
Harvey Mudd College Math Tutorial:

Elementary Solution Methods for First-Order
ODEs

Consider the first-order ODE
y′ = f(t, y)

describing the evolution of y as a function of t. If we know initial conditions y(t0) = y0, two
questions immediately come to mind:

1. Does y′ = f(t, y), y(t0) = y0 have a solution?

2. If so, can we find a formula for the solution?

The first question is easily addressed:

Existence and Uniqueness Theorem

Suppose that f(t, y) and ∂f(t,y)
∂y

are continuous on a closed rectangle R

of the ty-plane. If (t0, y0) ∈ R, then the IVP

y′ = f(t, y), y(t0) = y0

has a unique solution y(t) on some t-interval containing t0.

The second question is much more difficult, and often we need to resort to numerical meth-
ods. However, in this tutorial we review four of the most commonly-used analytic solution
methods for first-order ODES.

Separating the Variables

If an ODE can be written in the form

∂y

∂t
=
g(t)

h(y)
,

then the ODE is said to be separable. In this case, a simple solution technique can be
derived as follows:

Suppose y = f(t) solves the ODE. Rewriting the ODE as h(y)y′ = g(t),
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∫
h(f(t))f ′(t) = g(t)

∫
h(f(t))f ′(t)dt =

∫
g(t)dt+ C

∫
h(y)dy =

∫
g(t)dt+ C

since y = f(t), y′ =
f ′(t)

Integrating with re-
spect to t on each
side.

since dy = f ′(t)dt

Upon integrating, we have our implicitly-defined general solution of the ODE, which we
can often solve explicitly for y(t).

Example

Let’s solve the separable ODE y′ = 4y
t

.
Separating the variables and integrating,∫ dy

4y
=

∫ dt

t
+ C1,

1

4
ln |y| = ln |t|+ C1,

1

4
ln |y| − ln |t| = C1

ln

∣∣∣∣∣y1/4

t

∣∣∣∣∣ = C1

e
ln

∣∣∣ y1/4

t

∣∣∣
= eC1∣∣∣∣∣y1/4

t

∣∣∣∣∣ = C2

y1/4 = C2t

y = ct4

Recall that
r ln a = ln arand
ln a− ln b = ln a

b
.

eln a = a.
Relabel eC1 as C2.

Relabel C4
2 as C.

The general solution, y = ct4, defines a family of solution curves corresponding to various
initial conditions.

View Solutions

Using an Integrating Factor to solve a Linear ODE

If a first-order ODE can be written in the normal linear form

y′ + p(t)y = q(t),
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the ODE can be solved using an integrating factor µ(t) = e
∫
p(t)dt:

µ(t)
[
y′ + p(t)y

]
= µ(t)q(t) Multiplying both sides of the

ODE by µ(t).

(µ(t)y)′ = µ(t)q(t)

(µ(t)y)′ = µ(t)y′ + µ′(t)y and
µ′(t) = p(t)µ(t) using the chain
rule to differentiate µ(t) =

e
∫
p(t)dt.

µ(t)y =
∫
µ(t)q(t)dt+ C Integrating each side with respect

to t.

Dividing through by µ(t), we have the general solution of the linear ODE.

Example

We can solve the linear ODE y′ − 2ty = t using an integrating facter. Here, p(t) = −2t and
q(t) = t, so

µ(t) = e
∫
−2tdt = e−t

2

Multiplying both sides of the ODE by µ(t),

e−t
2

(y′ − 2ty) = te−t
2

(e−t
2

y)′ = te−t
2

e−t
2

y = −1

2
e−t

2

+ C

y = Cet
2 − 1

2

You can verify that
(e−t

2
y)′ = e−t

2
(y′ − 2ty)

by using the Chain Rule
to differentiate e−t

2
y

Integrating each side
with respect to t.

Dividing through by
e−t

2
.

So the general solution of y′ − 2ty = t is y(t) = Cet
2 − 1

2
.

For practice, solve y′ = 4y
t

by putting it in normal linear form and using an integrating
factor. Verify that you get the same result as we did by separating the variables.

View Solutions

Using a Change of Variables

Often, a first-order ODE that is neither separable nor linear can be simplified to one of
these types by making a change of variables. Here are some important examples:

• Homogenous Equation of Order 0: dy
dx

= f(x, y) where f(kx, ky) = f(x, y).

images/odetut2.gif
http://www.math.hmc.edu/calculus/tutorials/odes/homogenous.pdf


Use the change of variables z = y
x

to convert the ODE to x dz
dx

= f(1, z)− z, which is
separable.

• Bernoulli Equation: dy
dt

+ p(t)y = q(t)yb (b 6= 0, 1).

Use the change of variables z = y1−b to convert the ODE to
dz
dt

+ (1− b)p(t)z = (1− b)q(t), which is linear.

• Riccati Equation: dy
dt

= a(t)y + b(t)y2 + F (t).

If one particular solution g(t) is known, use the change of variables z = 1
y−g to

convert the ODE to dz
dt

+ (a+ 2bg)z = −b, which is linear.

When using a change of variables, solve the transformed ODE and then return to the
original variables to obtain the general solution of the original ODE. Often, you will have
to leave your solution in implicit form.

Example

Let’s solve the ODE dy
dx

= y−x
x−4y

. To see that it is homogeneous of order 0, not that

f(kx, ky) =
ky − kx
kx− 4ky

=
y − x
x− 4y

= f(x, y)

Let z = y
x
. Then y = xz, so dy

dx
= x dz

dx
+ z. The ODE becomes

x
dz

dx
+ z =

xz − x
x− 4xz

x
dz

dx
+ z =

z − 1

1− 4z

x
dz

dx
=

4z2 − 1

1− 4z
,

which is separable. Separating the variables and integrating,

∫ 4z2 − 1

1− 4z
dz =

∫ 1

x
dx∫ (

−3/2

2z + 1
+
−1/2

2z − 1

)
dz =

∫ 1

x
dx

Using partial frac-
tions
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−3

4
ln |2z + 1| − 1

4
ln |2z − 1| = ln |x|+ C1

3 ln |2z + 1|+ ln |2z − 1| = −4 ln |x|+ C2

ln
∣∣∣(2z + 1)3(2z − 1)x4

∣∣∣ = C2

eln|(2z+1)3(2z−1)x4| = eC2∣∣∣(2z + 1)3(2z − 1)x4
∣∣∣ = C(

2
y

x
+ 1

)3 (
2
y

x
− 1

)
x4 = C

(2y + x)3(2y − x) = C

Multiplying through
by −4 and relabelling
−4C1 as C2.

Returning to the o-
riginal variables us-
ing z = y/x.

The general solution, (2y + x)3(2y − x) = C, is written implicitly.

View Solutions

Finding an Integral for an Exact Equation

An ODE N(x, y)y′ +M(x, y) = 0 is an exact equation if ∂N
∂x

= ∂M
∂y

in a region of the

xy-plane. If we can find a function H(x, y) for which ∂H
∂x

= M and ∂H
∂y

= N , then H(x, y) is

called an integral of the ODE and H(x, y) = C is the general solution of the original ODE.

To find H(x, y), note that

H(x, y) =
∫
M(x, y)dx+ g(y)

for some g(y) since ∂H
∂x

= M(x, y). To find g(y), calculate

∂H

∂y
=

∂

∂y

[∫
M(x, y)dx

]
+ g′(y)

and set it equal to N(x, y). Solve for g′(y) (which will be independent of x) and integrate
with respect to y to obtain g(y), and so H(x, y), explicitly. Notice that our solution
H(x, y) = C is written in implicit form. (Alternatively, we can start with
H(x, y) =

∫
N(x, y)dy + h(x) for some h(x) and proceed accordingly.)

Example

The ODE (2yx2 + 4) dy
dx

+ (2y2x− 3) = 0 is exact, since for N(x, y) = 2yx2 + 4 and
M(x, y) = 2y2x− 3,

∂N

∂x
= 4xy =

∂M

∂y
.
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Thus, there exists an integral H(x, y) for which

∂H

∂x
= 2y2x− 3 and

∂H

∂y
= 2yx2 + 4.

From the first of these,

H(x, y) =
∫ (

2y2x− 3
)
dx+ g(y)

H(x, y) = y2x2 − 3x+ g(y)

Then ∂H
∂y

= 2yx2 + g′(y) = 2yx2 + 4, so g′(y) = 4.

Integrating, g(y) = 4y, so H(x, y) = y2x2 − 3x+ 4y.

The general solution is given implicitly by

y2x2 − 3x+ 4y = C.

View Solutions

Key Concepts

• Separable ODES:

dy

dt
=
g(t)

h(y)

The general solution is given by inte-
grating

∫
h(y)dy =

∫
g(t)dt+ C

• Linear First-Order ODEs:

y′ + p(t)y = g(t)
Use an integrating factor e

∫
p(t)dt

• Homogeneous of Order Zero,
Benoulli Equation,
Riccati Equation

Use the appropriate change of variable
to convert the original ODE into either
a separable ODE or a linear ODE.

• Exact ODEs:

N(x, y)y′ +M(x, y) = 0,

where
∂N

∂x
=
∂M

∂y

Find H(x, y) such that ∂H
∂x

= M and
∂H
∂y

= N . The general solution is given

by H(x, y) = C.

[I’m ready to take the quiz.] [I need to review more.]
[Take me back to the Tutorial Page]
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