’t support group communica-
tion [16]. 2. They have no direct support for asynchronous
communication, replication and load balancing, therefore
leading to a limited scalability. 3. Fault tolerance is worse
than by other middleware types, because ”many possible
faults have to be caught and dealt with in the program.”
(see [14], p.4)
Where to use: According to [5], RPCs could be used
in small, simple applications with primarily point-to-point
communication. ”RPCs are not a good choice to use as the
building blocks for enterprise-wide applications where high
performance and high reliability are needed.” (see [5], p.6)

4



4.4 Object-oriented Middleware (OOM)
Object middleware, evolved from RPCs, extends them by
adding object-oriented concepts. These concepts are: inher-
itance, object references and exceptions. OOM allows ref-
erencing of remote objects and can call operations on them
[9, 10, 14].
Typical products: OMG’s CORBA, Microsoft COM, Java
RMI and Enterprise Java Beans [5, 9, 10].
Network Communication: Object middleware supports
distributed object requests. It is possible for a client to re-
quest an operation on a server object on the other host. The
one thing required for a client is a reference to the server ob-
ject. Marshalling of the parameters for the network request
is made automatically in the client and server stubs [9].
Coordination: OOM generally supports a synchronous
communication. The client object remains blocked, wait-
ing for the server object response. It doesn’t mean that
other synchronization types are not supported. ”CORBA
3.0, for example, supports both deferred synchronous and
asynchronous object requests.” (see [9], p.125) OOM sup-
ports different activation and threading policies. In OOM
server objects can be active all the time or started on de-
mand. CORBA Concurrency Service enables threading and
coordinates the concurrent access to shared resources. It
also guarantees the consistency of the object, if it is ac-
cessed by multiple clients [4, 9, 13]. One should mention
that CORBA ”supports group communication through its
Event and Notification services.” (see [9], p.125)
Reliability: At most once reliability is set by default in
OOM. To handle failures during component requests OOM
uses exceptions. Noticeable is the fact that due to CORBA
messaging exactly-once reliability can be achieved. Fault-
Tolerant CORBA, for example, provides extra reliability in
DS [9, 10, 14].
Scalability: Scalability remains limited. Some CORBA
implementations support load-balancing. Enterprise Java
Beans have a replication support, which increases the scal-
ability [9].
Heterogeneity: OOM has a wide support for heterogene-
ity. For example, ”CORBA and COM both have multiple
programming language bindings so that client and server
objects do not need to be written in the same programming
language.” (see [9], p.123) Java/RMI resolves the hetero-
geneity with its Java Virtual Machine [9].
Advantages: 1. Marshalling and unmarshalling are gener-
ated automatically in client and server stubs. 2. OOM sup-
ports both synchronous and asynchronous communication.
3. Most OOM products have a support for messaging and
transactions. Hence, OOM can replace other three types of
middleware in many different aspects. It makes OOM to a
powerful and flexible middleware type [10, 14].
Disadvantages: 1. Lack of scalability.
Where to use: OOM ”should be considered for applica-
tions where immediate scalability requirements are some-
what limited. These applications should be part of a long-
term strategy towards object orientation.” (see [4], p.22)

5. CONCLUSIONS
As we have seen, the variety of middleware types can be
used in different situations (see ”Where to use” subsections).
Some of them can be combined to achieve the needed re-
quirements. We can note, that all types of middleware
have a limited support for scalability. The most reliable

are TM and OOM. TP monitors perform better than MOM
and RPCs. RPCs and OOM support an automatical mar-
shalling, thus simplifying the network communication. Un-
like MOM and OOM, RPC and TM don’t support group
communication. The use of IDL in RPCs and OOM makes
them very heterogenous. Noticeable, that all types of mid-
dleware support the activation on demand, thus saving re-
sources. OOM integrates the benefits of TM, MOM and
RPCs and tends to replace them. At last, the choice of the
middleware depends on the task to realize.

6. REFERENCES
[1] http://www.hyperdictionary.com.

[2] http://www.webopedia.com.

[3] http://www.cs.panam.edu/∼meng/Course/CS6334/
Note/master/node88.html.

[4] Middleware white paper, 1997. http://web.cefriel.
it/∼alfonso/WebBook/Documents/isgmidware.pdf.

[5] Talarian: Everything you need to know about
middleware, 2000.
http://searchwebservices.techtarget.com/

searchWebServices/downloads/Talarian.pdf.

[6] D. E. Bakken. Middleware. http://www.eecs.wsu.
edu/∼bakken/middleware-article-bakken.pdf.

[7] P. A. Bernstein. Middleware: a model for distributed
system services. Communications of the ACM, pages
86 – 98, 1996.

[8] R. P. Bob Hulsebosch, Wouter Teeuw. Middleware
tintel state-of-the-art deliverable. 1999.

[9] W. Emmerich. Software engineering and middleware:
A roadmap. Communications of the ACM, pages 117 –
129, 2000.

[10] C. Hartwich. A middleware architecture for
transactional, object-oriented applications, 2003.
http://page.mi.fu-berlin.de/∼hartwich/
diss-final.pdf.

[11] D. S. Linthicum. Application servers an eai. eAI
Journal, July/August 2000.

[12] J. Moss. Understanding tcp/ip. PC Network Advisor,
1997.

[13] J. M. Myerson. The Complete Book of Middleware.
Auerbach Publications, 2002.

[14] R. Nunn. Distributed software architectures using
middleware. http://www.cs.ucl.ac.uk/staff/W.
Emmerich/lectures/3C05-02-03/aswe18-essay.pdf.

[15] C. Szyperski. Component Software. Addison Wesley,
1999.

[16] A. S. Tanenbaum. Distributed Operating Systems.
Prentice Hall, 1995.

[17] T. C. E. A. Workgroup. Middleware architecture
report:, 2001. http://www.vita.virginia.gov/docs/
ea/MiddlewareArchitectureV1-0-051801.pdf.

All URLs, mentioned in references, were last accessed on the
20.06.04.

5


